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Abstract
A novel framework has been employed in various contemporary studies, to enhance heat transfer in heat exchangers through 
microchannels. A microchannel heat exchanger (MCHE) is a miniature heat exchanger that can address issues such as rapid 
increases in heat flux in small spaces, storage space constraints, and the need for compact, lightweight heat exchangers. 
Four perspectives were used in the qualitative literature analysis: working fluid, flow disruption, microchannel material, and 
microchannel cross section. The findings revealed that various working fluids (air, water, refrigerants, oil, and nanofluids) 
are employed in microchannel heat exchangers (MCHE) and microchannel heat sinks (MCHS); however, almost all studies 
have shown that nanofluids as working fluids in microchannels exhibit better thermal behavior than other fluids. Enhanced 
thermal performance can be achieved by adding flow disrupters (wavy channels, ribs, dimples, and baffles). Based on 
several applications, various materials, including aluminum (Al), copper (Cu), silicon (Si), stainless steel, silver (Ag), and 
various other metals, are used for MCHE & MCHS construction. However, owing to the thermal property limitations and 
oxidation behavior of metallic materials researchers have used ceramic microchannels to avoid these problems. The outcomes 
of the present review suggest that microchannel-based applications have come a long way away, but there are still barriers 
to addressing the needs of heat transfer in modern industries, such as the prevalence of the use of conventional rectangular 
shapes, water-based working fluids, metals as construction materials, and numerical techniques. Based on a literature survey, 
the authors suggest that rectangular wavy microchannels made of ceramic material using  Al2O3–water as a nanofluid have 
better hydrothermal behavior than any other microchannel.
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Abbreviations
Ag  Silver
AlN  Aluminum nitride
Al2O3  Aluminum oxide
Au  Gold
Bi2O3  Bismuth oxide
BR  Bidirectional ribs
BTR  Backward triangular ribs
CCZ-HS  Cross-cutting zigzag heat sink
CF  Carbon fluoride
CHF  Critical heat flux
CNT  Carbon nanotubes
CZ-HS  Continuous zigzag heat sink
Cu  Copper
CuO  Copper oxide
Dh  Hydraulic diameter
DI  Deionized
Fe3O4  Ferrous oxide
Fe  Iron
Hf  Hafnium
HVAC  Heat ventilated and air conditioning
H2O  Water
IMCHS  Interrupted microchannel heat sink

LWC  Longitudinal wavy channel
MCHE  Microchannel heat exchanger
MCHS  Microchannel heat sink
MWCNTs  Multiwall carbon nanotubes
Nu  Nusselt number
Re  Reynold number
SCR  Semicircular ribs
SCRR   Sinusoidal cavities and rectangular ribs
SER  Semi elliptical ribs
SiC  Silicon carbide
SiO2  Silicon dioxide
SOCRR   Secondary oblique channels rectangular ribs
SRC  Straight rectangular channel
SR  Spanwise ribs
TGMCHS  Triangular groove microchannel heat sink
TiO2  Titanium dioxide
TWC   Transversal microchannel
VR  Vertical ribs
ZnO  Zinc oxide
ZrB2  Zirconium diboride
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Introduction

The major problems in the ongoing decade are the conser-
vation of energy and search for alternative energy sources. 
In the coming decades, it is anticipated that conventional 
energy sources will be depleted because of their ongo-
ing use. To overcome these difficulties, some researchers 
have focused on substituting renewable energy sources 
with conventional ones. By contrast, other researchers 
have focused on using creative approaches to improve the 
energy performance of devices. Research on the develop-
ment of energy-efficient devices has resulted in numerous 
subfields. Among the numerous methods, miniaturization 
of conventional devices is one. Several industries rely on 
heat exchangers and use conventional heat exchangers 
with a high thermal resistance and low efficiency. There-
fore, the development of heat exchangers is required to 
lower thermal resistance, boost convective heat transfer, 
and enhance efficiency. A heat exchanger is designed to 
transfer heat from one fluid to another without losing heat 
to the surrounding environment. Two significant phenom-
ena occur in a heat exchanger: fluid movement in passages 
and the transfer of energy between the channel walls and 
fluids. Hence, these devices can be made more efficient 
by enhancing the performances of these two phenomena. 
Because the heat transfer rate is dependent on the ratio of 
the surface area to the volume, smaller channel dimensions 
result in a higher heat transfer coefficient. Conventional 
heat exchangers employ tubes with a diameter of ≥ 6 mm; 
however, microchannels with a size of ≤ 1 mm are the next 
phase in the development of heat sink and heat exchang-
ers. Owing to their high rate of heat transfer potential and 
lightweight, as well as their ability to save energy, space, 
and materials compared with conventional heat exchang-
ers, this field of study is the subject of significant attention 
and analysis.

Microchannels are defined as narrow flow tubes of 
size 1 mm or less, that allow for heat transfer surface densi-
ties of 10,000  m2  m−3 or higher [1], in contrast to conven-
tional channels with a surface density of 700  m2  m−3. Micro 
and minichannels differ from normal channels in terms of the 
channel hydraulic diameter (Dh). The classification methods 
proposed by Mehendafe et al. [2] and Kandlikar et al. [3], the 

latter of which is becoming increasingly popular, are typically 
adopted. Table 1 lists the terminology used by these authors.

The amount of heat that can flow through the microchan-
nels depends on the surface area which can facilitate heat 
transfer, which is determined by the hydraulic diameter (Dh) 
of the channel. By contrast, the flow rate is determined by 
the cross-sectional area of the channel, which is propor-
tional to Dh

2. Therefore, as Dh decreases, the surface-area-
to-volume ratio increases, indicating that the surface area 
of the channel relative to its volume increases. The flow 
within the microchannels is typically laminar, and the local 
heat transfer coefficient varies inversely with Dh. Conse-
quently, a decrease in Dh was necessary to enhance the heat 
transfer coefficient. Tuckerman and Pease [4] suggested 
an initial study of the MCHS approximately 40 years ago. 
They assumed that reducing the Dh of the channel would 
increase heat transfer. This invention has strengthened the 
electronics industry, which has dealt with difficulties such as 
high heat dissipation in compact areas. Kandlikar et al. [5] 
studied the thermohydraulic performance of minichannels 
and microchannels in their literature. In the initial stages of 
microchannel development, there were significantly fewer 
publications. However, microchannels have slowly become 
the most crucial field of research, as shown in Fig. 1 (refer-
ences are taken as per Scopus).

Microchannel heat sink (MCHS) and its 
applications

A heat sink is a device that uses extended surfaces to col-
lect heat from a source and effectively disperses it into the 
environment effectively as shown in Fig. 2. The capacity of 
traditional channel heat sinks to dissipate heat is limited even 
with the use of forced convective cooling. However, as tech-
nology has progressed, concerns regarding high heat dissipa-
tion in small spaces have increased. Micro- and minichannels 
have provided appropriate solutions to meet these objectives. 
Heat sinks are classified as passive, active, liquid-cooled, or 
phase-change heat sinks depending on the cooling technol-
ogy used for a specific application as shown in Table 2. The 
MCHS is particularly effective for removing high heat fluxes 
and maintaining electronic component temperatures within 

Table 1  Channel taxonomy 
based on hydraulic diameter

Mehendafe et al. [2] Hydraulic diameter Kandlikar and Grande[3] Hydraulic diameter

Traditional channels > 6 mm Traditional channels  > 3 mm
Compact passages 1 mm to ≤ 6 mm Minichannels 200 μm to ≤ 3 mm
Mesochannels 100 μm to ≤ 1 mm Microchannels 10 μm to ≤ 200 μm
Microchannels 1 μm to ≤ 100 μm Transitional channels 0:1 μm to ≤ 10 μm

Molecular nanochannels  ≤ 0:1 μm
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Fig. 1  Publications on microchannel heat exchanger as per Scopus

Fig. 2  MCHS design & bound-
ary parameters. (a) Front view 
(b) detailed view
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Table 2  Classification of heat sinks

Heat sink category

Active Passive Liquid cooling Phase change cooling

Applications High power intensity uses Natural convection systems, simple 
power intensity uses

High power intensity uses For high power output

Benefits Heat sink with fan, large 
heat dissolution capacity

Consumer friendly, economical High heat dissolution capacity 
compared to active and passive

Heat dispersed equally

Drawback Expensive Limited power dissolution capacity Complicated & expensive Expensive, complex, 
and requires more 
area

Examples Fan, fins, heat sink Metal plate Liquid cold plate Vapor firmness phase
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acceptable limits. Unlike regular channels, microchannels 
can dissipate power densities up to 1000 W  cm−2, whereas 
conventional channels can only dissipate heat fluxes up to 
20 W  cm−2. Xiang et al. [6] conducted a series of compara-
tive experiments to assess the heat transfer capabilities of a 
microchannel heat sink in comparison with a conventional 
metal solid heat sink. The results indicate that the micro-
channel heat sink outperforms the conventional metal solid 
heat sink in terms of heat dissipation performance. This 
makes them an excellent choice for applications involving 
high power LEDs. To cool the electronic devices, Xiong 
et al. [7] proposed the use of microchannels as liquid-cooled 
thermospreaders linked to gas-cooled heat sinks. In addi-
tion to integrated circuits, these channels have been used 
in many other applications. Micropumps, microturbines, 
micromotors, microvalves, and microreactors are devices 
that are based on this technology [8]. Additionally, micro-
scale development has spawned a new field of microfluidics.

Micro‑/minichannel heat exchangers 
and applications

With respect to heat exchangers, Little et al. [9] were the first 
to realize the possibilities of micro- and minichannels. The 
authors suggested that these narrow channels could be used 
in small-scale Joule–Thomson refrigeration systems. Swift 
et al. [10] were the first to submit a patent application for 
the manufacturing process of microchannel heat exchang-
ers (MCHE) with cross-flow. These heat exchangers can be 
used as energy-efficient alternatives to conventional HVAC 
(heating, ventilation, and air conditioning) systems. The 
additional benefit of MCHE in these systems is that they 
consume less refrigerant and have a greater overall system 
efficiency. However, owing to their high manufacturing 
costs and lack of “precise performance prediction tools,” 
their commercial use is limited. MCHE, on the other hand, 
has found widespread use in refrigeration [11] and air-con-
ditioning systems[12]. window air conditioning[13], split 
air conditioners[14], chillers, air-cooled ammonia condens-
ers[15], vapor compression refrigeration systems [16], and 
heat pumps[17] are just a few examples. A schematic of the 
various MCHE types is shown in Fig. 3, along with infor-
mation about their uses, types, construction materials, and 
fabrication methods.

Classification of microchannel design

Numerous attempts have been made to reduce the ther-
mal resistance of MCHS and enhance their heat transfer 
ability. Steinke and Kandlikar [5] examined the use of 

passive and active strategies to improve the thermal prop-
erties of mini- and microchannels. Active methods for 
improving the heat transfer rely on additional vibrational, 
magnetic, and electric flux forces. In contrast to active 
techniques, which often depend on external factors, pas-
sive techniques enhance heat transfer by means such as 
flow disruption, changing the geometry, and altering the 
working fluid of the heat sink. In addition, they performed 
a comprehensive analysis and assessed the feasibility of 
using these methodologies in novel MCHS applications. 
This review discusses the essential heat transfer enhance-
ment methods used in microchannel design, as shown in 
Fig. 4. Microchannel designs can be categorized based 
on several factors, such as the types of working fluids 
utilized in microchannels, materials utilized to construct 
microchannels, techniques employed in microchannels to 
disrupt flow to improve heat transfer, and microchannel 
geometries.

Fig. 3  represent the classification of MCHE

Channel material Channel geometry 

Working fluid Flow disruption 
methods 

Basis of 
microchannel 

design 

Fig. 4  Heat transfer enhancement methods in microchannel design
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Working fluid

Microchannels in the twentieth century used various work-
ing fluids. The most frequently used fluid is water, followed 
by air and various gases. Other fluids include liquid and 
gaseous nitrogen, common refrigerants, alcohol, and lubri-
cants. Water has been commonly employed as the primary 
working fluid in earlier research; however, its limited ther-
mal conductivity in comparison with metals restricts its 
applicability in microchannels. Nanofluids have received 
considerable attention over the last two decades because of 
their exceptional thermophysical properties. Owing to their 
exceptional thermal properties, nanofluids can be used in 
various applications such as solar energy devices, aerospace, 
the automobile industry, electronic devices, medical applica-
tions, and manufacturing sector as shown in Fig. 5.

Nanofluids

A nanofluid is a mixture of a base fluid and suspended solid 
particles on a nanometer scale. Suspending tiny solid parti-
cles in energy-transfer fluids can significantly improve their 
thermal conductivity and provide a cost-effective novel 
technique for improving their thermal characteristics. The 

concept of “nanofluid” was coined by Choi [18] to describe 
a mixture of base fluids such as water, glycerine, ethylene 
glycol, and oil with nanoparticles. This combination resulted 
in a significant enhancement of the thermal characteristics of 
the fluid. Standard fluids such as water and ethylene glycol 
have low thermal conductivities, but adding solid particles to 
the fluid can enhance the thermal conductivity because solid 
materials typically have a higher thermal conductivity than 
fluids. It is possible to employ metallic or nonmetallic solid 
particles. However, large micro- and macro-sized particles 
may block flow channels and have poor stability, making 
their use unjustifiable. Table 3 lists the metallic, metallic 
oxide, and carbonaceous materials and their corresponding 
thermal conductivities. Compared to commonly used heat 
transfer fluids such as water, ethylene glycol, and various 
oils, these materials exhibit significantly higher thermal 
conductivities.

Researchers have conducted several studies on the use 
of nanofluid in MCHS, necessitating a review of prior and 
current research to identify and carry out future research. 
The most important criterion before using a nanomaterial 
as a nanofluid in a microchannel is the material selection. 
The possible factors for selecting a nanomaterial for use in 
the creation of nanofluids for heat transfer in microchannels 
are the thermal characteristics, chemical stability, safety, 

Fig. 5  Various applications of 
nanofluids
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compatibility with the base fluid, affordability, and acces-
sibility [19, 20]. Figure 6 presents an overview of the aspects 
to be considered when selecting a nanomaterial for nanofluid 
creation.

Table 3  Thermal conductivity of the various base fluid and base 
materials of nanofluid

Types Material Thermal 
conductivity/W 
 m−1  K−1

Liquids Water 0.613
Ethylene glycol 0.253
Engine oil 0.15

Nonmetallic solids Titanium 23
Silicon 148
Alumina 40.0
Sodium 72.3

Metals Copper 401
Aluminum 237
Zinc 112.2
Nickel 67
Ferrous 80

Metal oxide Al2O3 40
ZnO 13
CuO 20
SiO2 1.1–1.4
TiO2 4.8
Fe3O4 17.65

Carbonaceous material Diamond  ≥ 1500
CNT  ≥ 3000

Advances in nanofluid preparation

• Synthesis Techniques Different techniques have been 
developed to create stable nanofluids with controlled 
particle dispersion. These include chemical processes, 
physical processes (such as milling or laser ablation), and 
more contemporary approaches, such as electrochemical 
synthesis and green synthesis.

• Characterization Techniques Techniques like transmis-
sion electron microscopy (TEM), dynamic light scat-
tering (DLS), and X-ray diffraction (XRD) were used 
to obtain a clear picture of the size, shape, distribution, 
and physical characteristics of the nanoparticles. These 
approaches aid in understanding the behavior and stabil-
ity of nanofluids.

• Surface Modification Nanoparticles can be functional-
ized via surface modification methods, improving their 
dispersion stability and compatibility with the base fluid. 
Surfactant coating, polymer grafting, or chemical pro-
cesses can be used to modify the surfaces.

• Stability Enhancement Researchers are working to find 
ways to make nanofluid more stable over time. The most 
common methods are the use of stabilizing agents, mag-
netic fields, and external fields such as ultrasound and 
electric fields to prevent nanoparticle agglomeration and 
sedimentation.

Effect of nanomaterial on the stability of nanofluids

Nanofluid are suspensions that remain in a stable equi-
librium state when subjected to different forces, such as 
van der Waals, electrostatic, and gravitational forces. The 
ability to maintain this state is known as the stability of 
the nanofluid, and this ability of nanofluids is a crucial 

Choice of nanomaterial

Selection eriteria

Specific heat
Compatibility

with base fluid

Safety

Nanofluids

Safety

Cost 

Choice of base fluid

Selection criteria

High heat transfer
capability 

Density

Thermal 
conductivity

Fig. 6  Classification of nanofluids based on selection criteria
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characteristic to consider when employing in many applica-
tions, including MCHS and MCHE. The stability of nano-
fluids can be influenced by several factors, including the 
choice of nanomaterial, base fluid properties, nanomaterial 
concentration, surface chemistry, and temperature [21, 22]. 
The stability of a nanofluid can be evaluated by various 
methods, such as:

• Zeta potential analysis The zeta potential analysis evalu-
ates the stability of nanofluids through the observation of 
the electrophoretic behavior of the fluid. Higher absolute 
zeta potential values (either positive or negative) indi-
cate greater repulsion between the particles, leading to 
enhanced stability.

• Electron microscopy methods The particle size distribu-
tion of the nanofluid was measured using transmission 
electron microscopy (TEM) or scanning electron micros-
copy (SEM). SEM & TEM are widely used by research-
ers to investigate particle shape, size, and aggregation, 
as shown in Fig. 7.

• Sedimentation photograph capturing method In this 
method, the volume of agglomerated nanoparticles in a 
nanofluid is observed under an external force. This was 
done by placing a sample of the prepared nanofluid in a 
transparent glass vial; and the formation of sediments 
was observed by capturing photographs of the vial at 
equal intervals of time using a camera. The captured 
images were then compared to analyze the stability of the 
nanofluid. Thus, the characterized nanofluid is consid-

ered stable when the particle size and dispersity remain 
constant over time.

• Centrifugation method In this method, nanofluid sedi-
mentation was performed using a dispersion analyzer 
centrifuge.

Achieving long-term stability in nanofluids is crucial 
for their practical application, as it ensures consistent per-
formance and prevents issues such as clogging in micro-
channels or sedimentation during storage. Researchers 
continue to explore methods for enhancing and maintain-
ing the stability of nanofluids to maximize their efficacy 
in heat transfer and other relevant applications. Various 
methods can be used to improve the stability are:

Surfactant stabilization Surfactants are chemical com-
pounds that can be added to nanofluids to provide elec-
trostatic or steric stabilization. They form a protective 
layer around the nanoparticles, preventing agglomera-
tion. Surfactants can be anionic, cationic, or nonionic, 
and their selection depends on the nature of the nano-
particles and base fluid.
Surface modification Nanoparticle surfaces can be modi-
fied to enhance their stability. Surface functionalization 
involves attaching molecules or polymers to the nanopar-
ticle surface, which can provide repulsive forces between 
the particles, reducing agglomeration. Functionalization 
can be achieved through various methods, such as silane 
coupling agents, polymer coating, or ligand exchange.

Fig. 7  SEM and TEM image 
Ref. [23] (a) (b)

(d)(c)
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pH adjustment Changing the pH of the nanofluid can 
affect its stability by altering the surface charge of the 
nanoparticles. The choice of pH adjustment depends 
on the nanoparticle material and surface chemistry. By 
adjusting the pH, repulsive forces can be enhanced, hin-
dering agglomeration.
Ultrasonication Ultrasonication involves subjecting a 
nanofluid to high-frequency sound waves, typically in 
the range of 20–100 kHz. The acoustic cavitation gener-
ated during ultrasonication helps disperse and deagglom-
erate nanoparticles. This process breaks down the large 
agglomerates into smaller particles, enhancing their sta-
bility.
Mechanical stirring Mechanical stirring or mixing with 
the nanofluid can help distribute nanoparticles evenly 
throughout the base fluid. Agitation disrupts agglomer-
ates and promotes the uniform dispersion of nanopar-
ticles. The intensity and duration of stirring should be 
optimized to prevent excessive energy input, which can 
lead to excessive heating.

Characterization of nanofluids

The process of determining and understanding the prop-
erties, characteristics, and behavior is referred to as char-
acterization. The characterization of nanofluids involves 
measuring various physical and chemical properties such 
as thermal conductivity, viscosity, density, surface tension, 
composition, surface morphology, and stability. It is crucial 
to understand these properties as they affect the thermo-flu-
idic behavior of nanofluids in microchannels. Some common 
methods used for nanofluid characterization are as follows:

 1.  Scanning electron microscopy (SEM)—is used to 
study the distribution of materials on a surface.

 2.  SEM & EDS—is used to measure the elemental com-
position in a sample.

 3. Transmission electron microscopy (TEM)—which is 
used to visualize the smallest structures in matter, pro-
duces high-resolution images.

 4. FTIR analysis—was used to identify unknown com-
pounds, determine the purity of the sample, and moni-
tor the chemical reactions in real-time.

 5. Transient hot wire—determines the thermal conductiv-
ity

 6. Laser flash method—determines the thermal conduc-
tivity

 7. Rheometer—was used to study fluid properties such 
as dynamic viscosity, flow behavior (Newtonian/non-
Newtonian).

 8. DSC—To measure the specific heat capacity of the 
nanofluid as a function of temperature.

 9. Oscillation method—is used to measure the density of 
nanofluid.

 10. Pendant drop method—is used to study the surface ten-
sion of nanofluids, which is a property of the interface 
between the fluid and surrounding air or another medium.

Therefore, characterization of nanofluids is essential 
for understanding their behavior. Table 4 presents various 
characterizations of the nanofluids and instruments used 
for their measurements.

Base working fluid used in microchannel

Water, oils, glycols, and glycol–water combinations are com-
monly used as base fluids to create nanofluids. Figure 8 shows 
that among the different base fluids, water-based nanofluids 
have received the most attention from researchers, likely 
because of their lower cost and higher thermal conductivity. 
Owing to their potential as high heat transfer fluids in micro-
channels, glycol-based nanofluids have also attracted attention.

Nanomaterial used for nanofluid formation

The nanoparticles commonly used for nanofluid creation 
are metals, metal oxides, carbonaceous materials, and 
hybrid nanoparticles. Figure 9 shows the distribution of 
publications on nanofluids employing various nanomateri-
als in microchannels. Although metal oxides exhibit lower 
thermal conductivities than metals, they appear to be the 
most suitable option for creating nanofluids. This is because 
metal oxides are chemically stable and are resistant to oxi-
dation. Moreover, certain metal oxides have a lower density 
than their corresponding metals, which could lead to fewer 
particle-settling problems in nanofluid formulations. Owing 
to its high thermal conductivity and low density, alumina 
is widely used as a metal oxide for nanofluid formation. 
Based on the nanomaterial used for nanofluid creation in 
the present study. The authors reviewed all the journals on 
nanofluids and categorized them into four main types.

(a) Nanofluids used in various microchannel geometries 
suspended with metallic nanoparticles.

Metallic nanofluids (e.g., Ag, Cu, Fe, Au, etc.) generate 
higher effective thermal conductivity values. Therefore, vari-
ous researchers have focused on using metallic nanomaterial 
for nanofluid creation, as presented in Table 5. Mghari et al. 
[24] conducted a numerical analysis of the heat transfer in 
a single horizontal smooth square tube. According to the 
findings of the research, either elevating the mass flux from 
80 to 110 kg  m−2-s or increasing the concentration of copper 
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Table 4  Characterizations techniques of nanofluids
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Table 4  (continued)

Characterization of Nanofluids

Specific heat

 
Density

 
Surface tension

 

4 % 1 % 1 %

94 %

Water

Glycol

Oil

R141b

Fig. 8  Base fluid use in microchannels for nanofluids formation

nanoparticles by 5% has the potential to increase the heat 
transfer coefficient by 20%.

Abbassi and Aghanajafi [25] examined the incorporation 
of Cu nanoparticles into MCHS. The results of their research 
showed that employing a nanofluid significantly improved 
the heat transfer in the MCHS, and this advantage became 
even greater as the Re and particle concentration increased. 
Additionally, they demonstrated that if the flow regime tran-
sitions into the turbulent domain, the enhancement in heat 
transfer could be greatly amplified.

Diao et al. [26] analyzed the performance of a micro-
channel surface in a vapor chamber using Cu-R141b as the 
working fluid. The authors recommended that with a volume 
concentration of 0.001–0.01 percent, R141b-based Cu nano-
fluids may enhance the thermal performance of microchan-
nel surfaces, especially at lower operating pressures.
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Boudouh et al. [27] analyzed the convective boiling heat 
transfer in a vertical rectangular channel using copper–water 
nanofluids and deionized water. They found that in compari-
son with the temperature and pressure of the base fluid, the 
Cu–water nanofluid exhibited a lower surface temperature 
and local heat flux at the same flow rate.

Using porous media and the least square method, Hatami 
and Ganji [28] investigated the thermal performance of a 
MCHS employing a nanofluid composed of copper and 
water. They observed that raising the volume fraction of 
nanoparticles encouraged Brownian motion and facilitated 
greater heat transfer.

Simsek et al. [29] employed suspensions of silver nanow-
ires to enhance thermal performance in a MCHS for the first 
time. According to the outcomes, the utilization of silver 
nanowire suspensions in MCHS could lead to a rise in heat 
transfer coefficient of up to 56%, while causing only a minor 
increment in pumping power.

Tehrani et al. [30] conducted a numerical analysis on flow 
and heat transfer of an Ag–water nanofluid under varying 
heat flux, while considering different volume concentrations 
and Hartmann numbers. They suggested that because the 
Re of nanofluids inside microchannels is often low, “utiliz-
ing a higher volume fraction to enhance the Nusselt number 
(Nu) would be counterproductive in micro and nanoflows.” 
Shahsavar et al. [31] conducted a numerical investigation 
to enhance the performance of a liquid-cooled heat sink. 
In this study, a water/silver nanofluid was used as the cool-
ant. The researchers focused on two operational variables: 
nanoparticle concentration and Reynolds number. They also 
examined the impact of a structural parameter, specifically 

CuO
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Fe3O4
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Cu
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Ag
3% CNT

8%

Diamond
2%

Hybrid metallic oxide
27%

Metallic oxide
55%

AI2O3
35%

Fig. 9  Nanofluids used in various microchannel geometries

rifling the inlet tube of the coolant. The results revealed that 
the overall hydrothermal performance of the heat sink with 
a rifled inlet was 1.073–1.541 times higher compared to the 
heat sink with a plain inlet.

Table 5 indicates that copper and silver are the most 
commonly used nanomaterials for preparing working fluids 
in research, likely due to their high thermal conductivity 
compared to other metallic materials. Based on the research 
on metallic nanofluids, it can be concluded that increasing 
particle concentration results in nearly a 50% improvement 
in heat transfer in the microchannel in most cases. However, 
this may also cause an increase in pressure drop.

 (b) Nanofluids used in various microchannel geometries 
suspended with metallic oxides nanoparticles

Despite their poorer thermal conductivities than those of 
metals, metal oxides have been frequently employed in the 
formulation of nanofluids. Metal oxides (e.g.,  Al2O3, CuO, 
 TiO2,  SiO2, etc.) have several benefits over metal nanopar-
ticles, including oxidation resistance and chemical stabil-
ity. Furthermore, some metal oxides have lower densities 
than metals, resulting in less sedimentation when they are 
used in nanofluid formulations. This concept is a popular 
research topic because it is a viable solution for satisfying 
the temperature management requirements of the MCHS 
and MCHE. Tables 6–11 represent the literature on metallic 
oxide nanoparticles for the formation of nanofluids used in 
various microchannel geometries.

The study conducted by Bhattacharya et al. [38] on the 
heat transfer properties of an  Al2O3–H2O nanofluid flow-
ing through a rectangular MCHS showed that an increase in 
nanoparticle concentration resulted in a more pronounced 
improvement in MCHS performance with the use of the 
nanofluid.

In a study conducted by Ali et al. [39], the thermal per-
formance of a circular MCHS was evaluated in the range of 
100 ≤ Re ≤ 350, using swirl flow and nanofluid. The cool-
ant was a water–Al2O3 nanofluid with nanoparticle volume 
fractions ranging from 0 to 3%. The results indicated that 
the MCHS with swirl flow and maximum nanoparticle vol-
ume fraction had the lowest thermal resistance and contact 
temperature.

Meanwhile, Heidarshenas et al. [40] utilized an ionic 
liquid–Al2O3 nanofluid to enhance heat transfer in a cylin-
drical MCHS. Their findings showed that the use of ionic 
liquid–Al2O3 nanofluid increased the Nusselt number by up 
to 40%.

The thermal performance of a trapezoidal microchannel 
was studied by Li and Kleinstreuer [41] using pure water and 
CuO–water with volume fractions of 1% and 4%, respec-
tively. They found that with a modest increase in pumping 



13201A comprehensive review of thermal enhancement techniques in microchannel heat exchangers…

1 3

Ta
bl

e 
5 

 E
ffe

ct
 o

f m
et

al
lic

 n
an

om
at

er
ia

l i
n 

M
C

H
S 

an
d 

M
C

H
E 

on
 v

ar
io

us
 g

eo
m

et
ry

S.
 n

o.
St

ud
y 

ty
pe

G
eo

m
et

ry
Re

yn
ol

ds
 n

um
be

r
N

an
op

ar
tic

le
Pa

rti
cl

e 
si

ze
/n

m
Pa

rti
cl

e 
co

nc
./%

M
ax

H
T.

 g
ai

n/
%

O
ut

co
m

es
Re

f.

1
Ex

pe
rim

en
ta

l
Re

ct
an

gu
la

r
–

C
u

20
0.

00
1–

0.
1

50
Th

e 
im

pa
ct

 o
f n

an
ofl

ui
d 

on
 th

er
m

al
 re

si
st

an
ce

 is
 m

or
e 

ap
pa

re
nt

 
at

 lo
w

er
 o

pe
ra

tin
g 

pr
es

su
re

s t
ha

n 
at

 h
ig

he
r o

ne
s

[2
6]

2
35

5–
50

 m
g/

L
–

Th
e 

co
nc

en
tra

tio
n 

of
 C

u 
na

no
pa

rti
cl

es
 e

nh
an

ce
s h

ea
t t

ra
ns

fe
r 

co
effi

ci
en

t, 
va

po
r q

ua
lit

y,
 &

 lo
ca

l h
ea

t fl
ow

[2
7]

3
20

–7
1

A
g

50
–1

00
0–

0.
00

35
7

56
Fo

r a
ll 

m
ic

ro
ch

an
ne

l d
ia

m
et

er
s, 

A
g–

w
at

er
 n

an
ofl

ui
ds

 p
ro

du
ce

 
lo

w
er

 th
er

m
al

 re
si

st
an

ce
 th

an
 D

I w
at

er
[2

9]

4
 <

 15
00

5–
10

0.
01

–0
.1

–
B

ot
h 

th
e 

he
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t a

nd
 th

e 
pr

es
su

re
 d

ro
p 

of
 th

e 
(M

C
H

S)
 in

cr
ea

se
d 

as
 th

e 
flo

w
 ra

te
 a

nd
 m

as
s c

on
ce

nt
ra

tio
n 

of
 

na
no

flu
id

 in
cr

ea
se

d

[3
2]

5
N

um
er

ic
al

Re
ct

an
gu

la
r

10
–2

00
A

g
10

0–
4

–
U

til
iz

in
g 

a 
hi

gh
er

 v
ol

um
e 

fr
ac

tio
n 

to
 e

nh
an

ce
 th

e 
N

u 
w

ou
ld

 b
e 

co
un

te
rp

ro
du

ct
iv

e 
in

 m
ic

ro
 a

nd
 n

an
ofl

ow
s

[3
0]

6
Tr

ap
ez

oi
da

l,
Re

ct
an

gu
la

r,
Tr

ia
ng

ul
ar

1–
10

0
50

0–
4

10
0

Th
e 

co
nv

ec
tiv

e 
he

at
 tr

an
sf

er
 c

oe
ffi

ci
en

t o
f t

he
 w

or
ki

ng
 fl

ui
d 

in
cr

ea
se

s w
ith

 a
n 

in
cr

ea
se

 in
 th

e 
na

no
pa

rti
cl

e 
vo

lu
m

e 
pe

rc
en

t-
ag

e

[3
3]

7
Tr

ia
ng

ul
ar

5–
50

0
25

–7
5

0–
4

–
Th

e 
fr

ic
tio

n 
co

effi
ci

en
t a

nd
 p

um
pi

ng
 p

ow
er

 d
o 

no
t s

ho
w

 a
 

si
gn

ifi
ca

nt
 d

ep
en

de
nc

y 
on

 n
an

op
ar

tic
le

 d
ia

m
et

er
[3

4]

8
Tr

ap
ez

oi
da

l
10

,0
00

-
16

,0
00

–
0–

4
–

Th
e 

av
er

ag
e 

N
u 

an
d 

co
nv

ec
tio

n 
he

at
 tr

an
sf

er
 c

oe
ffi

ci
en

t r
is

e 
as

 
Re

 ri
se

s
[3

5]

9
C

irc
ul

ar
1–

10
00

C
u

–
2–

4
–

Re
du

ci
ng

 th
e 

ch
an

ne
l h

ei
gh

t m
ay

 re
su

lt 
in

 th
e 

co
m

bi
na

tio
n 

of
 

bo
un

da
ry

 la
ye

rs
 a

nd
 th

e 
lo

ss
 o

f t
he

 e
nt

ra
in

m
en

t e
ffe

ct
. T

hu
s, 

de
cr

ea
si

ng
 th

e 
ch

an
ne

l a
re

a 
m

ay
 n

ot
 n

ec
es

sa
ril

y 
le

ad
 to

 a
n 

in
cr

ea
se

 in
 to

ta
l h

ea
t fl

ux

[3
6]

10
Pa

ra
lle

l
Pl

at
es

 <
 14

00
C

u,
N

EP
C

M
36

1.
3–

5
–

C
om

pa
re

d 
to

 b
ot

h 
N

EP
C

M
 a

nd
 w

at
er

, C
u–

w
at

er
 n

an
ofl

ui
d 

ex
hi

bi
ts

 a
 h

ig
he

r a
ve

ra
ge

 h
ea

t t
ra

ns
fe

r c
oe

ffi
ci

en
t

[3
7]

11
Sq

ua
re

 <
 70

0
C

u
–

0–
5

20
En

ha
nc

em
en

t o
f t

he
 h

ea
t t

ra
ns

fe
r c

oe
ffi

ci
en

t b
y 

20
%

 m
ay

 b
e 

ac
hi

ev
ed

 b
y 

ei
th

er
 in

cr
ea

si
ng

 th
e 

vo
lu

m
e 

pe
rc

en
ta

ge
 o

f C
u 

na
no

pa
rti

cl
es

 b
y 

5%
 o

r b
y 

ra
is

in
g 

th
e 

m
as

s fl
ow

 fr
om

 8
0 

to
 

11
0 

kg
  m

−
2   s−

1

[2
4]

12
Re

ct
an

gu
la

r
10

0-
20

00
C

u
23

0.
-6

–
Tr

an
si

tio
ni

ng
 to

 th
e 

tu
rb

ul
en

t r
eg

im
e 

of
 fl

ui
d 

flo
w

 c
an

 si
gn

ifi
-

ca
nt

ly
 in

cr
ea

se
 th

e 
he

at
 tr

an
sf

er
 e

nh
an

ce
m

en
t o

f t
he

 n
an

ofl
ui

d
[2

5]

13
A

na
ly

tic
al

Re
ct

an
gu

la
r

–
C

u
1–

25
0–

6
–

In
cr

ea
si

ng
 th

e 
vo

lu
m

e 
fr

ac
tio

n 
of

 n
an

op
ar

tic
le

s r
es

ul
ts

 in
 a

n 
in

cr
ea

se
 in

 B
ro

w
ni

an
 m

ot
io

n,
 w

hi
ch

 in
 tu

rn
 c

au
se

s a
 d

ec
re

as
e 

in
 th

e 
te

m
pe

ra
tu

re
 d

iff
er

en
tia

l b
et

w
ee

n 
th

e 
co

ol
an

t a
nd

 th
e 

w
al

l

[2
8]



13202 A. Dwivedi et al.

1 3

Table 6  Numerical, experimental, and analytical analysis of the effect of  Al2O3 and water base nanofluid in a rectangular cross section micro-
channel

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

1 Numerical 200–1200 38 0–4 – If temperature-dependent properties are 
incorporated, the temperature and aver-
age shear stress on the bottom surface 
decrease

[47]

2 150–450 38.4 0–2 – Compared to the constant property 
approach, the variable property tech-
nique results in a higher heat transfer 
coefficient and Nusselt number

[48]

3  < 450 – 0.5–3.5 – Using a tear-drop dimple structure 
in combination with nanofluid can 
increase heat transfer while reducing 
pressure loss

[49]

4 0.025–250 – 0–2 – The formulation of the Buongiorno 
model causes the incorporation of 
Brownian motions

[50]

5 5–300 25–100 0–2 – Using nanoparticles with decreasing 
diameters and increasing the nanopar-
ticles volume percentage increases heat 
transfer

[51]

6 100–400 – 0–4 12.67 Increasing either the volume percentage 
of nanoparticles or the aspect ratio of 
the fins may lead to an increase in heat 
transfer

[52]

7  < 500 36 1–4.5 – The use of nanofluids as a cooling 
medium in electrical devices results in 
an increase in the power required for 
fluid pumping

[53]

8 200–1000 40 0.1–0.2 130 Increasing Re, increasing volume con-
centration and decreasing nanoparticle 
size all result in an increasing average 
Nu

[54]

9 – – 0–5 10.93 With the increase in Knudsen number, 
both temperature gradient and average 
Nu decrease

[55]

10 100–1000 – 1–5 – Compared to a MCHS cooled with pure 
water, the use of nanofluids results in a 
slight increase in pressure loss across 
the system

[56]

11 5–150 – 0–5 – The overall increase in cooling perfor-
mance of nanofluid in microchannel 
system becomes more effective when 
water is employed as base fluid

[57]

12 – – 0–1 – The enhanced thermal performance of 
nanofluid-cooled MCHS is attributed 
to the intake flow velocity and effective 
thermal conductivity of nanofluid

[58]

13 10–1000 25 0.5–1.5 – Increasing the volume percentage of 
solid nanoparticles and decreasing the 
size of the nanoparticles can enhance 
heat transfer

[59]

14 120–480 29,38.4,
47

0–4 – Pumping power and frictional entropy 
contribution both decreases as heat 
transfer entropy diminishes

[60]
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Table 6  (continued)

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

15 – 33 0–2 – The effect of inertia on the temperature 
profile of the channel wall is negligible; 
however, it has a substantial impact on 
the temperature profile of the coolant 
and the overall thermal resistance

[61]

16 250 20 0–3 – The enhancement in MCHS performance 
due to the utilization of nanofluid 
becomes increasingly noticeable with 
an increase in the particle concentration

[38]

17  < 1500 40 0–4 29 By applying a magnetic field, the thermal 
boundary layer formation is disturbed, 
leading to an improvement in heat 
transfer

[62]

18 150–700 0–2.5 – – Microchannel outperforms when 
elliptical ribs are employed instead of 
diamond ribs or no ribs

[63]

19 7–15 0–5 – – Raising the input velocity to maintain a 
constant Re, rather than increasing the 
particle concentration, is the primary 
way to raise the Nu for a given Re

[64]

20 5–25 – 0–4 17 The magnetic field does not influence 
heat transfer, but it may increase fric-
tion up to 86%

[65]

21 – – 0–2.5 – Heat transfer coefficient and Nu fluctua-
tion both decreases with flow direc-
tion as the boundary layer thickness 
increases

[66]

22 1–100 50 0–4 350 An increase in particle volume fractions 
improves heat transfer & friction factor

[67]

23 – – 0–2 8.49 The temperature of the nanofluids in the 
microchannel rises with the curve, con-
tradicting the linear growth concept

[68]

24 200–1500 – 1–5 – Throughout the channel length, there is 
an increase in the temperature of both 
the coolant and MCHS for all values of 
nanoparticle volume fractions

[69]

25 15,000–30,000 50 0–4 237 Fluid mixing is influenced by variations 
in the attack angle of the ribs and the 
creation of vortexes within the channel

[70]

26 Analytical 0–200 40 0–4 70 The thermal efficiency of nanoparticles 
may be improved by as much as 70% 
by lowering their diameter below the 
threshold value

[71]

27 Experimental 45–80 43 0.1–0.25 – The thermal efficacy of nanofluids is 
quite high, which encourages the use of 
nanofluids in MCHS

[72]

28 – – 0–2 – The utilization of nanofluids in ribbed 
microchannels results in increased Nu 
and friction coefficient compared to 
ordinary microchannels. Additionally, 
this improvement is more significant 
with increased rib width

[73]
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power, the nanofluids enhanced the thermal performance of 
the microchannel.

Yang et al. [42] investigated a trapezoidal MCHS utiliz-
ing a CuO–water nanofluid as the cooling fluid. The results 
indicated that the two-phase model was more accurate than 
the single-phase model.

Duangthongsuk and Wongwises [43] conducted an 
experimental investigation of the heat transfer and pressure 

drop in a zigzag MCHS. The study found that there was a 
2–6% improvement in heat transfer performance between 
the cross-cutting zigzag heat sink (CCZ-HS) and continuous 
zigzag heat sink (CZ-HS). Additionally, the particle concen-
tration had a significant impact on the heat transfer, but it did 
not affect the pressure drop.

Martinez et al. [44] investigated the thermal characteriza-
tion and stability of water–ZnO nanofluids in a rectangular 

Table 6  (continued)

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

29 – 40 0–0.2 – Nanofluid considerably reduces flow 
instability without causing nanoparticle 
deposition

[74]

30 226–1676 33 0–2 70 A heat sink cooled by nanofluid has a 
higher average heat transfer coefficient 
compared to one cooled by water, 
making it superior in terms of heat dis-
sipation performance

[75]

31 – 80 0–0.5 27 Nanofluids with higher concentrations 
exhibit higher thermal conductivity and 
viscosity

[76]

32 – 25 0.001–0.1 – Nanoparticles in the liquid phase can 
significantly affect bubble dynamics 
formation

[77]

Table 7  Numerical and experimental analysis on the effect of  Al2O3 and water base nanofluid in a circular microchannel

S.no Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref

1 Numerical – 1–100 1–4 – Nu variation diminishes along the flow 
direction

[78]

2 500–1900 38 1–4 – Nanofluids temperature-dependent 
characteristics boost heat transfer 
while decreasing entropy, shear 
stress, and pressure loss

[79]

3 15–100 13–47 1–5 – The thermal properties would be better 
when nanofluid is utilized as the 
working fluid

[80]

4  < 250 29–47 0–4 – The use of nanofluid has a major effect 
on pumping power, which rises with 
particle volume fraction and Re

[81]

5 0–58 36  0–2 – Maximum thermal enhancement factor 
for symmetric ribs is 2.2517

[82]

6 2.7–87 36 9–13 – The temperature-dependent fluid 
characteristics may have a substantial 
impact on the best outcomes

[83]

7 5–11,980 23 0–5 83 Laminar nanofluid flow enhances heat 
transfer more than turbulent nanofluid 
flow does

[84]

8 Experimental 200–1000 36 0–2 – Nanoparticles cause catastrophic failure 
in two-phase cooling by depositing in 
massive clusters at the channel outlet

[85]

9 – – 0–0.77 10.6 The Nu of nanofluids is higher than 
that of deionized water, and it 
increases with the growth of Re and 
particle concentration

[86]
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MCHS with Re ranging from 200 to 1200. The numerical 
findings revealed that using nanofluids promotes heat trans-
fer at low Re, with the greatest increase in heat transfer coef-
ficient (42.33%). At a concentration of 1 mass%, there was 
also a decrease in the base temperature of the microchannel, 
which was more noticeable at a low Re.

In addition, several researchers have conducted compara-
tive investigations on various metallic oxide nanoparticles 
employed in microchannels. Mohammed et al. [45] investi-
gated the influence of  Al2O3, Ag, CuO, diamond,  SiO2, and 
 TiO2 nanofluids on the cooling performance of triangular 
MCHS. They found that the addition of nanoparticles to the 
coolant resulted in a decrease in the thermal resistance of the 
triangular MCHS, with diamond-H2O nanofluid showing the 
greatest improvement at a nanoparticle concentration of 1%.

Salman et al. [46] numerically analyzed the thermal per-
formance of microtubes. Various types of nanofluids, includ-
ing  Al2O3, CuO,  SiO2, and ZnO, were utilized in the study. 
The nanoparticles had sizes of 25, 45, 65, and 80 nm, and 
the volume fractions ranged from 1 to 4%. Ethylene glycol 
was chosen as the base fluid for the nanofluids. According 
to their findings, the  SiO2–ethylene glycol nanofluid had the 
highest Nu. The Nu increased with the volume fraction in 
all circumstances but decreased as the diameter of the nano-
particles increased.

Table 6 displays a comparison of numerical, experimen-
tal, and analytical analyses investigating the impact of  Al2O3 
and water-based nanofluids on rectangular microchannels. 
Based on the table's results and study type, it can be inferred 
that more than half of the research on  Al2O3 nanomaterial 

Table 8  Numerical, experimental, and analytical analysis on the effect of  Al2O3 and water base nanofluid in a parallel plate MCHS & MCHE

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

1 Numerical – 20 2–6 – Nanomaterials facilitate the flow of fluid 
toward the wall as heat flux increases, 
thereby enhancing heat transfer

[87]

2 0.5–2 – 0–0.2 – Entropy production reduces as the nanoma-
terial volume % and suction Re increases, 
whereas the Grashof number, radiation 
parameter & conduction–radiation factor 
decreases

[88]

3 5–50 36 0–4 – Recirculation zones generated behind the 
baffles are the major mechanism for 
improved heat transfer

[89]

4  < 16 47 0–4 21 The enhanced thermal conductivity of nano-
particles leads to a higher flow of energy 
through the fluid

[90]

5 Analytical  < 1 25 0–2 – Heat transfer is reduced when the volume % 
of nanoparticles increases

[91]

6 – 1–10 0.02–0.1 – Smaller nanoparticles work better in mag-
netic fields than bigger ones

[92]

7 150 5 0–4 – Under symmetric heating, nanofluids show 
the highest increase in heat transfer coef-
ficient, with an average enhancement of 
47%, compared to asymmetric heating

[93]

8  < 2300 60.4 0–8 – In the laminar regime considering the effect 
of viscous dissipation, the heat transfer 
coefficient significantly decreases with 
increase in nanoparticle volume percent-
age

[94]

9 – 20 2–10 – A strong magnetic field and high slip veloc-
ity at the walls have a negative impact on 
the thermal performance of nanomaterials

[95]

10 – 1–10 2–10 – The thermophysical parameters of nanoflu-
ids have little effect on their flow fields 
and heat transfer behavior

[96]

11 – – 0–8 – The heat transfer performance improves 
with an increase in the volume fraction of 
nanomaterials

[97]

12 Experimental – – 0.001 – With increase in mass flow and initial sub-
cooling, critical heat flux rises

[98]
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Table 9  Numerical and experimental investigation of the effect of CuO nanofluid in a rectangular microchannel

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

1 Numerical 1–100 10 0–5 100 In laminar forced convection, for Reynolds 
numbers below 10, the influence of 
Brownian force on flow and heat transfer 
properties is significant

[99]

2 100–1000 30 1–6 – A novel correlation has been introduced 
to compute the Nu as a function of Re, 
Prandtl number, and blockage ratio

[100]

3 50 10  0.4 – Nanofluid enhances heat transfer in both 
porous media and fin approaches

[101]

4 10,000–60,000 100 0–4 – Using semi-attached rib in microchannel 
produces greater vortices, resulting in 
enhanced fluid layer mixing

[102]

5 Experimental – 20–80 0.2–0.4 – Elevating the bulk temperature of nanoflu-
ids helps to prevent the aggregation of 
particles into larger clusters

[103]

6  < 1800 40 0–0.2 40 At a Re of 1150, the heat transfer coef-
ficient of nanofluid with a volume 
fraction of 0.2 exhibited an increase of 
approximately 40% compared to deion-
ized water

[104]

7  < 5000 29 0–4.5 – At a specific Re, the energy efficiency of 
nanofluids, as determined by the ratio of 
heat transfer to pumping power, is still 
lower than that of water

[105]

Table 10  Effect of  TiO-based nanofluid in a rectangular cross section microchannel

S.no. Study type Reynolds number Particle size/nm Particle Conc./% Max. H.T gain Outcomes Ref.

1 Numerical – – 0.01–0.9 – Nanofluids are an excellent choice for 
designs that need lower volume flow 
rates and have lower nanoparticle vol-
ume fractions

[106]

2 100–250 21–60 1–2.3 – Approximately 14% is the highest normal-
ized efficiency of the longitudinal vortex 
generator microchannel in comparison 
with the plain channel. In addition, the 
use of nanofluid may boost the normal-
ized efficiency by 27%

[107]

3 200–1200 6 1–3 19.66 At low Re, the findings indicate that the 
use of nanofluids and the lowering of 
microchannel height boost heat transfer

[108]

4 Experimental 50–850 25 0.25–2 – In comparison with pure water,  TiO2 parti-
cles in the base fluid produced greater 
heat transfer and did not create an exces-
sive rise in pressure drop

[109]

5 100–750 25 0–2 39.7 The heat resistance of the base fluid is 
reduced by introducing particles with an 
average diameter of less than 25 nm

[110]

6 250–1700 – 0–2 – Using the Maxwell model to measure 
thermal conductivity provides an accu-
rate estimation of the Nu

[111]

7 – 15 0–0.1 – Nanofluids have distinct droplet-forming 
features based on temperature

[112]
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for nanofluid production is based on numerical analysis. The 
table also indicates that the use of smaller diameter nanopar-
ticles and increasing the volume percentage of nanoparticles 
enhances heat transfer. Moreover, higher heat transfer coef-
ficients are observed in flow regimes with higher Re.

 (c) Hybrid nanofluids used in various microchannel 
geometries

Hybrid nanofluids are advanced nanofluids that are created 
by mixing two distinct nanoparticles in a base fluid. Prepara-
tion method of hybrid nanofluid is shown in Fig. 10. Hybrid 
nanofluids have superior thermal characteristics compared 
with base fluids and nanofluids. These fluids exhibit better 
characteristics than ordinary fluids, such as

• Offer superior thermophysical properties in comparison 
with mono-nanofluids.

• High dispersion stability and Brownian motion of parti-
cles.

• A remarkable increase in thermal conductivity with vary-
ing particle concentrations.

• Reduction in pumping power compared with conven-
tional fluid power.

• High surface area and high heat transfer between fluid 
and particles.

• Increased control over thermodynamic and transport 
properties.

Turcu et al. [133] were the first to use polypyrrole–car-
bon nanotubes (CNTs) and multiwall carbon nanotubes 
(MWCNTs) on magnetic  Fe3O4 hybrid nanoparticles to 
create hybrid nanofluids. Jha et al. [134] combined silver 
nanoparticles with multiwall carbon nanotubes (MWCNTs) 
to create hybrid nanofluids. The results show the improved 

thermal properties of the hybrid nanofluids. Suresh et al. 
[135] created hybrid nanofluids by mixing  Al2O3 and Cu and 
found that there was an enhancement in thermal conductivity 
of 12.11% with a volume concentration of 2%. To improve 
the thermal performance of MCHE, an experimental inves-
tigation was conducted by Yushuang Huang et al. [136]. 
They incorporate β-cyclodextrin-ZrO2 as a nanoparticles and 
ethylene glycol as the base fluid for construction of nano-
fluids. They found that fabrication of nanofluids utilizing 
β-cyclodextrin-modified  ZrO2 nanoparticles holds signifi-
cant potential for enhancing heat transfer in microelectronic 
microchannels. Table 12 shows numerous studies in MCHS 
and MCHE that use hybrid nanofluids as their working fluid. 
Table 12 shows that nearly 50% of hybrid nanofluid research 
relies on numerical analysis. The most commonly used 
nanomaterials for creating hybrid nanofluids are alumina and 
copper oxide. Additionally, rectangular cross sections are 
frequently utilized for constructing microchannels in com-
parison with other geometries. Based on the outcomes of 
the above literature survey, it can be concluded that increas-
ing particle concentration and Re leads to improved heat 
transfer in the microchannel, although this may also result 
in higher pumping power requirements. Mansouri et al. 
[137] conducted an experiment to assess the convective heat 
transfer of a hybrid nanofluid consisting of graphene oxide 
and gold in a CPU. They varied the concentrations of gra-
phene oxide and gold (ranging from 0.0044 to 0.0114% by 
mass) as well as the Reynolds number (ranging from 676 to 
2185) to optimize the overall performance of the device. The 
experimental findings indicated that the nanofluid composed 
of graphene oxide and water, decreased the CPU's surface 
temperature by 10.6% and 16.2%, respectively, compared to 
using DI water alone.

Srivastava and Sahoo [138]conducted an experiment to 
examine the impact of nanoparticles with different shapes 
on the thermo–hydro performance of a microchannel heat 
sink (MCHS). The experiment utilized water as the reference 
fluid. The results showed that the hybrid nanofluid composed 
of dissimilar-shaped nanoparticles demonstrated improved 
performance in terms of heat transfer coefficient, Nusselt 
number, as well as inlet and outlet exergy.

 (d) Nanofluids used in various microchannel geometries 
suspended with carbon nanoparticles

Studies have investigated the cooling performance of MCHS 
using carbon nanotubes (CNT). Ebrahimi et al. [155] inves-
tigated the cooling performance of an MCHS using carbon 
nanotubes (CNT). It is found that increasing the nanolayer 
thickness of multiwalled carbon nanotubes (MWCNTs) 
decreased the MCHS temperature gradient.

Arabpour et al. [156] performed a numerical simulation 
of an MCHS using kerosene nanofluid/MWCNTs and found 

Hybrid nanofluid

Nanoparticles
type 1

Nanoparticles
type 2

Base
fluid

Additives

Fig. 10  Preparation of hybrid nanofluid



13210 A. Dwivedi et al.

1 3

Table 12  Hybrid nanofluids used in various microchannel geometries

S.no Study type Geometry Reynolds Number Nanoparticle Particle size/nm Particle 
Conc./%

Max. H.T
gain

Outcomes Ref

1 Numerical Trapezoidal 300–1100 Al2O3,
CuO

20–60 0–8 – The findings dem-
onstrate that when 
particles are 34 nm in 
size, the average Nu 
rises fast; however, 
when particles are 
60 nm in size or larger, 
heat transfer is not 
significantly affected

[139]

2 Rectangular 200–600 Al2O3,
CuO

43
29

0–4 – For higher and lower Re, 
the pumping power 
and performance index 
are not affected by 
volume fraction

[140]

3 100–800 30 1–4 39 Higher heat transfer 
improvement may be 
seen by increasing the 
volume percentage of 
nanoparticles

[141]

4 100–900 29–36 0–5.3 53.06 Irreversibility in the 
MCHS with longitu-
dinal vortex generator 
might be decreased by 
employing nanofluids 
as the working fluid

[142]

5 – 35–50 0–4 – Cu–water nanofluid is a 
better thermal conduc-
tor than  Al2O3–water 
nanofluid

[143]

6 – – 1–5 – When flow rates are 
large, the volume flow 
rate dominates heat 
transfer, and nanoma-
terials have little effect 
on the heat absorption

[144]

7 – Cu,
Diamond

6
2

0–1 – Using water–diamond 
nanofluid in a MCHS 
at a fixed pumping 
power of 2.25 W can 
improve its cooling 
performance by around 
10% compared to pure 
water

[145]

8 Trapezoidal
grooved

266–798 Al2O3,
CuO,
ZnO,
SiO2

25 0–4 – In grooved MCHS, sec-
ondary flow increases 
both the hydrodynamic 
& thermal boundary 
layer disturbances, 
resulting in higher heat 
transfer

[146]
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Table 12  (continued)

S.no Study type Geometry Reynolds Number Nanoparticle Particle size/nm Particle 
Conc./%

Max. H.T
gain

Outcomes Ref

9 Semicircle – CuO,
Al2O3

28.6–29
38.4–47

– – Enhanced heat transfer 
can be achieved 
by raising both the 
volume fraction of 
nanoparticles and Re

[147]

10 Parallel
Plates

10–100 Al2O3,
Ag

10 0–4 – Increasing slip coef-
ficient reduces Nusselt 
number (Nu), while 
higher Hartmann 
numbers lead to larger 
slip velocity

[148]

11 Experi-
mental

Rectangular 200–500 Al2O3,
TiO2

5
5

0–1 42.9 Using  Al2O3 nanofluids, 
a fan-shaped MCHS 
exhibits better heat 
transfer performance 
compared to a rectan-
gular MCHS

[122]

12 – Nano PCM 120 0–3 – The heat transfer coef-
ficient of a slurry 
containing 30% bare 
indium nanoparticles 
can achieve up to 
47,000 W  m−2  K−1 
when the flow rate is 
3.5 mL  s−1

[149]

13 500–
2000

Al2O3,
CuO

20
40

0–1 49
27

CuO nanoparticles in a 
water-based fluid are 
more prone to deposi-
tion than  Al2O3, but 
they exhibit superior 
heat transfer perfor-
mance.

[150]

14 Serpentine 100–
1500

CuO,
Al2O3

15 0–0.3 – Compared to  Al2O3-H2O 
and base fluids, CuO- 
 H2O nanofluid has a 
higher heat transfer 
coefficient

[151]

15 Analytical Rectangular – Al2O3,
CuO

25–45 0–4 – An increase in nanopar-
ticle volume fraction 
enhances Brownian 
motion, which signifi-
cantly affects the heat 
transfer process by 
dissipating heat to the 
surroundings

[152]

16 – Cu,
Al2O3,
Ag,
TiO2

25–45 0–8 – Increasing the volume 
% of nanoparticles 
enhances Brownian 
motion, reducing the 
temperature difference 
between the coolant 
and the wall

[153]
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that Nu was strongly influenced by the application of an 
oscillating heat flux at Re values of 10 and 100.

Studying the impacts of porous media on fluid flow and 
heat transfer in a microchannel filled with MWCNT/Oil 
Nanofluid. Nojoomizadeh and Karimipour [157] studied the 
impacts of porous media on fluid flow and heat transfer in a 
microchannel filled with MWCNT/oil nanofluid and found 
that a higher Re resulted in a decrease in the heat transfer 
time between the nanofluids and walls, resulting in a higher 
local Nusselt number. Table 13 lists various carbonaceous 
nanofluids used in MCHE and MCHS.

Table 13 indicates that over 50% of research on carbon 
nanomaterial suspended nanofluids relies on numerical anal-
ysis. Rectangular cross sections are also commonly used in 
constructing microchannels, as noted in the table. According 
to the literature survey, the use of carbon nanoparticles in 
nanofluid creation leads to a decrease in thermal radiation 
and improved thermal performance at high temperatures. 
Furthermore, the enhancement in heat transfer is more prom-
inent at higher Re.

Flow disruption in MCHS

To enhance heat transfer performance, flow disruption is an 
effective approach that increases mixing and heat transfer 
by inducing flow instabilities. Turbulent flow is a prevalent 
method for flow disruption, but in many cases, low velocities 
or small hydraulic diameters prevent the flow from reaching 
the crucial Reynolds number. To overcome this, efforts are 
being made to introduce geometrical alterations to the chan-
nel sidewalls, such as grooves, ribbed channels, wavy chan-
nels, dimples, and fins, which act as periodic disturbance 
promoters. These promoters induce self-sustaining oscilla-
tions, leading to flow instability and improved mixing. Many 
studies have investigated the use of different disturbance pro-
moters to enhance flow mixing in conventional channels.

Flow disruption in MCHS introduces various types 
of wavy channels

Rectangular straight channels are a common choice for 
MCHS due to their low pumping power and laminar flow 

resulting in almost straight streamlines. However, these 
channels have several disadvantages. Firstly, the heat trans-
port is poor due to insufficient fluid mixing caused by the 
linear streamlines. Secondly, the flow and heat transfer 
boundary layers thicken throughout the flow path because of 
the single-direction flow characteristics, leading to a larger 
temperature difference across the channels, especially at 
high heat fluxes. Thirdly, these channels are not effective in 
removing local high heat fluxes in microelectronic devices 
with hot spots. To overcome these challenges, several theo-
retical, experimental, and computational methods have been 
used to enhance the flow and heat transfer performance of 
MCHS by introducing different channel designs, such as 
grooves, ribbed channels, wavy channels, dimples, and fins, 
that promote flow instability and mixing.

When a fluid flows through a curved channel, it experi-
ences not only primary motion but also a secondary motion 
in the plane of the cross section, which is referred to as 
the Dean vortex. The Dean vortices arise from centrifugal 
forces that act on the fluid as it flows through the curved 
channel. The presence of these vortices induces flow com-
ponents to stretch and fold, which enhances the fluid mix-
ing and heat transfer. The Dean vortices have been shown 
to be particularly effective at promoting mixing and heat 
transfer in microchannels, where the low Reynolds numbers 
limit the potential for turbulent flow. Consequently, many 
researchers have investigated the use of curved channels or 
modified channel geometries that induce Dean vortices as a 
means of improving the flow and heat transfer performance 
of microchannels. Sui et al. [165] proposed a new design for 
an MCHS, which was influenced by Dean vortices. Instead 
of using straight channels, they suggested using wavy chan-
nels that showed superior heat transfer performance when 
compared to straight microchannels of equivalent cross sec-
tion. However, the use of wavy channels resulted in a pres-
sure drop penalty, which could be offset by enhancing the 
heat transfer capability.

In addition, Sui et al. [166] performed experiments to 
compare the performance of MCHS with wavy channels 
and those with straight channels. They calculated both the 
overall Nusselt number and the friction factor to confirm 
the superior performance of the wavy design. Wavy MCHS 
with rectangular cross sections and amplitudes ranging from 

Table 12  (continued)

S.no Study type Geometry Reynolds Number Nanoparticle Particle size/nm Particle 
Conc./%

Max. H.T
gain

Outcomes Ref

17 Circular 10,000 Al2O3,
Cu

– 2–6 – Compared to the larger 
nanoparticles, smaller 
nanoparticles gener-
ated less entropy in 
nanofluids of all 
concentration

[154]
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125 to 500 m were investigated numerically by Mohammed 
et al. [167]. According to their findings, the friction factor 
and wall shear stress increased in direct proportion to micro-
channel amplitude.

Liquid-cooling parallel-flow and counter-flow double-
layer wavy MCHS with Re of 50–110 were studied by Xie 
et al. [168]. The findings show that the counter-flow double-
layer wavy MCHS operates better at higher flow rates and 
provides a more consistent temperature rise. Using nanoflu-
ids as coolants, Sakanova et al. [169] investigated for the first 
time how the wavy walls of an MCHS promote heat transfer. 
The findings revealed that the wavy MCHS outperformed a 

regular rectangular MCHS. There is a 5.34–24.1% increase 
in heat transfer and a pressure drop of around 150–421.7%. 
Chiam et al. [170] conducted a numerical investigation to 
study fluid flow in microchannels with secondary branches 
in the Re range of 50–200. The numerical results show 
that the heat transfer performance of the system can be 
improved by adding extra branches. Pandey et al. [171] 
conducted a numerical analysis to assess the performance 
of a straight MCHE with wavy channels. Their findings 
indicate that wavy channels outperform straight channels 
in terms of thermal performance. On the other hand, when 
considering pumping power, straight channels exhibit better 

Table 13  Nanofluids used in various MCHS & MCHE suspended with carbon nanoparticles

S.no. Study type Geometry Reynolds number Particle size/nm Particle conc./% Max. H.T Outcomes Ref.

1 Numerical Helical 1–100 30 0–0.25 – The increase in Nu is more 
significant at higher Re when 
the slip coefficient and mass 
percentage of nanoparticles are 
increased

[158]

2 Rectangular – 25 0–1 – Increasing nanolayer thickness 
in MCHS enhances thermal 
conductivity and reduces the 
temperature gradient

[155]

3 10–100 – – – Addressing thermal radiation in 
the near-field media can lead 
to further improvement in heat 
transfer in microchannels using 
nanofluids

[159]

4 10–100 – 0–8 – Using oscillating heat flux has a 
substantial impact on the profile 
figure of the Nu in various 
Reynolds numbers

[156]

5 150–700 – 0–8 – As Re and nanoparticle volume 
fraction increase, heat transfer 
increases and thermal resistance 
decreases

[160]

6 0.1–10 30 0–0.4 – The rise in the local Nu would 
be higher, for higher Re, low 
porosity and Darcy

[157]

7 – 9.2 nm
1.5 μm

0–0.1 13 Thermal resistance is reduced by 
3% at 40 °C when CNT nano-
fluid is used in place of water

[161]

8 Parallel
Plates

0–100
1592–
478

– 0–0.25 30 It is noted that a lower Darcy 
Number results in a greater 
local Nu and porous medium 
causes higher slip velocity

[162]

9 Analytical Rectangular – 9–10 nm
15 μm

– 13 Nanofluids as working fluids 
decrease overall thermal resist-
ance and improve the thermal 
performance at high tempera-
tures

[163]

10 Experimental 100–1400 – 0.01–0.1 mass 29 Increasing flow rate and mass 
concentration enhances heat 
transfer coefficient in MCHS, 
while higher heat fluxes have 
minor impact

[164]
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characteristics. Table 14 represent various studies on wavy 
channels, along with the most important conclusions from 
each.

Flow disruption in microchannels by introducing 
various types of ribs

Several experimental and computational studies have been 
carried out to assess the impact of ribs on the thermohy-
draulic efficiency of MCHS & MCHE. Ribs are imple-
mented to enhance heat transfer by disrupting the thermal 

and hydraulic boundary layers. These ribs are frequently 
referred to as turbulators or roughness components, respec-
tively. Ribs can also promote flow mixing by producing vor-
tices and causing chaos during advection. However, the heat 
transfer boost provided by the ribs was accompanied by a 
large pressure loss penalty. Consequently, optimizing the 
ribs was necessary to ensure a lower pressure drop. Table 15 
presents the impact of ribs on the hydrothermal performance 
of MCHS and MCHE.

In an experimental and numerical analyses, Wang et al. 
[177] examined the heat transfer performance of an MCHS 

Table 14  Investigation of wavy channels used in microchannels

S.no. Wavy pattern type Shape of microchannel Reynold number Outcomes Ref.

1 Left–right 100–600 The utilization of a curved path increases 
the transfer of heat and the resistance to 
flow by 53% and 154% correspondingly

[165]

2 Wavy channel with a rectangular cross 
section

300–800 The transfer of heat and loss of pressure 
were both elevated by 49% and 111%, 
respectively

[166]

3 Left–right 100–1000 Wavy microchannels exhibit better heat 
transfer performance than straight 
microchannels of equal cross-sectional 
area

[167]

4 periodic, wavy shape with rectangular 
channel

65–333 Liquid flowing through bends produces 
Dean vortices, or symmetric secondary 
flow, as a consequence of steady flow

[172]

5 Double-Layer Wavy MCHS 50–110 The double-layer counter-flow wavy 
MCHS performs better at higher flow 
rates and the temperature rise is more 
consistent

[168]

6 Longitudinal & transversal-wavy MCHS 50–320 Increase in heat transfer between 6.1% 
to 27.3% and a decrease in pressure 
between 123.3% to149.2% is found

[173]

7 Wavy channels with alternate secondary 
branches

50–200 Introducing secondary branches has the 
potential to increase performance

[170]

8 Up-down 10–100 In comparison with microchannels with 
straight walls, wavy channels enhance 
overall performance by up to 26%

[174]

9 Up-down 50–150 Compared to channels with straight walls, 
a 55% improvement in total performance

[164]

10 Up-down 100–240 Wavy channel has a positive influence 
because it reduces the thermal and 
hydrodynamic boundary layer

[176]
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with bidirectional ribs (BR) at Reynolds numbers from 100 
to 1000. Their findings indicated that the Nusselt number 
(Nu) of the BR microchannel could reach up to 1.42 times 
higher than that of a microchannel featuring vertical or span-
wise ribs.

Interrupted MCHS in transverse microchambers with 
various rib forms have been studied by Chai et al. [178]. The 
transverse microchambers in the interrupted MCHS exhibit 
a decrease in thermal resistance of 4–31% and a reduction 
in entropy production rates of 4–26% compared to those of 
the straight MCHS.

With fan-shaped ribs on the sidewalls, Chai et al. [179] 
numerically investigated the thermal and hydraulic param-
eters of laminar flow in an MCHS. The findings indicated 
that the heat transfer properties were significantly influenced 
by the height and spacing of the fan-shaped ribs, while the 
width of the ribs had a lesser impact.

Desrues et al. [180] examined heat transfer and pressure 
loss in 3D channels featuring alternating opposing ribs. The 
study found that while the pressure drops increased consist-
ently with Re, heat transfer only improved after Re exceeded 
a critical value.

Chai et al. [181] utilized numerical simulations to evalu-
ate the thermohydraulic performance of an MCHS that 
incorporated triangular ribs on the sidewalls. The implemen-
tation of these ribs successfully restricted the temperature 
increase of the heat sink base and prevented a decrease in the 
local heat transfer coefficient in the flow direction.

The effects of rib shape and fillet radius on the thermal-
hydrodynamic performance of an MCHS were investigated 
numerically by Derakhshanpour et  al. [182]. The study 
revealed that increasing the rib corner curvature resulted in a 
higher heat transfer coefficient, but also led to an increase in 
the pressure drop. Using a water–TiO2 nanofluid, Gravndyan 
et al. [183] conducted investigation on the thermal perfor-
mance of a rectangular MCHS and studied the impact of 
rib aspect ratio. The study found that the friction factor was 
independent of the rib aspect ratio, but dependent on the 
volume percentage of nanoparticles in the nanofluid.

The use of ribs in microchannels can cause significant 
pressure loss due to high-flow disruptions, so the optimi-
zation of rib geometry is necessary. In order to improve 
heat transfer while maintaining a minimum pressure drop, 
grooves or cavities are used to restrict flow and redevelop the 
thermal boundary layer. Cavities can enhance heat transfer 
by encouraging mixing between fluid layers near the wall 
and core through the action of jets and flow throttling. The 
idea of the ribs and cavities working together has also been 
used as an effective way to improve heat transfer. Ghani et al. 
[184] investigated the thermohydraulic characteristics of a 
microchannel with both sinusoidal cavities and rectangular 
ribs (MC-SCRR). The results showed that MC-SCRR per-
formed better in terms of thermal performance compared to 

both rectangular microchannel ribs and sinusoidal micro-
channel cavities alone. This suggests that the combina-
tion of ribs and cavities is an effective way to enhance heat 
transfer. Xia et al. [185] conducted a numerical analysis to 
investigate thermal enhancement in an MCHS by using fan-
shaped reentrant cavities & internal ribs. They found that 
the Nu for the fan-shaped reentrant cavities was 1.3–3 times 
higher than that for a rectangular microchannel. The heat 
transfer characteristics of an MCHS with triangular cavities 
and rectangular ribs were numerically studied by Li et al. 
[186]. Their findings revealed a significant improvement in 
heat transfer for microchannels equipped with triangular and 
rectangular cavities.

On the other hand, the combination of ribs and grooves 
was found to be effective way in enhancing heat transfer 
and reducing pressure drop. This is due to the high-flow 
disruption capability of ribs and the lower pressure drop 
of grooves. To validate this Zhu et al. [187] investigated 
the thermal and hydraulic performance of an MCHS with 
rectangular grooves and ribs and found that the combination 
of grooves and ribs was effective in enhancing heat transfer 
and reducing pressure drop due to the high-flow disruption 
capability of ribs and the lower pressure drop of grooves. 
They concluded that the combination of grooves and ribs can 
significantly increase the overall performance. Further, the 
thermal performance of an MCHS with ribs and grooves was 
experimentally and numerically investigated by Wang et al. 
[188] for chip cooling applications. Their findings showed 
that rib-grooved microchannels had a Nu 1.11–1.55 times 
higher than smooth microchannels.

In addition, the use of porous media is a viable solution 
to mitigate the high pressure drop associated with the imple-
mentation of ribs in MCHS. Porous media are frequently 
employed in heat transfer applications due to their large 
surface area that comes in contact with the fluid, which 
enhances the heat transfer performance. The thermohydrau-
lic characteristics of microchannels with solid and porous 
ribs have been numerically examined by Li et al. [189]. They 
found that the thermal performance of microchannels with 
ribs was better than that without ribs. However, the pres-
sure drops and friction factors were higher for microchan-
nels with solid ribs compared to those with porous ribs. By 
replacing solid ribs with porous ones in center, symmetri-
cal, and staggered rib arrangements, the pressure drops were 
reduced by 67%, 57%, and 12%, respectively. Wang et al. 
[190] conducted a numerical investigation to examine how 
the combined use of porous/solid fins and nanoparticles 
affects the cooling efficiency of microchannel heat sinks 
(MCHS). The results showed that, under constant Reynolds 
number conditions, heat sinks composed of metallic foam 
exhibited superior cooling performance. These heat sinks 
were capable of significantly reducing the surface tempera-
ture of the heat sink compared to other configurations. In 
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another research to improve the hydrothermal property of 
MCHS, an investigation was conducted by Li et al. [191]. 
They incorporate embedded module ribs and pin with fins. 
Their outcomes indicate that at a Reynolds number of 458, 
the heat transfer efficiency increased by 63.91%, resulting 
in a 67.65% enhancement in temperature uniformity. Fur-
thermore, the pressure drops experienced a modest rise of 
merely 10.24%.

Polat et al. [192] conducted a numerical investigation to 
examine the heat transfer performance of a microchannel 
heat sink (MCHS) equipped with micro pin-fins, focusing 
on steady laminar flow conditions. Using ANSYS Fluent, 
simulations were carried out to analyze the heat and fluid 
flow within MCHSs featuring circular, square, and dia-
mond-shaped micro pin-fins of equal hydraulic diameter. 
The arrangement of micro pin-fins in each MCHS configura-
tion was optimized for performance using a multi-objective 
genetic algorithm known as Non-dominated Sorting Genetic 
Algorithm (NSGA-II). The results of the optimization pro-
cess revealed that the square-shaped pin–fin configuration 
exhibited unfavorable performance compared to the other 
pin–fin shapes. However, among all the configurations 
tested, the diamond-shaped pin-fins demonstrated a sig-
nificant improvement in heat transfer while maintaining 
an acceptable pressure drop ratio. Therefore, the diamond-
shaped pin-fins were identified as the most effective choice 
for enhancing heat transfer within the MCHS.

Zhang and Du [193] proposed a method to enhance the 
heat dissipation of a MCHS by introducing fins that generate 
a secondary flow. In their study, they compared the perfor-
mance of the finned MCHS with a straight microchannel 
heat sink. The experiments were conducted under a mass 
flow rate of 3.5  gs−1. The results indicated that the finned 
MCHS achieved improved heat dissipation compared to the 
straight microchannel heat sink. Specifically, the maximum 
temperature of the finned MCHS was reduced by 3.04 K 
(equivalent to a 6.67% decrease) compared to the straight 
microchannel heat sink. Additionally, the average tempera-
ture of the finned MCHS was reduced by 2.86 K (equivalent 
to a 6.75% decrease) compared to the straight microchannel 
heat sink.

Channel material

The literature reviewed shows that the flow channels used 
in various experimental and numerical investigation were 
made of various materials such as aluminum (Al), copper 
(Cu), silicon (Si), stainless steel, & various other metals 
[186–188]. The use of Si is preferred in electronic devices 
due to its compatibility with micromachining and micro-
fabrication techniques used in semiconductor manufac-
turing processes, making it well suited for the electronics Ta
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industry [204]. Generally, water is used as a working fluid 
which causes corrosion in metallic heat exchangers, owing 
to thermal property limitations of metallic heat exchangers, 
these materials become ineffective under extremely high 
temperatures conditions. To overcome these limitations 
nowadays numerous researchers have focused on ceramic 
microchannels.

Ceramic microchannel heat exchangers/heat sink 

Metals are commonly used in heat exchangers; how-
ever, metallurgical issues or significant deformations are 
extremely troublesome at high heat-flux settings [190–193]. 
Furthermore, some fluids are corrosive, and the use of met-
als increases the production costs [194–197]. Ceramics are 
one of the finest options for high-temperature applications 
according to various prior studies [213, 214]. These mate-
rials exhibit excellent oxidation, sulfidation, and corrosion 
resistance. Ceramics generally have low thermal conductivi-
ties (e.g., zirconia [215], silicon nitride (SiC) [216]). How-
ever, a group of ceramics, such as titanium diboride  (TiB2) 
[217], zirconium diboride  (ZrB2), hafnium diboride  (HfB2) 
[218], aluminum nitride (AlN) [219], and beryllium oxide 
 (BeO2) [220], have better thermal conductivity.

Alm et al. [221] studied the performance in cross-flow 
and counter-flow regimes of an  Al2O3 MCHE using dem-
ineralized water to measure the heat transfer rate. The effi-
ciency varied from 0.10 to 0.22 in cross-flow heat exchang-
ers at mass flow rates of 20–120 kg   h−1, while the heat 
transfer coefficient was 22 kW  m−2  K−1. A miniaturized heat 
exchanger composed of SiC was experimentally investigated 
by Fend et al. [222] at elevated temperatures. Two SiC heat 
exchangers with various wall thicknesses and widths were 
tested and compared at temperatures up to 950 °C. The sam-
ple with a larger channel width worked better in these studies 
because of its lower wall thickness. Furthermore, these heat 
exchangers were observed to have a large heat transfer sur-
face area to volume ratio of 995  m3  m−2 and a high efficacy 
of up to 65%.

Villanueva et al. [223] explored the use of ceramics in 
plate heat exchangers with fins. The findings reveal that 
the development of vortices in the frontal area of the fins 
leads to an increase in the heat transfer. Lewinsohn [224] 
investigated a small SiC ceramic plate MCHE, reported the 
efficacy, temperature variations, change in pressure, and 
stresses developed in hot & cold fluid plates. The findings 
revealed that a microturbine power cycle made of ceramics 
may achieve greater power cycle efficiency.

Carman et al. [225] examined the impact of an MCHE 
composed of silicon carbon nitride (SiCN) ceramic material 
on a microturbine. The study suggests that design optimiza-
tion can lead to an improvement in the thermal efficiency 
of the cycle by approximately 9%. Ponyavin et al. [226] 

investigated small heat exchangers made of SiC employed 
for hydrogen generation. The high thermal conductivity of 
silicon carbide helped to eliminate temperature gradients 
between the channel walls and maintain low stresses, accord-
ing to the results. Monteiro and de Mello [227] conducted 
a study on the thermal efficiency and pressure drop of plate 
heat exchanger with fins made of alumina. Their findings 
showed that increasing the mass flow rate resulted in a 
reduction in the pressure drop, which in turn reduced the 
device's efficiency. Nekahi et al. [228] studied the viabil-
ity of  TiB2–SiC composites doped with a two mass% car-
bon fiber in an MCHE. They found that the  TiB2–SiC and 
 TiB2–SiC–Cf composites improved heat transfer by 15.5 per-
cent as compared to  Al2O3. Fattahi et al. [229] conducted 
a study to investigate the effect of using aluminum nitride 
(AlN) for constructing MCHE on its heat transfer perfor-
mance. By replacing  Al2O3 with AlN, the heat transfer and 
efficiency of the MCHE were improved by 59% and 26%, 
respectively. Vajdi et al. [230] conducted a numerical study 
on an MCHS made of  ZrB2 to analyze pressure drop and 
heat transfer. The study found that the high thermal conduc-
tivity of the ceramics resulted in an effective heat transfer 
rate. Table 16 summarizes numerous literature studies that 
use ceramic as a microchannel material.

Channel geometry

The flow in the MCHS was predominantly laminar due to 
the small channel size. Traditional MCHS experiences a 
growing thermal boundary layer which causes hotter fluids 
to be collected on the channel wall, while cooler fluids cir-
culate through the core channel. Therefore, early research 
efforts focused on improving the thermal efficiency of a 
typical straight rectangular MCHS by modifying the chan-
nel length, aspect ratio, and wall thickness. While some 
researchers have attempted to disrupt the MCHS boundary 
layer, others have altered the microchannel cross section 
to enhance its performance, such as circular, triangular, 
square, and trapezoidal shapes. However, rectangular cross 
sections were used in most studies, as seen in Tables 5–13, 
possibly because of their simpler manufacturing process 
compared to other shapes.

Yogesh and Prajapati [236] conducted a numerical 
investigation to analyze how altering the fin height of a rec-
tangular MCHS affects its thermo-hydro properties. They 
explored seven different heat sink designs in the Re range of 
100–400 and the heat-flux range of 100–500 kW  m−2. Their 
findings indicate that raising the height of fin enhances 
the heat transfer from the MCHS, but only until the fin 
height reaches 0.8 mm. Longer fins obstruct the flow chan-
nel more, resulting in increased pressure loss. To see the 
effect of various crystal structure on the thermomechanical 
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performance of a MCHE, a numerical experiment was con-
ducted by Wu et al. [237]. They employed multi-physics 
mathematical model using thermal-fluid–structure interac-
tion (TFSI) to investigate the thermomechanical perfor-
mance of a MCHE. They found that in comparison with 
simple cubic crystal structure, the thermal–hydraulic per-
formance factors of FCC and BCC corrugated straight plate 
MCHE were 2.20 and 1.70.

Through numerical simulations, Kumar and Kumar 
[238] studied the thermo-hydro properties of a rectangu-
lar MCHS featuring arc grooves on its surface. The inclu-
sion of grooves has been observed to generate a pseudo-
secondary flow, which enhances heat transfer but results in 
a higher Poiseuille number. Ma et al. [239] presented their 
findings on thermal characteristics of laminar regime in 3D 
microchannels having rectangular cross section, where the 
aspect ratios ranged from 0.1 to 1. They discovered that as 
the aspect ratio of rectangular microchannels increases and 
the Reynolds number decreases, the dimensionless thermal 
entry length also increases uniformly. Lan et al. [240] stud-
ied the impact of truncated and offset pin-fins on the thermal 

behavior and entropy production in a rectangular MCHS 
that had different flow characteristics. They discovered that 
increasing the height of the pin-fins generally resulted in 
higher heat transfer but also increased fluid resistance. Kose 
et al. [241] conducted a numerical investigation to assess 
the heat transfer performance of microchannel heat sinks 
(MCHS) with different shapes. They compared rectangular, 
triangular, and trapezoidal microchannels under identical 
design constraints in order to determine efficient MCHS 
designs. The study revealed that the rectangular microchan-
nel configuration exhibited the highest thermal and hydrody-
namic performance among the three shapes. In terms of heat 
transfer efficiency, the rectangular microchannel required 
17% and 40% less pumping power than the trapezoidal and 
triangular microchannels, respectively, while achieving the 
same amount of heat transfer. Fani et al. [242] examined how 
the size of particles affects the thermo-fluidic properties of 
nanofluids in a MCHS having trapezoidal cross section. The 
experiment employed CuO nanoparticles with sizes ranging 
from 100 to 200 nm and volume concentrations of 1% to 
4%, using water as the base fluid. The findings revealed that 

Table 16  Investigation on various ceramic material used for construction of MCHS & MCHE

S.no. Material Findings Ref.

1 Al2O3 For mass flow rates of 20 to 120 kg  h−1, the efficacy ranged from 0.10 to 0.22 and the heat transfer coef-
ficient extended to 22 kW  m−2 K−1

[221]

2 Increasing the flow rate of mass reduces the pressure drop, but it also reduces the efficacy of the device [227]
3 SiC Heat exchangers were observed to have a massive heat transfer surface to volume ratio of  995m3  m−2 and 

high efficacy of up to 65 percent
[222]

4 A vortex formed in the frontal area of a fin results in a notable improvement in heat transfer [223]
5 Ceramic heat exchangers may achieve greater cycle efficiency [224]
6 Due to an extraordinarily high coefficient of thermal conductivity of silicon carbide, the temperature gradi-

ents between channel walls was eliminated and maintains low stresses
[226]

7 A porous ceramic heat exchanger with multiple scales offers thermal performance of over 2.5 times greater 
than printed-circuit heat exchangers

[231]

8 SiCN The results indicate that design optimization can improve the thermal efficiency of the cycle by nearly 9% [225]
9 TiB2–SiC doped with 

2 mass% carbon 
fiber

TiB2–SiC and  TiB2–SiC–Cf composites improved the heat transfer by 15.5 percent as compared to alu-
mina

[228]

10 AlN The effectiveness and thermal conductivity of the MCHE, which was fabricated using AlN rather than 
 Al2O3, were enhanced by 26% and 59%, correspondingly

[229]

11 A reduction of approximately 31% in the overall thermal resistance of the heat sink was reported due to the 
higher thermal conductivity of AlN

[232]

12 ZrB2 The research findings indicated that the high heat transfer rate was due to the superior thermal conductiv-
ity of ceramics

[230]

13 BeO When the mass flow rate is fixed at 30.5 kg  h−1, BeO's better thermal properties result in a more evenly 
distributed temperature and a 219% increase in the efficiency of MCHE with trapezoidal fins compared 
to MCHE made of alumina

[233]

14 AlN and BeO When compared to alumina, AlN and BeO ceramics MCHS exhibited thermal performance improvements 
of about 3.72 and 4.22 times, respectively, at a Reynolds number of 300

[234]

15 ZrB2–SiC–CNT The findings indicate that the  ZrB2 composite, which is reinforced with 20 vol.% SiC, experiences the 
most notable decrease in temperature when subjected to ultra-high heat flux. Subsequently, at Re 250, 
the  ZrB2 composite reinforced with 20 vol.% SiC and 10 vol.% CNT also shows a considerable reduction 
in temperature

[235]
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enlarging the nanoparticles led to a decrease in heat transfer 
and an increase in pressure drop. Furthermore, the base fluid 
had a more significant effect on the thermal performance 
than the nanoparticles.

Weilin et al. [243] investigated the fluidic behavior of 
water in microchannels constructed of silicon having 
trapezoidal shapes with channel diameters in the range 
51–169 μm. They proposed that the equation of motion 
should include viscosity, specifically eddy viscosity dur-
ing turbulent flow. Song et al. [244] conducted numerical 
simulations to investigate the thermo-fluidic properties of 
trapezoidal microchannel heat sinks (TMCHS). They ana-
lyzed six different configurations of TMCHS and compared 
their thermo-fluidic characteristics. The results showed that 
among the six designs, the TMCHS with the reverse chan-
nel counter-flow large inlet (RCCFLI) design had the most 
efficient thermal performance. Ahmed et al. [245] studied 
how different geometrical parameters affect the laminar flow 
and heat transfer performance in a grooved MCHS. They 
found that the trapezoidal groove MCHS had the most effi-
cient thermal design among various grooved MCHS, with 
an increase in the Nu by 51.59 percent and an increase in 
friction factor by 2.35 percent.

Mohammed et al. [246] used numerical simulations to 
assess the impact of incorporating nanofluids in a parallel-
flow MCHE having square cross section. Their results dem-
onstrated that the use of nanofluids can enhance the ther-
mal characteristics and performance of the heat exchanger, 
despite causing a slight increase in pressure drop. Zheng 
et al. [247] conducted a study on the thermo-fluidic perfor-
mance of circular and annular microchannels with dimples 
or protrusions. They investigated the impact of various fac-
tors, including Re, size of dimples/protrusions, combina-
tions of dimples/protrusions, and positioning patterns. Their 
research demonstrated that protrusions in circular micro-
channels are particularly beneficial for energy conservation.

The effect of particle shape on the thermo-fluidic behav-
ior of MCHS with various geometries, i.e., circular, ellip-
tical, triangular, and hexagonal, was studied by Monavari 
et al. [248]. Their findings showed that the triangular MCHS 
had the highest heat transfer coefficient value, followed by 
the elliptical, hexagonal, and circular MCHS in decreasing 
order. Wang et al. [249] conducted a numerical investiga-
tion on the impact of geometric factors on the thermohy-
draulic performance of microchannel heat sinks (MCHS) 
with rectangular, trapezoidal, and triangular geometries. 
Their research showed that the rectangular MCHS had 
the lowest thermal resistance among the three types, fol-
lowed by the triangular and trapezoidal MCHS in increasing 
order of thermal resistance. In another research Tan et al. 
[250] conducted a numerical investigation to analyze the 
heat exchange mechanism and optimization of structural 
parameters for a built-in series combined MCHS. Through 

an orthogonal test, they investigated the impact of multi-
ple parameters on the heat exchange efficiency. The study 
revealed that the shape of the microchannel plays a signifi-
cant role in determining the heat exchange phenomena.

Conclusions

In this study, the focus was on techniques to improve heat 
transfer in microchannel heat exchangers (MCHE) and 
microchannel heat sinks (MCHS). Various techniques were 
reviewed, including the utilization of different working flu-
ids, flow disruptions, different materials for constructing 
microchannels, and modifications to microchannel geom-
etries. Additionally, statistical factors such as bibliographic 
analyses were conducted. The main findings of the study are 
summarized below.

Microchannels have exceptional heat transfer properties 
that enable them to absorb substantial heat fluxes in very 
small areas. However, despite their potential, commercially 
available microchannels have not yet replaced conventional 
channels due to the high cost of the specialized manufactur-
ing processes required to produce micro- and minichannels. 
Nearly half of the studies conducted on microchannel heat 
sinks (MCHS) and microchannel heat exchangers (MCHE) 
have utilized numerical approaches. In the past decade, 
there has been a proliferation of numerical studies, with a 
relative decrease in analytical and experimental research.

Although there have been notable advances in the devel-
opment of microchannel heat sinks (MCHS) for electronic 
cooling applications, research in large-scale thermal and 
energy applications has been limited. In practical thermal 
applications, heat exchangers often incorporate core com-
ponents with complex geometric designs. However, most 
of the studies conducted on microchannel heat exchangers 
(MCHE) and MCHS have focused on fundamental micro-
channel geometries, particularly rectangular ones, and 
working fluids. To accurately represent real-world heat 
exchangers, extensive research is required on a wide range 
of configurations, manifold geometries, materials, and work-
ing fluids.

Numerous studies have demonstrated that the optimal 
method for removing high heat flux from small volumes and 
spaces is by allowing the working fluid to flow through a 
microchannel. The addition of nanoparticles in small quan-
tities to the base fluid can further enhance the thermal and 
fluid flow characteristics of the microchannel.  Al2O3 is the 
most commonly used nanofluid due to its low density and 
high thermal conductivity. However, the use of nanofluid has 
a negative impact on energy consumption since it requires 
more electricity for pumping.

The use of flow disruption techniques, such as the wavy 
microchannel design, has been found to have a significant 
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impact on the heat transfer performance of microchannel 
heat sinks. The effectiveness of this technique can be attrib-
uted to three main mechanisms. Firstly, it increases the sur-
face area available for convective heat transfer. Secondly, 
it alters the parabolic velocity profile, leading to improved 
convective heat transfer. Finally, it creates Dean vortices & 
chaotic advection, resulting in improved convective fluid 
mixing. While the wavy channel design may cause pressure 
losses, the benefits to heat transfer outweigh the associated 
pressure drop penalty.

The researchers evaluated various materials for construct-
ing microchannels, including metals, ceramics, and poly-
mers. Based on their findings, ceramics were determined to 
be the optimal material for high-temperature applications 
due to their ability to address metallurgical issues and cor-
rosion problems.

Future scope

Here are some suggestions and recommendations for 
future work based on the published studies on heat transfer 
improvement in microchannel heat sinks/heat exchangers:

(i) Use of combined active and passive techniques in 
microchannel heat sinks/heat exchangers for further 
heat transfer augmentation.

(ii) The use of ultra-high-temperature ceramics in place 
of metals and superalloys in high-temperature power 
generating applications can solve the metallurgical con-
straint of the high inlet temperature of microturbines 
and increase the efficiency of the plant.

(iii) The thermal performance of microchannels has to be 
further enhanced, and other manufacturing processes 
for miniaturization are needed to cut their cost.

(iv) Further research is needed to explore the potential of 
nanofluids in enhancing the thermal and fluid flow 
characteristics of microchannels. The effects of differ-
ent types and concentrations of nanoparticles, as well 
as their impact on pump power consumption, need to 
be thoroughly investigated.

(v) More studies are needed to investigate the effects of 
various flow disruption techniques and microchannel 
geometries on heat transfer enhancement. In particular, 
further research should focus on exploring the perfor-
mance of wavy microchannels and their potential appli-
cations in large-scale thermal and energy systems.

(vi) Future studies should consider a wider range of work-
ing fluids to explore their potential in microchannel 
heat sinks/heat exchangers. Researchers should also 
focus on investigating the effects of fluid properties, 
such as viscosity and surface tension, on the thermal 
and fluid flow characteristics of microchannels.

(vii) The development of advanced manufacturing tech-
niques that can produce cost-effective and high-perfor-
mance microchannel heat sinks/heat exchangers should 
be prioritized. This could involve exploring the use of 
3D printing and other novel fabrication techniques.

(viii) Further studies should explore the effects of opera-
tional conditions such as flow rate, inlet temperature, 
and pressure drop on the performance of microchannel 
heat sinks/heat exchangers.

(ix) The potential of microchannel heat sinks/heat exchang-
ers in applications beyond electronic cooling, such as 
in the fields of energy and biomedicine, should be 
explored.

(x) Finally, researchers should focus on developing accu-
rate numerical models and experimental methods to 
predict and measure the thermal and fluid flow charac-
teristics of microchannel heat sinks/heat exchangers.

Author declaration There is no review paper which compiles all the 
heat transfer enhancement techniques on MCHS & MCHE. Also, 
information on ceramic MCHE and MCHS is limited. In this paper, 
the authors have tried to review all the journal papers that dealt with 
improvement in thermal performance of MCHS and MCHE. The effort 
behind this work can be divided into four main aspects: working fluid, 
flow disruption techniques, the material of construction, and the geom-
etry of the channel.
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