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Abstract
A wet porous moving longitudinal fin composed of linear functionally graded material (FGM) has been chosen for the 
analysis. The thermal behaviour of the fin and its entropy generation in the presence of convective-radiative heat transmis-
sion are the focus of the study. Further, three distinct cases of FGM, namely homogeneous, type I (higher thermal grading 
towards the fin base) and type II (higher thermal grading towards the fin tip) have been comparatively investigated. The 
derived energy equation is a 2nd-order nonlinear ordinary differential equation and is solved with the aid of the Runge Kutta 
Fehlberg method. The fin thermal profile, entropy generation profile, and average entropy generation have been graphically 
analysed for the thermal conductivity grading parameter, Peclet number, convective parameter, radiative parameter, wet 
porous parameter, and dimensionless ambient temperature. The entropy generation along fin length as well as the average 
entropy generated in a fin are discovered to be lowest in the case of homogeneous fin structures followed by type I and type 
II FGM fin structures. The present investigation benefits the manufacture and design of FGM fin structures.

Keywords  Entropy generation · Fully wet longitudinal fin · Functionally graded material · Porous fin · Convection · Moving 
fin

List of symbols
Cp	� Specific heat at constant pressure (J kg−1 K−1)
K	� Permeability (m2)
L	� Length of the fin (m)
Le	� Lewis number
Ns	� Entropy generation number
Nsavg	� Average entropy production
Nr	� Radiative parameter
Nc	� Convection parameter
Pe	� Peclet number
Q̇	� Heat transfer rate (W)
S∗	� Entropy (J kg−1 K−1)

S′′′
gen

	� Entropy generation (J m−3 K−1)
T 	� Local fin temperature (K)
Ta	� Ambient operating temperature (K)
Tb	� Base temperature (K)
U	� Fin velocity (constant) (m s−1)
W 	� Width (m)
X	� Dimensionless length
a	� Grading parameter of thermal conductivity (m−1)
b2	� Variable parameter (K−1)
g	� Gravitational acceleration (m s−2)
h	� Heat transfer coefficient (W m−2 K−1)
ha	� Heat transfer coefficient at temperature Ta 

(W m−2 K−1)
hD	� Uniform mass transfer coefficient
ifg	� Latent heat of water evaporation (J kg−1)
k	� Thermal conductivity (W m−1 K−1)
k0	� Thermal conductivity of the homogeneous mate-

rial (W m−1 k−1)
ṁ	� Mass flow rate (kg s−1)
m0,m1	� Constants
m2	� Wet porous parameter
p	� Power index of heat transfer coefficient
q	� Heat transfer rate (W)
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t	� Fin thickness (m)
t∗	� Time (s)
vw(x)	� Velocity of the fluid passing through the fin 

(m s−1)
x	� Axial coordinate of the fin (m)

Greek symbols
�f	� Density of the ambient fluid (kg m−3)
�	� In-homogeneity index
�f	� Kinematic viscosity of the ambient fluid (m2 s−1)
�	� Non-dimensional temperature
�a	� Dimensionless ambient temperature
�	� Humidity ratio of the saturated air
�a	� Humidity ratio of the surrounding air
�	� Porosity
�	� Stefan–Boltzmann constant (W m−2 K−4)
�	� Surface emissivity of fin
�f	� Volumetric thermal expansion coefficient of the 

ambient fluid (K−1)

Subscripts
a	� Ambient
b	� Base
f	� Fluid
gen	� Generation
i	� Inlet
o	� Outlet

Introduction

Fin is a great engineering component for managing heat 
transmission over or through a surface, and as such, it is 
widely used in a variety of sectors. With flexibility in the 
context of mass, size, and shape fin has gained employment 
in numerous areas like cooling of a reactor core, electron-
ics, solar collectors, etc. As fin is widely used in industry, 
researchers are continuously looking for novel ways to 
improve its performance and forecast its mechanical reac-
tion to expected and unexpected changes in operating cir-
cumstances or settings.

The replacement of solid fin structures with porous ones 
was a milestone in the development of technology using 
extended surfaces. Kiwan and Al-Nimr [1] were the foremost 
to develop the porous fin model and they utilized Darcy’s 
law to study the interaction between solid and fluid particles. 
It has been inferred that an optimum limit is attained by the 
thermal conductivity ratio beyond which there is no altera-
tion in the heat transfer rate. Kiwan [2] further studied the 
convective porous fin by considering structures of different 
lengths. Gorla and Bakier [3] modelled the energy equation 
for a convective porous fin exposed to the radiative envi-
ronment. The affirmative response of radiative heat loss on 
base heat transfer rate has been conferred in the study. Das 

and Ooi [4] developed an algorithm by employing inverse 
analysis technique to predict the range of parameters to 
achieve a given temperature requirement. The heat transfer 
rate and efficiency of moving and stationary fin structures 
have been comparatively analysed by Bhanja et al. [5]. While 
analytically investigating the optimum fin dimensions it has 
been concluded that the heat transfer rate elevates with fin 
volume.

A semi-spherical fin structure was considered by Atouei 
et al. [6] to analytically compute the spatial distribution of 
temperature. They have employed the technique of least 
squares and collocation to analyse the impact of the ther-
mally reliant physical attributes on the heat energy trans-
mission within the fin. The nonlinear porous fin problem 
was concentrated by Turkyilmazoglu [7] and Das and Kundu 
[8]. The technique of differential transformation was adopted 
by Pasha et al. [9] to examine distinct fin structures under 
unsteady conditions. For the investigation, the convex, trian-
gular, concave, and rectangular profiles of straight fin geom-
etry were considered. The method of solution to analyse 
the temperature distribution in the different fin structures 
has attracted the concentration of many researchers. In this 
regard, the technique of approximating the radial basis func-
tion was implemented by Fallah et al. [10] to decipher the 
moving fin problem. Using this semi-analytical method, the 
influence of thermal conductivity parameter, radiative and 
convective parameters and Peclet number on the spatial dis-
tribution of fin temperature has been examined. A different 
approach to mounting the fin structure with a stretching/
shrinking mechanism was considered by Gireesha et al. [11], 
and the numerical analysis was performed by employing the 
4–5th ordered Runge Kutta Fehlberg technique. Consider-
ing the different thermal attributes to be spatially dependent 
Turkyilmazoglu [12] recently scrutinized a fin problem and 
obtained the exact solutions.

Recently, fully wet technology is gaining popular-
ity among researchers in the study of extended surfaces. 
Hatami and Ganji [13] considered a radial fin under fully 
wet conditions and employed the techniques of least squares 
to decipher the solution. They inferred that the presence of 
humidity enhances the temperature distribution along the 
fin length. The technique of differential transformation was 
employed by Kundu et al. [14] in the analysis of exponen-
tial wet fin structures. Further, a fully wet porous fin was 
examined by Darvishi et al. [15] by employing the spectral 
collocation approach, and it has been concluded that mois-
ture content aids heat dissipation via convection. Further-
more, the works by Wankhade et al. [16] and Das and Kundu 
[17, 18] are prominent in the field of fully wet extended 
surfaces. Pirompugd and Wongwises [19] analytically and 
comparatively examined the hyperbolic circular fin with the 
rectangular one under partially wet conditions. They have 
analysed the thermal field and efficiency of both the profiles 
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and found that fin efficiency under partially wet conditions 
is between that of fully wet and dry ones.

Owing to the application of fin structures, it is necessary 
to consider the effect of motion on the distribution of tem-
perature within the fin. In this regard, Singla and Das [20] 
employed the Adomian decomposition approach together 
with a genetic algorithm for the inverse analysis of a moving 
fin. It has been concluded that the speed of fin movement 
has a very strong impact on the fin’s thermal profile than the 
thermo-physical attributes of the fin. A modified decomposi-
tion approach was employed by Roy et al. [21] to investigate 
a moving triangular fin, and it was deciphered that the Peclet 
number enhances the local fin temperature. The finite ele-
ment approach was implemented by Gireesha et al. [22] to 
scrutinize a moving porous fin of radial outline. One of the 
major outcomes of the study was that the Peclet number had 
a negative impact on the base heat transmission rate of the 
fin. A moving pin fin of parabolic profile was analytically 
examined by Turkyilmazoglu [23]. The technique of dif-
ferential transforms embedded with Pade approximant was 
utilized by Jayaprakash et al. [24] to illustrate the impact of 
Peclet number and heat absorption on the spatial distribu-
tion of temperature along a trapezoidal profiled straight fin 
structure.

Functionally graded materials (FGMs) are considered 
to be alternatives to composite materials with their excel-
lent mechanical and thermal characteristics. Aziz et al. [25] 
have examined the thermal characteristics of FGM fin as 
compared to homogeneous ones by employing the technique 
of differential transformation. They have also studied the 
impact of relevant parameters on the efficiency of the FGM 
fin structure. FGM fin structures with linear and power law 
dependent temperature characteristics were investigated by 
Oguntala et al. [26] by implementing the spectral colloca-
tion approach named after Chebyshev. Sowmya et al. [27] 
illustrated the spatial distribution of temperature in FGM fin 
structures exposed to fully wet conditions and they further 
extended the above study by including exponential FGM fin. 
Analysis of thermal stress on radial fin composed of FGM 
was undertaken by Yildirim et al. [28] under unsteady condi-
tions and they found that radial fin stress can be minimized 
with the replacement of homogeneous material with FGM.

Entropy generation denotes the energy degradation dur-
ing a process and helps estimate the wasted energy. With 
this, fin optimization has been driven towards a new direc-
tion with the assessment of entropy generation in distinct fin 
structures. Poulikakos and Bejan [29] employed the 1st and 
2nd laws of thermodynamics to model the entropy genera-
tion in a fin structure. They have analysed the generation of 
entropy in a pin fin and three distinct fin profiles of longi-
tudinal geometry. An orthotropic pin fin was considered by 
Aziz and Makinde [30] to investigate entropy generation 
in it. Further, the effects of radial Biot number, fin aspect 

ratio, etc. on entropy generation were studied by develop-
ing a two-dimensional model. Khatami et al. [31] modelled 
the entropy generation and average entropy production in a 
porous longitudinal fin subject to convective heat loss. They 
have found that the entropy generated is maximum at the 
base of the fin and minimum at the fin tip. Recently Din 
et al. [32] investigated the entropy generation in a porous 
exponential fin exposed to convective-radiative heat dissipa-
tion along with thermally reliant heat absorption. Din et al. 
[33] further extended the study by including the effect of 
thermal conductivity on the entropy generation and it has 
been concluded that compared to exponential fin profiles the 
rectangular one resulted in generating lesser entropy.

The growing realization of the limited supply of energy 
resources has piqued the scientific community's interest 
in taking a deeper look at energy conversion devices and 
developing new strategies to better use the present restricted 
resources. In the above literature there are numerous studies 
on fin structures composed of functionally graded materials 
but entropy generation in an FGM fin has not been con-
sidered yet. Also, the comparative study of type I (higher 
thermal grading towards the fin base) and type II (higher 
thermal grading towards the fin tip) FGM fin structures with 
the homogeneous one is novel. For the analysis a porous 
longitudinal fin with constant thickness exposed to motion 
and convective-radiative heat exchange has been consid-
ered. The derived differential equation has been numerically 
resolved through the Runge–Kutta Fehlberg 4–5th ordered 
method. The derived solutions are graphically analysed and 
discussed.

Modelling of the physical problem

A rectangular profiled longitudinal fin structure with dimen-
sions as depicted in Fig. 1 has been considered for the cur-
rent study. The fin is composed of functionally graded 
porous material and is exposed to fully wet conditions. 
Thus, the fluid is allowed to penetrate through the porous fin 
matrix and its interaction with the solid surface is modelled 
by employing the Darcy’s law. Further, the fin is in contact 
with and receives heat from a prime surface with tempera-
ture Tb and undergoes convective-radiative heat transmis-
sion with the ambient fluid at temperature Ta . The solid fin 
medium and the surrounding fluid are in local thermody-
namic equilibrium and further the surface radiant exchange 
is neglected. The tip of the fin is assumed adiabatic as there 
is negligible heat exchange through it when compared to the 
fin’s lateral surfaces. Further, the temperature is assumed to 
vary only along the x− direction as pictured in Fig. 1 and 
hence the study is one-dimensional.

Considering a small element dx in the fin the energy equa-
tion of the fin under steady conditions can be modelled as 
[3, 8, 27],
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According to Fourier’s conduction law, the transfer of 
heat at distance x from the base is given by,

From Darcy’s law, the fluid flow velocity inside the 
porous medium can be determined by [2],

The relation between temperature sensitive convective 
heat transfer coefficient h(T) and uniform mass transfer coef-
ficient hD is given by [13],

Utilizing Eqs. (2) to (4), Eq. (1) resolves into,

(1)
qx − qx+dx − �vw(x)WCpdx

(

T − Ta
)

− ��Wdx
(

T4 − T4
a

)

− �fCpUWt
dT

dx

−h(T)Wdx(1 − �)
(

T − Ta
)

− hDWdxifg(1 − �)
(

� − �a

)

= 0.

(2)q = −k(x)Wt
dT

dx
,

(3)vw(x) =
gK�f

(

T − Ta
)

�f
,

(4)h(T) = ha

(

T − Ta

Tb − Ta

)p

= hDCpLe
2

3 .

(5)

t
d

dx

[

k(x)
dT

dx

]

−
�fgK�fCp

�f

(

T − Ta
)2

−��
(

T4 − T4
a

)

−
(1 − �)ha

(

T − Ta
)p+1

(

Tb − Ta
)p

−
haifg(1 − �)

(

� − �a

)(

T − Ta
)p

CpLe
2

3

(

Tb − Ta
)p

−�fCpUt
dT

dx
= 0.

In Eq. (5), k(x) is the thermal conductivity of the mate-
rial dependent on the axial coordinate x . With k0 being the 
thermal conductivity of the homogeneous material, three 
different variations of k with x are considered namely:

Case 1 Homogeneous with k(x) = k0.

In this case, the fin material is homogeneous and the sub-
stitution of the above condition in Eq. (5) results into,

Case 2 Type I FGM with k(x) = k0(1 + ax)

In this case, the thermal conductivity is k0 at the base 
of the fin structure and it increases towards the fin tip. The 
above condition resolves Eq. (5) into,

(6a)

d2T

dx2
−

�fgK�fCp

k0t�f

(

T − Ta
)2

−
(1 − �)ha

(

T − Ta
)p + 1

k0t
(

Tb − Ta
)p

−
haifg(1 − �)

(

� − �a

)(

T − Ta
)p

k0tCpLe
2

3

(

Tb − Ta
)p

−
��

k0t

(

T4 − T4
a

)

−
�fCpU

k0

dT

dx
= 0.

Fig. 1   Pictorial representation 
of a longitudinal FGM fin
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Case 3 Type II FGM with k(x) = k0(1 + a(L − x))

In this case, the thermal conductivity is k0 at the fin tip 
and it increases towards the base of the fin. The above condi-
tion resolves Eq. (5) into,

The respective boundary conditions are given as follows:

The following are the dimensionless parameters,

Equations 6(a)–(c) upon non-dimensionalizing resolve 
into the following nonlinear ordinary differential equations,

C a s e  1  H o m o g e n e -
ousd2�

dX2
− Nc

(

� − �a
)2

− Nr
(

�4 − �4
a

)

−
m2(�−�a)

p+1

(1−�a)
p − Pe

d�

dX
= 0 . (9a)

Case 2 Type I FGM

(6b)

d2T

dx2
+ ax

d2T

dx2
+ a

dT

dx
−

�fgK�fCp

k0t�f

(

T − Ta
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−
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(
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)p + 1
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(
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)p

−
haifg(1 − �)

(
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)(
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2

3

(
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)p

−
��
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(
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a

)

−
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dT

dx
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(6c)

d2T

dx2
+ a(L − x)

d2T

dx2
− a

dT

dx
−
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(
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)2

−
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(
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(
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−
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(
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2
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(
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−
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(
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)

−
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(7)T = Tb at x = 0,
dT

dx
= 0 at x = L

(8)

� =
T

Tb
, �a =

Ta

Tb
,X =

x

L
, � = aL, Nc =

�fg�fKCpTbL
2

�fk0t
,

Nr =
��L2T3

b

k0t
,mo =

haL
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k0t
,
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haifg(1 − �)b2L

2

k0tCpLe
2

3

,

m2 = m0 + m1,
(

� − �a

)

= b2
(

T − Ta
)

, Pe =
�fCpUL

k0
.

Case 3 Type II FGM

The respective dimensionless boundary conditions are,

Entropy generation

Estimating the entropy generation in different fin structures 
exposed to various circumstances is one of the methods of 
assessing a fin’s performance. The entropy generation equi-
librium as per second law of thermodynamics can be written 
as [31–33],

Since the study is conducted under steady conditions, 
dS

dt∗
= 0 . The above equation can be further simplified by 

noting the input and output in control volume to get,

Considering pressure to be constant both in and out of 
the porous medium and assuming air to be an ideal gas, the 
following expression can be extracted for Si − S0 [31–33],

Further it is known that,

Assuming T(x + dx) − T(x) ≈ 0 and substituting the 
above two equations in Eq. (12) it results in,

The above equation upon simplifying gives [31–33],

(9b)

d2�

dX2
+ �X

d2�

dX2
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(
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�4 − �4
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(
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(
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(9c)
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(
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(10)�(0) = 1,
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= 0.

(11)
n
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Q̇
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+

n
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dS

dt∗
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−

qx+dx

Tx+dx
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Si − S0 = −Cpln
T(x)

Ta
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�qx

�x
dx
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−
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dx
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After substituting for qx and simplifying the above 
equation reduces to,

Further,

On substituting for k(x) and non-dimensionalizing we get,
Case 1 Homogeneous

Case 2 Type I FGM

Case 3 Type II FGM

On substituting Eqs.  9(a)–(c), respectively, in 
Eqs. 16(a)–(c) all three equations get reduced to Eq. (17) 
given as follows:

Average entropy production in the whole fin can be esti-
mated as,

Numerical procedure

The governing ODEs in Eqs. 9(a)–(c) along with the bound-
ary conditions in Eq. (10) are BVPs which upon conversion 
into IVPs are numerically evaluated by employing the Runge 
Kutta Fehlberg (RKF) 45th-order technique in Maple soft-
ware. The RKF 45th ordered technique proceeds as follows:

(13)Ṡgen = ṁCpln
T(x)

Ta
−

1

T(x)

𝜕qx

𝜕x
dx
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S���
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=
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)
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(
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�
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(

�
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�
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(
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)

[
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(

�

�a

)

+ 1 −
�a

�
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�

(
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)

+
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(
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�
(
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)p +

Pe

�

d�

dX

(18)Nsavg =

1

∫
0

Ns(X)dX

j1 = hf
(

w1, z1
)

,

j2 = hf
(

w1 +
1

4
h, z1 +

1

4
j1

)

,

j3 = hf
(

w1 +
3

8
h, z1 +

3

32
j1 +

9

32
j2

)

,

j4 = hf
(

w1 +
12

13
h, z1 +

1932

2197
j1 −

7200

2197
j2 +

7296

2197
j3

)

,

j5 = hf
(

w1 + h, z1 +
439

216
j1 − 8j2 +

3680

513
j3 −

845

4104
j4

)

,

j6 = hf
(

w1 +
1

2
h, z1 −

8

27
j1 + 2j2 −

3544

2565
j3 +

1859

4104
j4 −

11

40
j5

)

.

The Runge Kutta 4th-order approach is used to get a pre-
liminary solution to the resolved IVP.

Additionally, the Runge Kutta 5th-order approach is used 
to enhance the solution's approximated value.

Here, the error is the difference between the above two 
terms. If the error term is bigger, we repeat the procedure 
by reducing the step size. In the current work, a maximum 
step size of 0.001 is considered and the solutions are derived 
with a convergence criterion of 10−6 . Table 1 records the 
validation of the results from RKF 45th-order method with 
those from differential transformation method available in 
the published literature.

Results and discussion

The numerical solutions for the ODEs in Eqs.  9(a--c) 
were derived by utilizing the RKF 45th-order technique. 
Further these solutions were employed to estimate the 
entropy generation in a fin given by Eqs. 16(a--c) and 
average entropy generation in a fin given by Eq. 18. This 
section has been embedded with the suitable discus-
sions for the results derived by the graphical analysis of 
the obtained solutions. The values have been extracted 
by varying relevant parameters and the following are the 
constant values considered unless mentioned elsewhere: 
Nc = 10,Nr = 5, �a = 0.2,m2 = 1,m = 2,Pe = 1, a = 0.4.

zj+1 = zj +
25

216
j1 +

1408

2565
j3 +

2197

4101
j4 −

1

5
j5.

yj+1 = zj +
16

135
j1 +

6656

12825
j3 +

28561

56430
j4 −

9

50
j5 +

2

55
j6.

Table 1   �(X) values when all the other parameters are zero except the 
ones mentioned in the table

Pe m
2

Nr = 0.25 Nr = 0.5

Present Torabi et al. 
[34] (DTM)

Present Torabi et al. 
[34] (DTM)

0.25 0.25 0.835815 0.8358 0.794412 0.7944
0.5 0.25 0.844712 0.8447 0.803934 0.8040
0.5 0.5 0.777396 0.7774 0.746097 0.7461
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Figure 2 comparatively depicts the thermal conductiv-
ity variation in the fin material composed of different types 
of FGMs for distinct values of grading parameter � . It can 
be observed that there is no variation in thermal conduc-
tivity for homogeneous material, the thermal conductivity 
increases with grading towards fin base for type I FGM and 
the thermal conductivity increases with grading towards fin 
tip for type II FGM. But the average thermal conductivity 
for both types of FGMs is found to be equal except that 
the increase in thermal conductivity with grading differs by 
direction.

Figures 3 and 4 are of significance as they, respectively, 
picturize the comparison of the thermal distribution and 
entropy generation in a fin composed of homogeneous mate-
rial against those made from type I and type II FGMs. It can 
be derived that both temperature distribution and entropy 
generation along the fin length are highest in the case of type 
II FGM fin and lowest in the case of homogeneous fin, with 
type I FGM fin assuming a middle place. Even though the 
average thermal conductivity is same in both the cases of 
FGMs, the increased thermal conductivity towards the fin tip 
encourages better distribution of temperature towards the tip 
of the fin. Further the higher production of entropy in type 
II FGM can be justified by the increased heat transmission 
within the fin. On the other hand, entropy production rises 
with a rise in the thermal gradient of the fin structure and 
hence justifies the increased entropy towards the fin base.

The impact of convective parameter Nc on the thermal 
profile and entropy generation profile of fin structure made 
up of type I and type II FGMs has been comparatively repre-
sented in Figs. 5 and 6, respectively. It can be noted that the 
fin temperature decreases, and entropy generation increases 

with an increase in the parameter Nc . This is because, the 
parameter Nc accounts for convective heat transfer due to 
buoyancy effect. Thus, as permeability of the fin structure 
increases, the penetrability of the ambient fluid through 
the fin pores increases leading to increased convective heat 
transmission. Further, the increased movement of heat and 
an increase in the temperature gradient towards the fin base 
is the reason for higher entropy production towards the base 
of the fin structure with the values of parameter Nc.

Figures 7 and 8, respectively, illustrate the importance of 
radiative parameter Nr in the thermal and entropy generation 
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analysis of two distinct FGM fin structures. It can be inter-
preted that fin temperature steeps down towards the fin tip 
and entropy production elevates towards the fin base with an 
increase in the parameter Nr . Here, the parameter Nr corre-
sponds to ratio of radiative to conductive heat transfer. Thus, 
enhancing values of Nr result in increased heat transmission 
via radiative heat transfer as compared to conductive heat 
transfer. Thus, it results in lower thermal profiles of fin struc-
tures. Further, the hike in the temperature difference towards 
the fin base with escalating values of Nr result in increased 
entropy production at that area.

The prominence of wet porous parameter m2 in the vari-
ation of thermal field and entropy production of two dis-
tinct types of FGM fin structures has been correspondingly 
represented in Figs. 9 and 10. It can be deciphered that 
the parameter m2 has a negative influence on temperature 
distribution towards the fin tip and positive influence on 
generation of entropy. This can be interpreted as follows. 
The parameter m2 accounts for the porosity and wet nature 
around the fin structure and hence as it elevates there is 
increase in the convective heat transmission process 
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resulting in decrease in local fin temperature. Further, this 
also causes elevation in the temperature gradient towards 
fin base leading to increased production of entropy.

Figures 11 and 12 correspondingly capture the effect 
of Peclet number Pe on the thermal and entropy fields of 
type I and type II FGM fin structures. The figures depict the 
increase in local fin temperature and decrease in generation 
of entropy for both kinds of fin structures. Here, Peclet num-
ber relates to fin movement and elevation in its values result 
in faster movement of fin resulting in decrease in time for 
interaction between ambient fluid and solid fin surface for 

the process of convective heat transmission. Thus, it results 
in decreased heat transmission via convection leading to 
increased local fin temperature. Further, as rise in Peclet 
number Pe decreases the thermal gradient values, there is a 
decrease in the production of entropy.

Figures 13 and 14, respectively, picturize the variations 
in the thermal and entropy generation profiles of distinct 
FGM longitudinal fin structures for different values of the 
thermal conductivity grading parameter � . In general, as � 
values increase, there is elevation in the local temperature 
and entropy production in both type I and type II FGM fin 
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structures. This is because the accelerating � values enhance 
the fin materials’ average thermal conductivity resulting in 
better temperature distribution towards the tip of the fin and 
lead to enhanced values of temperature. Further, the increase 
in � values enhances the movement of heat throughout the 
fin structure leading to increased entropy production.

The energy field and entropy generation profile of type I 
and type II FGM fin structures for distinct values of ambient 
temperature �a have been illustrated in Fig. 15 and Fig. 16, 
respectively. Here, it can be noted that accelerating values of 

�a increase the fin temperature throughout its length and also 
decrease the production of entropy. This can be explained 
as follows. The dimensionless ambient temperature �a has 
a significant impact on the convective and radiative heat 
transmissions as their governing laws depend majorly on 
the difference in the temperature between the two considered 
bodies. Thus as �a values rise, the temperature difference 
between the fin structure and the ambient fluid decreases 
resulting in lesser heat transmission and leads to higher fin 
temperature. The higher �a values also decrease the local 
thermal gradient resulting in lesser production of entropy.
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The average entropy generation Nsavg in type I FGM, 
type II FGM and homogeneous material fin structures 
upon variation in radiative parameter Nr and convective 
parameter Nc has been pictured in Fig. 17. It can be seen 
that Nsavg values increase with elevation in the values of 
Nc and Nr . The observed behaviour is due to the same 

reasons as discussed before. The variation in Nsavg val-
ues for distinct values of ambient temperature �a and wet 
porous parameter m2 has been pictured in Fig. 18. There is 
an elevation in average entropy values with hike in param-
eter m2 and there is a dip in average entropy values with 
rise in parameter �a . The observed behaviour is similar to 
the case of entropy production and hence can be explained 
as before. Additionally, the impact of thermal conductivity 
grading parameter � and the Peclet number Pe on the aver-
age entropy generation Nsavg in the distinct fin structures 
has been considered in Fig. 19. There is hike in the Nsavg 
values with parameter � and a dip in Nsavg values with rise 
in parameter Pe . The behaviour is similar to that observed 
for the case of entropy generation and follows similar rea-
sons as explained earlier.

Conclusions

The thermal behaviour and entropy generation of a wet 
porous longitudinal fin made of linear functionally graded 
material (FGM) that is subject to convective-radiative heat 
transmission have been studied. When a fin is subject to 
continuous motion with constant velocity, three different 
cases of FGM—homogeneous, type I, and type II—have 
been comparatively explored. The numerically derived 
solutions are graphically analysed to derive the following 
key results.
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•	 Type I FGM fin structures result in lower fin temperatures 
as compared to type II ones. But fin temperature is lowest 
in the case of homogeneous ones.

•	 The entropy generation along fin length as well as the 
average entropy generated in a fin are lowest in the case 
of homogeneous fin structures followed by type I and 
type II FGM fin structures.

•	 The entropy generation towards fin base and the average 
entropy generation in a fin structure both rise with eleva-
tion in the convective, radiative and wet porous param-
eters.

•	 The Peclet number and the ambient temperature result 
decrease in the entropy generation towards the fin base. 
Also, average entropy generation faces a dip with the 
acceleration in these parameters.

•	 The fin temperature, entropy generation and average 
entropy generation all three are prominently affected by 
the grading parameter as they elevate with its rise.

•	 The current work can be extended to distinct fin geom-
etries made of a variety of materials. Also, exact solu-
tions can be attempted for the current model.
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