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Abstract
The mechanism of formation of nanocrystalline gadolinium orthoferrite  (GdFeO3) during the heat treatment of gadolinium 
and iron(III) hydroxides synthesized by ultrasound-assisted co-precipitation was studied. The obtained samples were investi-
gated by energy-dispersive X-ray spectroscopy, simultaneous thermal analysis via coupled differential scanning calorimetry 
and thermogravimetric analysis (DSC–TGA), powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) 
spectroscopy. The DSC–TGA results confirm that the formation of  GdFeO3 occurs after the complete decomposition of 
gadolinium oxycarbonate derivatives. The PXRD results indicate that  GdFeO3 is formed as a result of the reaction of amor-
phous iron(III) oxide (am-Fe2O3) at temperatures of 675–700 °C with amorphous gadolinium oxide (am-Gd2O3) (primary 
carbonate-independent pathway) and at temperatures of 725–775 °C with cubic gadolinium oxide (c-Gd2O3) transformed 
from the hexagonal gadolinium oxide (h-Gd2O3) which results from the decomposition of gadolinium oxycarbonate deriva-
tives at temperatures of 675–725 °C (secondary carbonate-dependent pathway). The FTIR results are consistent with the 
assumption that gadolinium oxycarbonate derivatives decompose with the formation of h-Gd2O3 in the last-mentioned 
temperature range. The enthalpy of the reaction of formation of nanocrystalline  GdFeO3 defined from the DSC–TGA data 
is equal to − 16.89 ± 0.36 kJ  mol−1. The activation energy for the formation of nanocrystalline  GdFeO3 obtained from the 
DSC data is equal to 1193.62 ± 112.05 kJ  mol−1, 1202.27 ± 112.06 kJ  mol−1 and 1151.08 ± 106.53 kJ  mol−1 according to 
the Kissinger, Augis–Bennett/Boswell and Flynn–Wall–Ozawa methods, respectively. Also, based on the DSC data, the true 
onset temperature of the formation of nanocrystalline  GdFeO3 was found to be ~ 756 °C.

Keywords Gadolinium orthoferrite · GdFeO3 · Co-precipitation · Gadolinium oxycarbonates · Enthalpy of formation · 
Activation energy

Introduction

Rare-earth orthoferrites (REFeO3, where RE is a rare-earth 
element: Sc, Y, La–Lu) are a class of chemical compounds 
with an orthorhombic perovskite structure that have been 
actively studied due to their magnetic, optical and electri-
cal properties [1–7]. One of these compounds is gado-
linium orthoferrite  (GdFeO3) which has been proposed for 

various applications such as catalysis [8], photocatalysis 
[9], electrocatalysis [10], luminescence [11], gas sensing 
[12] and as a contrast agent for magnetic resonance imag-
ing (MRI) [13–16]. In the synthesis of  GdFeO3 nanocrys-
tals, various methods have been employed, including co-
precipitation [17], hydrothermal method [18], solution 
combustion [19], sol–gel [20], microwave method [21], 
sonochemical method [22] and using heterobimetallic 
[23] and metal–organic [24] precursors. The co-precipi-
tation method, which we preferred in our previous works 
[25–30], makes it possible to synthesize nanocrystalline 
 GdFeO3 with minimal foreign chemical impurities since 
the co-precipitated gadolinium and iron(III) hydroxides 
are dehydrated during heat treatment with the formation 
of the corresponding oxides, which then form the com-
pound of interest. However, due to the active sorption of 
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carbon oxide  (CO2) from the ambient air into the reagent 
solutions during their preparation or onto the surface of 
co-precipitated hydroxides during their washing and dry-
ing, gadolinium carbonate can be formed. Such partial 
carbonatization of co-precipitated hydroxides may lead 
to sample inhomogeneity in terms of phase composition, 
and as a result, to the formation of another phase along 
with  GdFeO3 after heat treatment [25, 26, 30]. Therefore, 
it is of scientific and practical interest to study and under-
stand the role of carbonates in the formation mechanism 
of nanocrystalline  GdFeO3 by co-precipitation.

In the literature, several publications have investigated 
the mechanism of formation of  GdFeO3 nanocrystals by 
the co-precipitation method [31–33]. Prakash et al. [31] 
investigated the formation of nanocrystalline  GdFeO3 by 
sintering a synthesized sample of co-precipitated hydrox-
ides at temperatures of 600–1200 °C. They found that gado-
linium oxide  (Gd2O3) was present in the sintered products 
up to a temperature of 1000 °C, above which single-phase 
 GdFeO3 nanocrystals were obtained; therefore, they con-
sider the temperature of 1200 °C to be optimal for sinter-
ing. The authors reported the presence of carbonates in the 
synthesized sample, but they did not indicate their role in 
the formation of  GdFeO3. Tugova and Karpov [32] stud-
ied the mechanism of formation of nanocrystalline  GdFeO3 
upon the calcination of co-precipitated hydroxides at tem-
peratures of 500–900 °C. They established that the products 
heat treated at temperatures of 500–600 °C contain gadolin-
ium dioxymonocarbonate  (Gd2O2CO3) which decomposes 
at temperatures of 600–700 °C to form cubic  Gd2O3, and 
starting from a temperature of 700 °C,  GdFeO3 is formed. 
Based on these results, they concluded that the formation of 
 GdFeO3 nanocrystals occurs through two mechanisms: the 
first mechanism is related to the simultaneous dehydration 
of co-precipitated hydroxides, while the other is associated 
with both dehydration and decarbonation, which leads to an 
increase in the temperature of  GdFeO3 synthesis. The work 
of Popkov et al. [33] confirmed the results of the previous 
one [32] that the formation of  GdFeO3 nanocrystals pro-
ceeds via two routes: from the co-precipitated hydroxides 
along the main route and from the products of partial car-
bonatization along the side one.

In this paper, we continue the work of the aforemen-
tioned colleagues, focus on simultaneous thermal analysis 
of the precursor and study in detail the mechanism of for-
mation of  GdFeO3 nanocrystals synthesized employing the 
ultrasound-assisted co-precipitation method, which appar-
ently, maintains sample homogeneity by enhancing diffu-
sion and mixing processes [30]. The content of carbonates in 
the products of heat treatment of the synthesized sample of 
co-precipitated hydroxides at different temperatures is esti-
mated. In addition, the true onset temperature of the forma-
tion of nanocrystalline  GdFeO3 is found, and the enthalpy 

and the activation energy for this formation reaction are also 
defined.

Materials and methods

Synthesis of samples

In this work, gadolinium and iron(III) hydroxides were syn-
thesized by direct co-precipitation accompanied by ultrason-
ication. After that, samples of the obtained co-precipitated 
hydroxides were heated at different temperatures in the air.

An aqueous solution of stoichiometric amounts of gad-
olinium nitrate hexahydrate “Gd(NO3)3·6H2O” (puriss., 
99.9%) and iron(III) nitrate nonahydrate “Fe(NO3)3·9H2O” 
(pur., 98.00%) with a concentration of 0.01 mol  L−1 for each 
salt was used as a source of gadolinium and iron(III) ions. 
An aqueous solution of sodium hydroxide (NaOH) (p.a.) 
with a concentration of 1 mol  L−1 was used as a precipitating 
medium. Gadolinium and iron(III) nitrates react with sodium 
hydroxide to form water-soluble sodium nitrate  (NaNO3) 
and a precipitate of gadolinium hydroxide “Gd(OH)3” and 
iron(III) hydroxide “Fe(OH)3” (exchange reaction). The 
equation for this reaction can be written as follows:

Gd(NO3)3(aq) + Fe(NO3)3(aq) + 6NaOH(aq) = Gd (OH)3(
s) + Fe(OH)3(s) +  6NaNO3(aq).

Co‑precipitation of gadolinium and iron(III) hydroxides

For the synthesis of co-precipitated hydroxides, 100 mL of 
1 mol  L−1 sodium hydroxide solution was added dropwise 
to 100 mL of 0.01 mol  L−1 gadolinium and iron(III) nitrates 
solution, which was constantly stirred with a magnetic stirrer 
and irradiated with ultrasound by immersing the ultrasonic 
horn of a ‘‘Venpan type UD-20 automatic’’ ultrasonic dis-
integrator into it throughout the entire co-precipitation pro-
cess. The synthesis was repeated two more times, each time 
with 100 mL of each reagent solution. Then, the resulting 
precipitates with the supernatants from the three syntheses 
were mixed using a magnetic stirrer. After settling, most 
of the supernatant was decanted, and the co-precipitated 
hydroxides were separated from the remainder by centrif-
ugation. Thereafter, the obtained precipitate was washed 
three times with distilled water to remove residual sodium 
hydroxide and sodium nitrate. The washed co-precipitated 
hydroxides were separated from water by centrifugation and 
then dried at a temperature of 45 °C.

Heat treatment of co‑precipitated hydroxides

Samples of the synthesized co-precipitated hydroxides with 
a mass of about 50 mg were heated at different temperatures 
in the range of 650–850 °C with an interval of 25 °C (650, 
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675, 700, 725, 750, 775, 800, 825 and 850 °C) for 4 h in 
the air.

Characterization of co‑precipitated hydroxides

Energy‑dispersive X‑ray spectroscopy

The content of gadolinium and iron in the synthesized sam-
ple of co-precipitated hydroxides was determined by energy-
dispersive X-ray spectroscopy (EDXS) using a “TESCAN 
VEGA3” scanning electron microscope (TESCAN ORSAY 
HOLDING, Brno-Kohoutovice, Czech Republic) with an 
accelerating voltage of 30.0 kV coupled with an “x-act” sili-
con drift detector (Oxford Instruments, Abingdon, Oxford-
shire, UK).

Differential scanning calorimetry and thermogravimetric 
analysis

The synthesized sample of co-precipitated hydroxides was 
investigated by differential scanning calorimetry and ther-
mogravimetric analysis (DSC–TGA) using a “NETZSCH 
STA 449 F3” simultaneous thermal analyzer (NETZSCH-
Gerätebau GmbH, Selb, Germany) up to 900 °C at three 
different heating rates (10, 20 and 30 °C  min−1) in an inert 
atmosphere of argon. The sample masses were 11.160, 
11.568 and 11.183  mg at heating rates of 10, 20 and 
30 °C  min−1, respectively. The DSC and TGA curves of 
the reference substances (potassium chromate “K2CrO4” 
and barium carbonate “BaCO3”) were obtained using the 
same simultaneous thermal analyzer at the same three heat-
ing rates. The sample mass of  K2CrO4 was 15.677 mg at a 
heating rate of 10 °C  min−1 and 16.130 mg at heating rates 
of 20 and 30 °C  min−1, while the sample mass of  BaCO3 
was 11.933 mg at all heating rates. All measurements were 
carried out in platinum crucibles (DSC/TG pan Pt). The 
processing of the DSC–TGA data was carried out using the 
“NETZSCH Proteus Thermal Analysis” software.

Characterization of heat‑treated products

Powder X‑ray diffraction

The powder X-ray diffraction (PXRD) patterns were 
recorded using a ‘‘Rigaku SmartLab 3’’ diffractometer 
(Rigaku Corporation, Tokyo, Japan) in the Bragg angle 
range of 15–61° at a scan speed of 0.2 deg  min−1 and a step 
width of 0.01°. The processing of the PXRD data was car-
ried out using the ‘‘SmartLab Studio II’’ software. The mass 
fractions of the crystalline phases were estimated by the 
Rietveld refinement method using the crystal structure data 
of the Inorganic Crystal Structure Database (ICSD) struc-
tures with the identifiers of ICSD 27278, ICSD 162247 and 

ICSD 150677 for orthorhombic  GdFeO3, hexagonal  Gd2O3 
and cubic  Gd2O3, correspondently. The relative mass frac-
tions of the X-ray amorphous phases in the products that 
underwent heat treatment at temperatures up to 775 °C were 
estimated by normalizing the obtained diffractograms of 
these products, determining the integrated intensity of the 
amorphous halo on the normalized diffraction patterns in 
the Bragg angle range of ~ 15.2–27.2° and recalculating the 
resulting values as percentages of the maximum. The esti-
mated results of mass fractions of the X-ray amorphous and 
crystalline phases in each heat-treated product were com-
bined by subtracting the integrated intensity of the amor-
phous halo from 100% and recalculating the mass fractions 
of crystalline phases as fractions of the obtained value.

Fourier‑transform infrared spectroscopy

The Fourier-transform infrared (FTIR) spectra in the 
wavenumber range of 400–4000  cm−1 were obtained by 
Kubelka–Munk transformation of diffuse reflectance data 
acquired using a “Bruker INVENIO-S” FTIR spectrometer 
(Bruker Optics, Ettlingen, Germany) with a “PIKE” diffuse 
reflectance attachment (PIKE Technologies, Madison, WI, 
USA). The relative mass percentages of gadolinium oxy-
carbonate derivatives in the products that underwent heat 
treatment at temperatures up to 800 °C were estimated by 
normalizing the obtained FTIR spectra of these products, 
determining the integrated intensity of the asymmetric and 
symmetric stretching vibrations of carbonate groups (CO3

2−) 
on the normalized FTIR spectra in the wavenumber range 
of ~ 1260–1625  cm−1 and recalculating the resulting values 
as percentages of the maximum.

Results and discussion

Energy‑dispersive X‑ray spectroscopy

According to the EDX spectrum presented in Fig. 1, the 
synthesized sample of co-precipitated hydroxides is practi-
cally chemically pure. The carbon detected in the investi-
gated sample is related to the presence of carbonate groups, 
the appearance of which, as we mentioned earlier, is a con-
sequence of the active sorption of  CO2 from the ambient 
air into the reagent solutions during their preparation or 
onto the surface of co-precipitated hydroxides during their 
washing and drying. Based on the EDXS results, the atomic 
ratio of gadolinium to iron (Gd:Fe) is (49.92 ± 0.03)%:(50
.08 ± 0.03)%; therefore, the average Gd:Fe atomic ratio is 
about 1.000:1.003, which is very close to the atomic ratio 
of 1:1 in  GdFeO3, i.e., the content of gadolinium and iron 
in the synthesized sample corresponds to the stoichiome-
try of the compound of interest. It is worth noting that the 

13283



 Y. Albadi et al.

1 3

Gd:Fe atomic ratio is preserved during the synthesis since 
neither gadolinium nor iron is included in the composition 
of compounds that are volatile during the heat treatment of 
co-precipitated hydroxides.

Differential scanning calorimetry 
and thermogravimetric analysis

As was shown earlier [25, 27, 29, 33], upon heat treat-
ment, gadolinium and iron(III) hydroxides undergo a 
series of physicochemical processes before forming 
 GdFeO3. The DSC and TGA curves of the synthesized 

sample of co-precipitated hydroxides at different heating 
rates (10–30 °C  min−1) are presented in Fig. 2a and b, 
respectively. The first derivatives of the TGA curves (the 
DTG curves) are presented in supplementary Fig. S1. On 
the obtained DSC curves (Fig. 2a), 7 thermal effects can 
be detected: 6 endothermic (effects indicated by downward 
pointing arrows 1–6) and one exothermic (effect indicated 
by upward pointing arrow 8), whereas on the presented 
DTG curves (Fig. S1), 7 endothermic effects are observed 
(effects 1–7). These effects are associated with the evapo-
ration of the physically adsorbed water on the sample sur-
face (endothermic effect 1: ~ 53–63 °C by DSC, ~ 51–58 °C 
by DTG); the dehydration of iron(III) hydroxide to form 
iron(III) oxide (endothermic effect 2: ~ 126–163 °C by 
DSC, ~ 132–156 °C by DTG); the dehydration of gadolin-
ium hydroxide in three stages: firstly to form gadolinium 
oxide sesquihydrate (endothermic effect 3: ~ 226–247 °C 
by DSC, ~ 223–246 °C by DTG), secondly to form gado-
linium oxyhydroxide (endothermic effect 4: ~ 294–319 °C 
by DSC, ~ 299–322 °C by DTG), and thirdly, to gado-
linium oxide (endothermic effect 6: ~ 414–452  °C by 
DSC, ~ 420–442 °C by DTG); the first stage of decom-
position of gadolinium carbonate to form an oxycarbon-
ate derivative (endothermic effect 5: ~ 371–384  °C by 
DSC, ~ 369–392 °C by DTG); the last stage of decom-
position of gadolinium oxycarbonate derivative to form 
gadolinium oxide (endothermic effect 7: ~ 756–758 °C 
by DTG), and finally, the formation of gadolinium ortho-
ferrite from gadolinium and iron(III) oxides (exothermic 
effect 8: ~ 764–772 °C by DSC). All these results are sum-
marized in Table 1. As can be seen from Table 1, the tem-
peratures of the maximum thermal and mass loss effects 
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generally tend to increase with increasing heating rate. 
According to the TGA curves (Fig. 2b), the total mass 
loss is about 21.69%, 21.75% and 20.58% at a heating rate 
of 10, 20 and 30 °C  min−1, correspondently. These mass 
losses are related to the release of water (effects 1–4 and 6) 
and  CO2 (effects 5 and 7). The results obtained are in good 
agreement with the previous ones [32, 33], which confirm 
that the formation of  GdFeO3 occurs after the mass loss is 
completed, i.e., after the complete decomposition of gado-
linium oxycarbonate derivatives.

Enthalpy of the reaction of formation 
of nanocrystalline  GdFeO3

To found the enthalpy of formation of nanocrystalline 
 GdFeO3 based on the DSC–TGA results, two reference 
substances were used:  K2CrO4 and  BaCO3. Potassium chro-
mate and barium carbonate undergo certain physicochemical 
transformations at temperatures below and above the forma-
tion temperature of  GdFeO3, respectively. According to the 
data used to calibrate the thermal analyzer, at a heating rate 
of 10 °C  min−1,  K2CrO4 transforms from orthorhombic to 
hexagonal form in an endothermic process [34] at a tem-
perature of 668.0 °C with an enthalpy of 35.000 J  g−1, while 
 BaCO3 melts in an endothermic process at a temperature of 
808.0 °C with an enthalpy of 94.900 J  g−1.

At each heating rate (β), the onset temperature (tonset) and 
peak area (A) of the endothermic effects of the reference 
substances and the exothermic effect of  GdFeO3 formation 
were determined from the DSC curves, whereas the val-
ues of sample mass at each onset temperature (monset) were 

determined from the TGA curves. Peak areas in µV °C were 
calculated from their values in µV s given by the software 
using the heating rate according to Eq. 1.

Then, the “specific” peak areas (A*) were calculated by 
dividing the obtained peak areas by the corresponding sam-
ple masses at onset temperature as shown in Eq. 2.

After that, the known enthalpy values associated with 
the endothermic effects of the reference substances were 
divided by the corresponding “specific” peak areas as shown 
in Eq. 3.

Then, the resulting values of ΔH/A* were plotted as a 
function of tonset at each heating rate (Fig. 3), where each 
dependence is a straight line drawn between two reference 
points: one for  K2CrO4 and the other for  BaCO3.

Based on the equations of the straight lines obtained, the 
values of ΔH/A* for  GdFeO3 at each heating rate were cal-
culated using the corresponding onset temperatures of the 
exothermic effect of  GdFeO3 formation. All these data are 
summarized in Table 2.

(1)A
[

μV◦C
]

= A
[

μV s
]

⋅

�
[

◦Cmin−1
]

60
[

smin−1
]

(2)A
∗
[

μV◦Cmg−1
]

=
A
[

μV◦C
]

monset

[

mg
]

(3)ΔH∕A∗
[

JμV−1 ◦C−1
]

=
ΔH

[

Jg−1
]

⋅ 10
−3
[

gmg−1
]

A∗
[

μV ◦Cmg−1
]

Table 1  Thermal (DSC) and 
mass loss (DTG) effects of the 
co-precipitated hydroxides at 
different heating rates

tmax is the temperature of the maximum thermal or mass loss effect, β is the heating rate
a The values of x in gadolinium oxycarbonate derivatives are defined later in this paper (see Section “Car-
bonate content in gadolinium oxycarbonate derivatives”)
b These temperatures could not be accurately determined due to stage overlap and low intensity

Effect 
no

Endo/
exo

tmax/°C Process [33]

at 
β = 10 °C  min−1

at 
β = 20 °C  min−1

at 
β = 30 °C  min−1

DSC DTG DSC DTG DSC DTG

1 Endo 53 51 57 58 63 58 –H2O (adsorbed)
2 Endo 126 135 147 132 163 156 2Fe(OH)3 =  Fe2O3 +  3H2O
3 Endo 226 223 232 231 247 246 2Gd(OH)3 =  Gd2O3·1.5H2O + 1.5H2O
4 Endo 294 299 311 313 319 322 Gd2O3·1.5H2O = 2GdOOH + 0.5H2O
5 Endo 371 369 374 377 384 392 Gd2(CO3)3 =  Gd2O3-x(CO3)x + (3-x)

CO2 a

6 Endo 414 420 427 429 452 442 2GdOOH =  Gd2O3 +  H2O
7 Endo b 756 b 758 b 756 Gd2O3-x(CO3)x =  Gd2O3 + xCO2 a

8 Exo 764 – 770 - 772 – Fe2O3 +  Gd2O3 =  2GdFeO3
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Thereafter, multiplying the resulting values of ΔH/A* for 
 GdFeO3 at each heating rate by the corresponding “specific” 
peak areas calculated earlier by Eq. 2, the enthalpy of the reac-
tion of formation of nanocrystalline  GdFeO3 can be estimated 
(Eq. 4).

According to Eq. 4, the enthalpy of the reaction of for-
mation of nanocrystalline  GdFeO3 is in the range from 
about − 63.36 to − 66.54  J   g−1 or from about − 16.54 
to − 17.37 kJ  mol−1. In other words, it is approximately equal 
to − 64.67 ± 1.36 J  g−1 or − 16.89 ± 0.36 kJ  mol−1. This value 
is much less than the enthalpy of formation of  GdFeO3 at 
298.15 K (− 1351.432 ± 8.368 kJ  mol−1 [35]), which can be 
explained by the fact that the standard enthalpy of formation 

(4)ΔH
[

J g−1
]

= ΔH∕A∗
[

JμV −1◦C−1
]

⋅ A
∗
[

μV ◦Cmg−1
]

⋅ 10
3
[

mgg−1
]

corresponds to the formation of  GdFeO3 from its constituent 
elements (Gd, Fe and O) in their standard states, while in this 
work, the enthalpy of formation of  GdFeO3 from gadolinium 
and iron(III) oxides was estimated. Furthermore, the calculated 
value does not correspond to bulk  GdFeO3, but to nanosized 
 GdFeO3; therefore, it should be smaller.

Activation energy for the formation 
of nanocrystalline  GdFeO3

To estimate the activation energy for the formation of 
nanocrystalline  GdFeO3 based on the DSC data, three 
kinetic methods were applied: the Kissinger method [36], 
the Augis–Bennett/Boswell method [37, 38] and the 
Flynn–Wall–Ozawa (FWO) method [39, 40]. These non-iso-
thermal kinetic methods depend on the relationship between 
the heating rate and the absolute temperature at which the reac-
tion reaches its maximum value [41]. The mathematical for-
mulas for these methods can be written as shown in Eqs. 5–7.

Kissinger method

Augis–Bennett/Boswell method

Flynn–Wall–Ozawa method
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range ~ 663–805 °C at different heating rates

Table 2  DSC–TGA data used in the estimation of the enthalpy of the reaction of formation of nanocrystalline  GdFeO3

β/°C  min−1 Substance tonset/°C monset/mg A/μV s A/μV °C A*/μV °C  mg−1 ΔH/A*/J μV−1 °C−1

10 K2CrO4 664 15.610 322.2 53.70 3.44 1.02 ×  10−2

BaCO3 805 11.804 482.3 80.38 6.81 1.39 ×  10−2

GdFeO3 759 8.754 − 261.8 − 43.63 − 4.98 1.27 × 10−2

20 K2CrO4 664 16.330 345.2 115.1 7.05 4.97 ×  10−3

BaCO3 805 12.469 476.2 158.7 12.73 7.45 ×  10−3

GdFeO3 765 9.064 − 268.1 − 89.37 − 9.86 6.75 × 10−3

30 K2CrO4 663 16.720 346.9 173.5 10.37 3.37 ×  10−3

BaCO3 805 12.394 474.6 237.3 19.15 4.96 ×  10−3

GdFeO3 768 8.905 − 251.3 − 125.7 − 14.11 4.54 × 10−3
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In these equations, β is the heating rate, Tmax is the abso-
lute temperature at which the reaction reaches its maximum 
value, i.e., the peak of the thermal effect (in our work, Tmax is 
the absolute temperature of the maximum exothermic effect 
of  GdFeO3 formation on the corresponding DSC curve), Ea 
is the activation energy, A is the pre-exponential factor and 
R is the molar gas constant.

Based on the Kissinger method (Eq. 5), plotting ln(β/T2
max) 

against 1/Tmax results in a straight line with a slope of − Ea/R 
and a y-intercept of ln(AR/Ea). Similarly, in accordance 
with the Augis–Bennett/Boswell method (Eq. 6), plotting 
ln(β/Tmax) versus 1/Tmax gives a straight line with a slope 
of − Ea/R, whereas according to the FWO method (Eq. 7), 
plotting of ln β against 1/Tmax gives a straight line with a 

slope of − 1.052Ea/R. Figure 4 shows these straight lines 
obtained using the previously determined temperatures of 
the maximum exothermic effect of  GdFeO3 formation on the 
DSC curves at different heating rates (Table 1, effect 8). In 
the first two methods, the activation energy for the formation 
of nanocrystalline  GdFeO3 can be calculated by multiply-
ing the resulting slopes by − R, while in the third method, 
the obtained slope should be multiplied by − R and divided 
by 1.052. The DSC data used and the calculation results are 
summarized in Table 3.

According to the calculation results, the activation 
energy for the formation of nanocrystalline  GdFeO3 
is approximately equal to 1193.62 ± 112.05  kJ   mol−1, 
1202.27 ± 112.06 kJ  mol−1 and 1151.08 ± 106.53 kJ  mol−1 

Fig. 4  Dependences of 
ln(β/T2

max) (Kissinger method), 
ln(β/Tmax) (Augis–Bennett/
Boswell method) and ln β 
(FWO method) on the recipro-
cal absolute temperature of the 
maximum exothermic effect of 
 GdFeO3 formation on the DSC 
curves. R2 is the coefficient of 
determination
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9.56 9.58 9.60

1/Tmax/(10–4 K–1)

9.62 9.64

R 2 = 0.9915
R 2 = 0.9914

R 2 = 0.9913
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Augis–Bennett/Boswell
Flynn–Wall–Ozawa

Table 3  DSC data used in the estimation of activation energy for the formation of nanocrystalline  GdFeO3 and the results obtained

R2 is the coefficient of determination, ΔEa is the standard error of the calculated activation energy, ΔEa is the relative standard error of the calcu-
lated activation energy

β/°C  min−1 tmax/°C Tmax/K 1/Tmax/K−1 Kissinger Augis–Bennett/Boswell Flynn–Wall–Ozawa
ln β/T2

max/
K−1  min−1

ln β/Tmax/min−1 ln β/ K  min−1

10 764 1037 9.64 ×  10−4 − 11.59 − 4.642 2.303
20 770 1043 9.59 ×  10−4 − 10.90 − 3.954 2.996
30 772 1045 9.56 ×  10−4 − 10.50 − 3.551 3.401

R2 0.9913 0.9914 0.9915
Ea/ kJ  mol−1 1193.62 1202.27 1151.08
ΔEa/kJ  mol−1 112.05 112.06 106.53
ΔEa/Ea/% 9.39 9.32 9.25
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based on the Kissinger, Augis–Bennett/Boswell and FWO 
methods, correspondently, which are quite close. The rela-
tive standard error of the estimated values ranges from about 
9.25 to 9.39%. This high value of activation energy is due 
to the high temperature required for the complete decom-
position of gadolinium oxycarbonate derivatives before 
the formation of  GdFeO3, as discussed earlier (See Section 
“Differential scanning calorimetry and thermogravimet-
ric analysis”). In accordance with the Kissinger method, 
the pre-exponential factor has an average value of about 
1.62 ×  1060  min−1.

True onset temperature of the formation 
of nanocrystalline  GdFeO3

The values of the onset temperature of the exothermic 
effect of  GdFeO3 formation previously determined from the 
DSC curves (Table 2) are found to be about 759, 765 and 
768 °C at a heating rate of 10, 20 and 30 °C  min−1, respec-
tively. Therefore, the temperature at which nanocrystalline 
 GdFeO3 begins to form increases with increasing heating 
rate. To found the true onset temperature of the formation of 
nanocrystalline  GdFeO3, i.e., at a heating rate of 0 °C  min−1, 
the dependence of tonset on β was plotted, and as a result, 
a straight line was obtained (Fig. 5). By extrapolating the 
resulting straight line to the y-axis (where β = 0 °C  min−1), 
the true onset temperature of the formation of nanocrystal-
line  GdFeO3 was found to be about 756 °C, which is quite 
close to the temperature of 750 °C used in our previous 
works [25–30].

Powder X‑ray diffraction

The diffractograms of the products of heat treatment of the 
co-precipitated gadolinium and iron(III) hydroxides in the 
temperature range of 650–850 °C for 4 h are presented in 
Fig. 6. According to these diffraction patterns, the heat-
treated product obtained at a temperature of 650 °C is X-ray 
amorphous, whereas the products that underwent heat treat-
ment at a temperature of 800 °C and higher are pure-phase 
crystalline samples and consist of orthorhombic gadolin-
ium orthoferrite (o-GdFeO3) (ICSD 27278, space group 

768

766

764

762

t on
se

t/°
C

760

758

756

754
0 5 10 15 20 25 30

� /(°C min–1)

R
2  = 0.9314

Fig. 5  Dependence of the onset temperature of the formation of 
nanocrystalline  GdFeO3 on the heating rate

Fig. 6  Powder X-ray diffrac-
tion patterns of the heat-treated 
products of the co-precipitated 
hydroxides. The peak bars indi-
cate the positions of the reflec-
tions of the ICSD structures 
used in the Rietveld refinement. 
The Miller indices presented 
belong to o-GdFeO3
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62: Pbnm). On the other hand, the X-ray phase analysis of 
the heat-treated products obtained in the temperature range 
of 675–775 °C shows that, in addition to o-GdFeO3, they 
also contain other crystalline phases that, apparently, can 
be associated with hexagonal gadolinium oxide (h-Gd2O3) 
(ICSD 162247, space group 164: P-3m1) and cubic gado-
linium oxide (c-Gd2O3) (ICSD 150677, space group 206: 
Ia-3). Along with these three crystalline phases, the last-
mentioned products also contain X-ray amorphous phases, 
as seen from the amorphous halo in the Bragg angle range 
of ~ 15.2–27.2°. These phases include amorphous iron(III) 
oxide (am-Fe2O3), amorphous gadolinium oxide (am-
Gd2O3) and/or amorphous gadolinium oxycarbonate deriva-
tives “am-Gd2O3-x(CO3)x”. The estimated results of mass 
fractions of the X-ray amorphous and crystalline phases in 
all heat-treated products are presented in Fig. 7.

In accordance with Fig. 7, with an increase in the treat-
ment temperature from 650 to 700  °C, the mass frac-
tion of X-ray amorphous phases sharply decreases (from 
100% at 650 to ~ 31% at 700 °C), while the mass fraction 
of o-GdFeO3 sharply increases (from 0 at 650 to ~ 61% 
at 700  °C). This can be explained by the formation of 
o-GdFeO3 as a result of the reaction of am-Fe2O3 and am-
Gd2O3 at temperatures of 675–700 °C. This primary path-
way of  GdFeO3 formation is independent of the decomposi-
tion of gadolinium oxycarbonate derivatives.

On the other hand, the mass fractions of h-Gd2O3 and 
c-Gd2O3 progressively increase with an increase in the 
treatment temperature up to 725 °C (reaching a maximum 
of ~ 13% for h-Gd2O3 and ~ 1.5% for c-Gd2O3), above 
which they begin to decrease gradually and completely 
disappear at a temperature of 800 °C. It is well known 

that under normal conditions, gadolinium oxide may exist 
in cubic (C-type, space group 206: Ia-3) or monoclinic 
(B-type, space group 12: C2/m) forms, whereas the hex-
agonal form (A-type, space group 164: P-3m1), at ambient 
pressure, is only stable at very high temperatures (more 
than 2443 K/ ~ 2170 °C) [42, 43]. However, the forma-
tion of h-Gd2O3 in the products heat treated in the tem-
perature range of 675–775 °C is most likely related to 
the presence of gadolinium oxycarbonate derivatives, 
which, if they were crystalline, could have a hexagonal 
form that is more stable than other crystalline forms, e.g., 
the hexagonal form of  Gd2O2CO3 is more stable than 
its tetragonal and monoclinic forms [44]. Based on this 
assumption and the results obtained, in the temperature 
range of 675–725 °C, gadolinium oxycarbonate deriva-
tives progressively decompose with the formation of  CO2 
and h-Gd2O3, which then transforms to the form stable in 
the synthesis conditions, c-Gd2O3, which, at temperatures 
of 725–775 °C, reacts with am-Fe2O3 to form o-GdFeO3. 
This is the secondary pathway of  GdFeO3 formation that 
depends on the decomposition of gadolinium oxycarbon-
ate derivatives. It should be noted that the formation of 
o-GdFeO3 as a result of the reaction of am-Fe2O3 and 
h-Gd2O3, i.e., without the transformation of h-Gd2O3 to 
c-Gd2O3, may be possible, but there is no clear evidence 
for this, especially since the mass fraction of c-Gd2O3 is 
less than the mass fraction of h-Gd2O3 in all heat-treated 
products containing both of these phases, which indicates 
that the  GdFeO3 formation along this pathway occurs with 
the participation of c-Gd2O3 consumed. Besides, since the 
last stage of decomposition of gadolinium oxycarbonate 
derivatives proceeds at a temperature of ~ 756–758, as fol-
lows from the DTG curves (Table 1, effect 7), h-Gd2O3 can 
be formed even above the temperature of 725 °C; how-
ever, we cannot observe this on the diffractograms of the 
products heat treated at temperatures of 750–775 °C, most 
likely because above the temperature of 725 °C, h-Gd2O3 
transforms to c-Gd2O3 which then reacts with am-Fe2O3 
faster than h-Gd2O3 is produced from the decomposition 
of gadolinium oxycarbonates derivatives. Similarly, the 
 GdFeO3 formation along this pathway can begin below 
the temperature of 725 °C, but in this case, the reaction of 
c-Gd2O3 (and perhaps h-Gd2O3) with am-Fe2O3 is slower 
than the production of h-Gd2O3 from the decomposition of 
gadolinium oxycarbonate derivatives. The obtained results 
are in good agreement with the results of DSC, according 
to which the exothermic effect of  GdFeO3 formation is 
observed at a temperature of ~ 764–772 °C (Table 1, effect 
8).

Figure  8 illustrates the proposed mechanism for the 
formation of nanocrystalline  GdFeO3 synthesized, i.e., by 
ultrasound-assisted co-precipitation, as follows from the 
DSC–TGA and PXRD data.
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Fourier‑transform infrared spectroscopy

The FTIR spectra of the products of heat treatment of the 
synthesized sample of co-precipitated gadolinium and 
iron(III) hydroxides in the temperature range of 650–850 °C 

for 4 h are presented in Fig. 9. The wavenumbers of the 
absorption bands that correspond to the main vibrations in 
the obtained FTIR spectra of the products that underwent 
heat treatment in the temperature range of 650–775 °C and 
their assignment are summarized in Table 4.

Fig. 8  Mechanism of formation 
of nanocrystalline  GdFeO3 via 
heat treatment of co-precipitated 
hydroxides
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The broad absorption band in the region of high wave-
numbers centered at ~ 3256–3385   cm−1 (band 1) is a 
consequence of the overlapping of asymmetric and sym-
metric stretching vibrations of water “ν(H2O)”, which is 
physically adsorbed on the surface of the samples during 
their storage and/or preparation for investigation [28]. The 
absorption band of the bending vibration of physically 
adsorbed water “δ(H2O)” is observed at ~ 1636–1637  cm−1 
(band 2). The bands observed at ~ 1507–1508  cm−1 (band 
3) and at ~ 1391–1398  cm−1 (band 4) can be attributed to 
the asymmetric “νas(CO3

2−)” and symmetric “νs(CO3
2−)” 

stretching vibrations of carbonate groups, respectively, 
whereas the bands observed at ~ 1045–1088  cm−1 (band 
5), at ~ 849–859   cm−1 (band 6) and at ~ 664–670   cm−1 
(band 7) may be assigned to the symmetric stretching 
vibration of the C–O bond “νs(C–O)”, the out-of-plane 
bending “π(CO3

2−)” and rocking “ρ(CO3
2−)” vibrations 

of carbonate groups, correspondently [45]. The band 
observed at ~ 564–570  cm−1 (band 8) can be attributed to 
the stretching vibrations of the Gd–O bond “ν(Gd–O)” and 
the Fe–O bond “ν(Fe–O)” in the Gd–O–Fe and Fe–O–Fe 
systems [46], while the band observed at ~ 435–444  cm−1 
(band 9) may be assigned to the O–Fe–O bending vibra-
tion “δ(O–Fe–O)” in octahedral  FeO6 groups [31]. The 
last-mentioned absorption band (band 9) is practically 
absent in the FTIR spectrum of the product heat treated 
at a temperature of 650 °C, which is X-ray amorphous 
as followed from the PXRD results (see Section “Powder 
X-ray diffraction”).

As can be seen from Fig. 9, the intensity of the asym-
metric and symmetric stretching vibrations of carbonate 
groups (Table 4, bands 3 and 4) on the normalized FTIR 

spectra in the wavenumber range of ~ 1260–1625   cm−1 
gradually decreases with an increase in heating tempera-
ture to become practically negligible at a temperature of 
800 °C. The relative mass percentages of gadolinium oxy-
carbonate derivatives in the products that underwent heat 
treatment at temperatures up to 800 °C, estimated based on 
the integrated intensity of these vibrations, are presented 
in Fig. 10. The mass fractions of h-Gd2O3 in these heat-
treated products, previously estimated using the PXRD 

Table 4  Assignment of the 
absorption bands corresponding 
to the main vibrations in the 
FTIR spectra of the products 
heat treated up to 775 °C

Band no Wavenumber/cm−1 Assignment

650 °C 675 °C 700 °C 725 °C 750 °C 775 °C

1 3385 3329 3313 3383 3256 3324 ν(H2O)
2 1637 1637 1637 1637 1636 1637 δ(H2O)
3 1507 1507 1507 1507 1507 1508 νas(CO3

2−)
4 1398 1396 1396 1393 1396 1391 νs(CO3

2−)
5 1066 1072 1088 1066 1045 1071 νs(C–O)
6 849 857 857 859 859 857 π(CO3

2−)
7 668 668 670 670 670 664 ρ(CO3

2−)
8 566 569 570 564 570 569 ν(M–O), 

M =  Gd3+, 
 Fe3+

9 – 435 441 438 444 441 δ(O–Fe–O)
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data, were recalculated as percentages of the maximum 
and presented in the same figure for comparison.

The results presented in Fig.  10 are in good agree-
ment with our assumption that gadolinium oxycarbonate 
derivatives progressively decompose with the formation 
of h-Gd2O3 up to the temperature of 725 °C, above which 
the mass fraction of h-Gd2O3 begins to decrease due to the 
formation of o-GdFeO3 along with the secondary pathway, 
i.e., with the participation of c-Gd2O3 (see Section “Pow-
der X-ray diffraction”). Above the temperature of 725 °C, 
gadolinium oxycarbonate derivatives continue to decom-
pose gradually, but, as we discussed earlier, h-Gd2O3 then 
transforms to c-Gd2O3 which reacts with am-Fe2O3 faster 
than h-Gd2O3 is produced; therefore, we observe not an 
increase but a decrease in the mass fraction of h-Gd2O3. 
At a temperature of 800 °C, h-Gd2O3 completely disap-
pears and gadolinium oxycarbonate derivatives become 
practically negligible.

Carbonate content in gadolinium oxycarbonate 
derivatives

To estimate the carbonate content in gadolinium oxycarbon-
ate derivatives, i.e., to estimate the values of x in the formula 
 Gd2O3-x(CO3)x at different temperatures, we used the TGA 
data at temperatures of 700, 725 and 750 °C at different 
heating rates (10–30 °C  min−1) as well as the PXRD data for 
the products that underwent heat treatment at these tempera-
tures, which include only am-Fe2O3 and am-Gd2O3-x(CO3)x 
as amorphous phases. As discussed earlier, at temperatures 
of 675–700 °C, am-Fe2O3 reacts with am-Gd2O3 to form 
o-GdFeO3 along the primary pathway (see Section “Powder 
X-ray diffraction”); therefore, the product heat treated at a 
temperature of 675 °C still contains am-Gd2O3, the pres-
ence of which complicates the calculation (the unnormalized 
diffraction pattern of this product shown in Fig. S2 con-
firms that, at a treatment temperature of 675 °C, o-GdFeO3 
is not fully crystallized in comparison with the products 
heat treated at higher temperatures). As for the product heat 
treated at a temperature of 775 °C, the relative mass percent-
age of gadolinium oxycarbonate derivatives is rather small 
(Fig. 10), which may also affect the calculation results.

According to the EDXS results, the average Gd:Fe atomic 
ratio is about 1.000:1.003, which is maintained during heat 
treatment (see Section “Energy-dispersive X-ray spectros-
copy”); therefore, the average Gd:Fe molar ratio can be 
considered equal to 1:1 in all heat-treated products, which 
means that the amounts in moles (n) of gadolinium and iron 
are equal (Eq. 8).

The amounts in moles of gadolinium and iron in the 
selected heat-treated products can be determined from Eqs. 9 
and 10, respectively.

Substituting Eqs. 9 and 10 in Eq. 8 and rearranging, 
we can determine the amount in moles of  Gd2O3-x(CO3)x 
(Eq. 11).oxycarbonate derivatives, one mole

Since the amount of a substance in moles is equal to its 
mass (m) divided by its molar mass (M), Eq. 11 can be writ-
ten as shown in Eq. 12.

The molar mass of gadolinium oxycarbonate derivatives 
can be determined as a function of x from Eq. 13.

Dividing both sides of Eq. 12 by the mass of the sample 
at a temperature of t (mt) and considering that the mass of a 
phase divided by the sample mass at a certain temperature is 
equal to the mass fraction of that phase (w) at that tempera-
ture, Eq. 12 is converted to Eq. 14.

The mass fraction of am-Fe2O3 in the selected samples 
can be determined from the estimated mass fraction of amor-
phous phases (wamorph) by subtracting the mass fraction of 
the other amorphous phase,  Gd2O3-x(CO3)x, as shown in 
Eq. 15.

Substituting Eq. 15 in Eq. 14 and rearranging, we can 
determine the mass fraction of gadolinium oxycarbonate 
derivatives in the investigated samples as a function of x 
(Eq. 16).

(8)nGd = nFe

(9)
nGd = n

o−GdFeO3
+ 2n

h−Gd2O3
+ 2n

c−Gd2O3
+ 2nGd2O3−x(CO3)x

(10)nFe = n
o−GdFeO3

+ 2n
am−Fe2O3

(11)nGd2O3−x(CO3)x
= n

am−Fe2O3
− n

h−Gd2O3
− n

c−Gd2O3

(12)
mGd2O3−x(CO3)x

MGd2O3−x(CO3)x

=
m

am−Fe2O3

MFe2O3

−
m

h−Gd2O3

MGd2O3

−
m

c−Gd2O3

MGd2O3

(13)MGd2O3−x(CO3)x
= MGd2O3

+ x ⋅MCO2

(14)

wGd2O3−x(CO3)x

MGd2O3
+ x ⋅MCO2

=
w
am−Fe2O3

MFe2O3

−
w
h−Gd2O3

MGd2O3

−
w
c−Gd2O3

MGd2O3

(15)w
am−Fe2O3

= wamorph − wGd2O3−x(CO3)x
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In accordance with the decomposition equation for gado-
linium oxycarbonate derivatives, one mole of  Gd2O3-x(CO3)x 
decomposes with the release of x mole of  CO2, and a mass of 
m(Gd2O3-x(CO3)x) decomposes with the release of a mass of 
m(CO2); therefore, using chemical arithmetic, we can write 
Eq. 17.

Since the mass of  Gd2O3-x(CO3)x at a certain temperature, 
as mentioned above, is equal to its mass fraction multiplied 

(16)wGd2O3−x(CO3)x
=

[

wamorph ⋅MGd2O3
−
(

w
h−Gd2O3

+ w
c−Gd2O3

)

⋅MFe2O3

]

⋅ (MGd2O3
+ x ⋅MCO2

)

MGd2O3
⋅

(

MFe2O3
+MGd2O3

+ x ⋅MCO2

)

(17)mGd2O3−x(CO3)x
⋅ x ⋅MCO2

= mCO2
⋅MGd2O3−x(CO3)x

by the sample mass at that temperature, Eq. 17 can be writ-
ten as shown in Eq. 18.

Substituting Eq. 16 in Eq. 18, rearranging and solving for 
x, we obtain the required equation (Eq. 19).

Using Eq. 19, the carbonate content in gadolinium oxy-
carbonate derivatives in the investigated samples can be 
estimated. At different heating rates (10–30 °C  min−1), the 
sample mass at a temperature of t (mt), where t = 700, 725 
and 750 °C, was determined from the TGA curves (Fig. 2b). 
In addition, the mass of  CO2 included in the sample at a 
temperature of t “m(CO2)”, i.e., its mass that will be released 
upon the complete decomposition of gadolinium oxycarbon-
ate derivatives in this sample, was also determined using 
the TGA data as the difference between the sample mass at 
each temperature (mt) and the sample mass at the end (com-
pletion) of mass loss on the TGA curve (mend). The mass 
fractions of the amorphous phases (wamorph), h-Gd2O3 “w(h-
Gd2O3)” and c-Gd2O3 “w(c-Gd2O3)” at each investigated 
temperature were previously estimated based on the PXRD 
data (Fig. 7). The TGA and PXRD data used and the calcula-
tion results are summarized in Table 5. The dependences of 
x in  Gd2O3-x(CO3)x on temperature at different heating rates 
are presented in Fig. 11.

As follows from Fig. 11, the obtained dependences can 
be described by linear equations with coefficients of deter-
mination in the range of 0.9363–0.9999. The extrapolation 
of these dependences to the temperature of 775 °C shows 

(18)
wGd2O3−x(CO3)x

⋅ m
t
⋅ x ⋅MCO2

= mCO2
⋅

(

MGd2O3
+ x ⋅MCO2

)

(19)

x =
mCO

2
⋅MGd

2
O

3
⋅

(

MFe
2
O

3
+MGd

2
O

3

)

MCO
2
⋅

[

MGd
2
O

3
⋅

(

m
t
⋅ wamorph − mCO

2

)

− m
t
⋅MFe

2
O

3
⋅

(

w
h−Gd

2
O

3
+ w

c−Gd
2
O

3

)]

Table 5  TGA and PXRD 
data used in the estimation of 
carbonate content in gadolinium 
oxycarbonate derivatives and 
the results obtained

β/(°C  min−1) t/°C TGA data PXRD data x w(Gd2O3

-x(CO3)x)/%mt/mg m(CO2)/mg wamorph/% w(h-Gd2O3)/% w(c-Gd2O3)/%

10 700 8.81975 0.08035 30.79 7.46 0.62 0.41 19.18
725 8.79854 0.05915 31.20 13.28 1.53 0.33 17.34
750 8.75725 0.01786 25.42 12.01 1.19 0.12 13.67

20 700 9.14450 0.09254 30.79 7.46 0.62 0.46 19.21
725 9.11790 0.06594 31.20 13.28 1.53 0.36 17.35
750 9.08782 0.03586 25.42 12.01 1.19 0.24 13.73

30 700 8.97771 0.09617 30.79 7.46 0.62 0.49 19.23
725 8.95311 0.07157 31.20 13.28 1.53 0.40 17.37
750 8.92627 0.04473 25.42 12.01 1.19 0.31 13.76
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Fig. 11  Dependences of x in the formula of gadolinium oxycarbon-
ate derivatives “Gd2O3-x(CO3)x” on temperature (t) at different heat-
ing rates. The inset shows the extrapolation of these dependences to 
the temperature range in which the obtained DSC and DTG curves 
showed the first stage of gadolinium carbonate decomposition with 
the formation of an oxycarbonate derivative. R2 is the coefficient of 
determination
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that x at this temperature is estimated at ~ 0.00–0.22 with 
an average value of ~ 0.12, which is in good agreement with 
the PXRD and FTIR results. On the other hand, extrapo-
lating the resulting dependences to the temperature range 
in which the obtained DSC and DTG curves showed the 
first stage of gadolinium carbonate decomposition with the 
formation of an oxycarbonate derivative (Table 1, effect 5), 
the x value in this derivative may be estimated at ~ 1.56–2.33 
with an average value of ~ 1.91. This result is very close to 
the literature data [33], according to which, at a temperature 
of ~ 363–370 °C, gadolinium carbonate “Gd2(CO3)3” decom-
poses to gadolinium monooxydicarbonate “Gd2O(CO3)2” 
with the release of  CO2.

Conclusions

In this work, a complex and detailed experimental inves-
tigation of the mechanism of  formation of  GdFeO3 
nanocrystals was performed, which shows that the co-pre-
cipitated gadolinium and iron(III) hydroxides upon heat 
treatment undergo a series of physicochemical processes 
including the dehydration to the corresponding oxides and 
the decomposition of gadolinium oxycarbonate deriva-
tives prior to the formation of  GdFeO3. The PXRD results 
indicated that the  GdFeO3 formation occurs via two path-
ways: a primary carbonate-independent pathway involv-
ing am-Gd2O3 and a secondary carbonate-dependent path-
way involving h-Gd2O3 and c-Gd2O3. The FTIR results 
showed that gadolinium oxycarbonate derivatives gradu-
ally decompose with increasing heating temperature to 
become practically negligible at a temperature of 800 °C. 
The resulting linear equations for the dependence of x 
in  Gd2O3-x(CO3)x on temperature predict that gadolinium 
carbonate at a temperature of ~ 266–426 °C decomposes 
to  Gd2O(CO3)2 which, at a temperature of ~ 553–601 °C, 
decomposes to  Gd2O2CO3, which, in turn, decomposes to 
 Gd2O3 at a temperature of ~ 776–839 °C.
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