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Abstract
Convective heat and mass transfer are common phenomena in the field of engineering. In recent years, the research on 
convective heat and mass transfer is getting deeper and deeper. People are constantly seeking new methods to improve the 
efficiency of heat and mass transfer, but the research on the mechanism of heat and mass transfer is not yet systematic and 
mature. The theory of the field synergy has made up for this research gap, but the research progress and application of its 
heat and mass transfer theory lack systematic summary and evaluation. This paper summarizes the theory of enhanced heat 
and mass transfer based on field synergy theory, analyzes the field synergy equation of heat transfer, mass transfer, and heat-
mass cooperation under laminar and turbulent conditions, and gives the evaluation standard of field synergy equation. Field 
synergy theory shows that improving the synergy between the velocity field and temperature gradient field, that is, reducing 
the angle between them, can effectively improve the heat transfer efficiency, and improving the synergy between the veloc-
ity field and concentration gradient field can effectively improve the mass transfer efficiency. Subsequently, the research 
progress of field synergy theory in different engineering fields is summarized. It is shown that field synergy theory can be 
used to analyze the cooperation between fields in heat exchangers, micro-components, nanofluids, reactors and other fields 
to guide the optimal design of equipment, which proves the universality of field cooperation theory. Finally, in view of the 
universality of the damp-heat exchange in the cooling exchangers and the research object of field synergy theory, a new idea 
of using the field synergy theory to guide the research on the structural design of cooling exchangers is put forward, which 
provides new ideas and methods for effectively improving the underground humid and thermal environment.

Keywords Heat-mass synergy · The field synergy theory · Field synergy applications · Damp and heat in the mine · Heat 
transfer

List of symbols
U  Fluid velocity, m\cdots
∇T   Temperature gradient, K\cdotm
a  Thermal diffusivity,  m2\cdots−1

Nu  Nusselt number

Re  Reynolds number
Pr  Prandtl number
�t∕l  Thickness of thermal boundary layer, m
∇T   Dimensionless temperature gradient
�  The angle between the velocity field and the 

temperature gradient field, °
�  Dynamic viscosity, Pa\cdots
�  Density,  kg\cdotm3

CΦ  Synergy coefficient, N\cdot(m2\cdotK)−1

cp  Specific heat capacity at constant pressure, J\
cdot(kg\cdotK)−1

�⃗n  The outer normal of the computational domain
N  Control volume
u,v,w  The velocity components of the fluid in the x, y, 

and z directions, m\cdots
vi.j,k  Volume element,  m3

�m  The average value of the angle between the 
velocity field and the temperature gradient field, °
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Ω  Domain
k  Thermal conductivity, W\cdot(m\cdotK)−1

qw  Heat flux of the wall,  W\cdotm2

∇C  Concentration gradient,  mol\cdotm4

D  Concentration diffusivity,  m2\cdots
Sc  Schmidt number
∇C  Dimensionless concentration gradient
A0  Lagrangian multiplication factor
∇P  Pressure difference between inlet and outlet sec-

tions, Pa
Eu  Euler number
�  The angle between the velocity field and the pres-

sure gradient field, °
heff1  Heat transfer coefficient of wall-1, W\cdot(m2\

cdotK)
∇Hv  Enthalpy gradient per unit volume
�  The angle between the temperature gradient and 

the moisture gradient, °
Fc  Field synergy number
T   Temperature, K
�  Mass transfer coefficient of the cooling tower,  s\

cdotm−1

heff2  Heat transfer coefficient of wall-2, W\cdot(m2\
cdotK)−1

Qwall−1  Average heat transfer of wall-1, J
Rh  Correlation Coefficient for Regression Analysis
Qwall−2  Average heat transfer of wall-2, J
Twall−1  Average temperature of wall-1, K
Twall−2  Average temperature of wall-2, K
Tref1  Reference temperature of the evaporation section, 

K
Tref2  Reference temperature of condensation section, 

K
cp  Average isobaric heat capacity, J\cdotK
�  Average dynamic viscosity, Pa\cdots
k  Average thermal conductivity, W\cdot(m\

cdotK)−1

qw  The total heat flux density of the surrounding 
rock to dissipate heat to the wind flow, J\cdot(s\
cdotm2)−1

qs  Density of sensible heat flow into the wind flow 
from the roadway wall, J\cdot(s\cdotm2)−1

ql  Density of latent heat flow into the wind flow 
from the roadway wall, J\cdot(s\cdotm2)−1

qf  Sensible heat that increases the temperature of 
the air flow, J\cdot(s\cdotm2)−1

qt  Latent heat required for water evaporation in 
wind, J\cdot(s\cdotm2)−1

s  Heat or mass transfer area,  m2

e  Thermal conductivity of surrounding rock, W\
cdot(m2\cdotK)−1

R0  Equivalent Radius of the tunnel, m

h  Convective heat transfer coefficient between 
roadway wall and wind flow, W\cdot(m2\
cdotK)−1

F0  Fourier quasi-number, dimensionless time
Bi  Dimensionless heat dissipation coefficient
Sh  Sherwood number
�m∕l  The thickness of the Concentration boundary 

layer, m
�  The angle between the velocity field and the 

concentration gradient field, °
Y   Substance mass fraction
�  Fluid power factor, kg\cdot(m\cdots)−1

Li  Dimensionless number, Li = v∕�

�H,x  Enthalpy boundary width, m
�h  The angle between the velocity vector and the 

enthalpy gradient, °
Ny  Mass transfer rate in the y-direction
�FSP  Field synergy across the flow domain
�  Heat transfer coefficient of the Cooling tower, W\

cdot(m2\cdotK)
ma  Mass flow of dry air, kg\cdots
ia  Enthalpy of air, J\cdotkg

Introduction

Convective heat transfer is widely used in the engineer-
ing field. The research on heat transfer performance [1–5] 
has been relatively mature, mainly focusing on theoretical 
research and experimental measurement, which improve 
its heat transfer performance by enhancing the heat trans-
fer coefficient[6]. To reveal the essence of heat transfer 
enhancement theoretically, Guo [7–9] proposed the concept 
of field synergy, pointing out that increasing the synergy 
between velocity field and temperature gradient field can 
effectively enhance heat transfer. Once the field synergy 
theory was put forward, it set off a new wave of research in 
academia. Based on the research based on parabolic flow, 
many scholars have extended it to elliptical flow, parabolic 
flow [10–13], turbulent flow [14], and so on. In addition, the 
research field is not only limited to heat transfer, but also the 
fields of mass transfer [15] and heat-mass synergy [16], and 
has achieved fruitful research results.

The research of basic theory is often for better applica-
tion practice. At present, the field synergy theory has been 
widely used in engineering practice. In the initial stage, it 
was mainly reflected in the research on heat exchangers [17, 
18]. By optimizing the heat exchanger channel structure [11, 
19–21] and fins [22–26], the heat transfer performance was 
improved, and combining heat transfer with a desiccant [27] 
can achieve a good thermal-mass coupling in the area of 
field synergy practice, the optimized design in the area of 
heat exchangers also encourages the field synergy theory to 
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enhance heat transfer research in other areas, embodied in 
porous media [28], combustion reactors [29–31], nanofluids 
[32], screw plasticizing systems [33], closed oscillating heat-
ing pipe (COHP) [34] and other fields. The good demonstra-
tion in the area of heat exchange also promotes its research 
in the direction of mass transfer and heat-mass coupling, 
such as photocatalytic oxidation reactor (POC) [35], sea-
water desalination [36], closed wet cooling tower (CWCT) 
[37], polysilicon chemical vapor deposition reactor [38]. 
More and more applications have shown that field synergy 
theory can enhance heat and mass transfer by optimizing 
structural design.

With the increase of the mining depth of the mine, the 
underground high temperature and high humidity environ-
ment need to be solved urgently because of its serious harm 
to the workers [39–42]. The setting of an underground ven-
tilation system is the main means to reduce the high tem-
perature and humidity environment. However, with the 
deepening of excavation, the underground high-temperature 
environment is aggravated, making the inlet temperature of 
the fan in the ventilation system generally higher, which 
seriously affects the temperature drop effect of deep well 
high-temperature environment. Therefore, the installation 
of a cooling exchanger at the front of the fan and using the 
cooling water to exchange the heat with the hot-wet air in 
the tunnel can effectively reduce the inlet temperature of 
the fan in the ventilation system, thereby improving the effi-
ciency of the ventilation system and effectively improving 
the humid and hot environment of the deep well. Because 
the heat transfer mechanism of cooling heat exchangers in 
the deep well ventilation system is common to the research 
object of field synergy theory, applying it to the design and 
research of cooling exchangers will play an important posi-
tive role in improving the heat transfer performance.

Based on the above, this paper firstly summarizes the 
development research status of the field synergy theory 
since the field synergy theory was put forward. In the second 
chapter, the synergistic equations of heat and mass transfer 
fields under different conditions are analyzed and summa-
rized, and the evaluation indexes of field synergistic effect 
are determined. In the third chapter, the research progress of 
field synergy theory in heat exchangers, micro-components, 
nanofluids, reactors and other fields is summarized, and the 
positive results of field synergy theory in engineering prac-
tice are explained, indicating that its theory has high uni-
versality. Finally, based on the good demonstration effect of 
field synergy theory in other fields, a new idea of applying 
it to the research and design of cooling exchangers in wet-
hot mines is put forward, which provides a new idea and 
research direction for improving the damp hot environment 
of deep mine and improving the ventilation efficiency. The 
structure of this article is shown in Fig. 1.

Field synergy theory

The field synergy theory was first proposed by Guo [7–9] 
to solve the problem of convective heat transfer and reveal 
the essence of enhanced heat transfer. The initial research 
on field synergy is based on the convective heat transfer of 
parabolic flow. According to the heat energy conservation 
equation (Eq. 1), the field synergy equation (Eq. 2) and the 
formula for solving the synergy angle (Eq. 3) are proposed 
to enhance heat transfer, which reveals that the essence 
of strengthening heat transfer is to improve the synergy 
between the fluid velocity field and the temperature gradient 
field. Under the same boundary conditions as the velocity 
field and the temperature gradient field, improving the syn-
ergy between the velocity field and the temperature gradient 
field, that is, decreasing the synergy angle between the two 
can improve the synergy effect and enhance the heat transfer.

After the field synergy theory was put forward, it attracted 
extensive attention and research from all walks of life. The 
applicable conditions and scope of the theory of field syn-
ergy were explored, and different expressions emerged[43]. 
Meng [44] deduced the field synergy equation under the 
given viscous dissipation condition (Eq. 4) which used 
the variational principle, considered the viscous dissipa-
tion effect of the fluid, and took the minimum heat transfer 
potential capacity dissipation as the optimization objective; 
Liu [45, 46] extended the fluid from laminar flow to more 
general turbulent flow and established a three-field syn-
ergistic form of velocity field, temperature gradient field, 
and pressure gradient field; Tao, He [10–13] extended the 
applicability of the field synergy theory to elliptical flow 
and parabolic flow, and derived the field synergy equa-
tion (Eq. 5) and its synergy angle (Eq. 6) which shows that 
improving the synergy of the velocity field and the tempera-
ture gradient field can significantly improve the heat transfer 
ability. And according to the actual situation, the mathemati-
cal expression of the field synergy equation (Eq. 7) and the 
calculation formula of the average synergy angle (Eq. 8) of 
the laminar incompressible steady-state fluid are given; E 
[34] gave the field synergy effect, that is, the field synergy 
angle expression (Eq. 9) of the entire flow domain under the 
two-dimensional elliptical fluid heat transfer model (Fig. 2) 
based on the research of Tao, He; Guo [14] proposed that the 
field synergy theory is also applicable to turbulent flow, and 
deduced the field synergy equation for turbulent pipelines 
(Eq. 10). Most of the research and evaluation methods on 
field synergy usually use the value of the average field syn-
ergy angle as an index to evaluate the synergy effect. How-
ever, based on the instantaneous change of the velocity field 
and the temperature gradient field in the fluid flow process, 
the field structure is relatively complex, and the evaluation 
standard of the average field synergy angle has limitations, 
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which cannot reflect the enhance the heat transfer effect 
when the velocity and temperature gradient are small. To 
this end, the dimensionless number Fc is introduced as the 
field synergy number (Eq. 11), and its value ranges from 0 
to 1, which is used to express the degree of synergy between 
the velocity field and the temperature gradient field [14].

The field synergy theory is not only applicable to the field 
of enhanced heat transfer based on convective heat transfer 
but also can reveal the principle of enhanced mass trans-
fer [15]. According to the different properties of the fluid 
medium, different mass transfer field synergy equations 
are established. The most common field synergy theory of 
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convective mass transfer is the study of fluid component 
concentrations. Liu [47] first derived the mass transfer syn-
ergy equation of component concentration (Eq. 13) and its 
synergy angle (Eq. 14) based on thermal energy conserva-
tion and then established synergy equations based on heat 
conservation, mechanical energy conservation, component 
mass conservation, and fluid mass conservation, revealing 
the multi-field system relationship among velocity field, 
pressure field, temperature gradient field, and component 
concentration field, which analyzed the physical properties 

of the enhanced tube convective mass transfer. The estab-
lished mechanical energy conservation (Eq. 15), field syn-
ergy equation (Eq. 16), and synergy angle formula (Eq. 17) 
are shown in Table 1. Chen [35] deduced the field synergy 
equation (Eq. 18) with specific conditions based on the 
principle of mass transfer potential capacity dissipation 
extremum when using ultraviolet radiation to study pho-
tocatalytic reactors. Under given boundary conditions, the 
optimal velocity field with a high mass transfer rate can be 
obtained by solving the equation.

Table 1  Equations of the field 
synergy theory

Equation Parameter Number

��⃗U ⋅ ∇T=a∇2T ��⃗U ; ∇T;a Equation 1

Nu = Re Pr ∫
�t∕l

0

(
U ⋅ ∇T

)
dY Nu ; Re ; Pr ; �t∕l;∇T Equation 2

𝛽 = arccos
�⃗U⋅∇T

||||
�⃗U
||||
|∇T|

� ; ��⃗U;∇T Equation 3

𝜇∇2 ��⃗U − 𝜌��⃗U ⋅ ∇��⃗U − ∇P +
(
CΦA∇T + 𝜌��⃗U ⋅ ∇��⃗U

)
= 0 � ; ��⃗U ; �;CΦ

Equation 4

∫
Ω
�cp

(
⇀

U ⋅gradT

)
dA = ∫

bcd
�

⇀

n ⋅ ∇Tds + ∫
efa

�
⇀

n ⋅ ∇Tds
� ; cp ; ��⃗U ; ∇T; �⃗n Equation 5
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u
𝜕T
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𝜕y
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𝜕T

𝜕z

||||
�⃗U
||||
|∇T|

� ; u ; v ; w ; ��⃗U;∇T Equation 6

M =
∑���

��⃗U
����∇T�∕N

��⃗U ; ∇T;N Equation 7

�m =
∑

�i.j.kdvi,j,k∑
dvi,j,k

�m ; cp;vi.j,k Equation 8

�FSP =

∑cos �i≤1
cos �i≥0.8

cos �i
∑cos �i≤1

cos �i≥0
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× 100%
� ; �FSP Equation 9

∫∫○Ω𝜌cp

(
��⃗U ⋅ ∇T

)
dΩ = ∮

w
k
𝜕T

𝜕y
dS = qw � ; ��⃗U ; ∇T  ; Ω ; k;qw Equation 10

∫ 1

0

(
U ⋅ ∇T

)
dy =

Nux

Rex Pr
= Fc U ; ∇T  ; Nu ; Re ; Pr;Fc Equation 11

��⃗U ⋅ ∇C = D∇2C ��⃗U ; D;∇C Equation 12

Sh = ReSc ∫
�m∕l

0

(
U ⋅ ∇C

)
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(
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dXdY Eu ; Li ; Re ; ��⃗U;∇P Equation 16
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𝜌

2CΦ

A0∇Y + 𝜌��⃗U ⋅ ∇��⃗U
)

CΦ ; P ; ��⃗U ; A0 ; �;Y Equation 18
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0
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|w + NycpTw = qw �H,x ; ��⃗U ; �h ; ∇Hv ; � ; T  ; Ny ; cp;qw Equation 19

� = arccos
∇T⋅∇C

|T|⋅|C|
� ; T;∇C Equation 20

−��⃗U ⋅ ∇p =
|||−

��⃗U
||||∇p| cos 𝜃 � ; ∇P;��⃗U Equation 21

Fc =
Nux

Rex Pr
= ∫ 1

0

(
U ⋅ ∇T

)
dy Fc Equation 22
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In practical engineering applications, the process of 
convective mass transfer is often accompanied by energy 
conversion. Therefore, in the study of convective mass 
transfer, heat transfer also occurs at the same time, and 
the coupling mechanism of its interaction also affects 
the strengthening effect. Wu [13] deduced the synergy 
field equation (Eq. 19) of heat and mass transfer for two-
dimensional incompressible Newtonian fluids without 
considering viscous heat dissipation from the first law 
of thermodynamics, the law of conservation of mass, the 
law of conservation of energy and the continuity equation; 
Sun [27] pointed out that the heat and moisture transfer 
process is an interactive coupling process in the research 
on the field synergistic analysis of the heat and moisture 
transfer process of the desiccant-coated heat exchanger, in 
addition to considering the synergistic effect between the 
velocity vector and the temperature gradient, and the syn-
ergistic effect between the velocity vector and the moisture 
gradient, the synergistic effect between the temperature 
gradient and the moisture gradient should also be con-
sidered, and on this basis, the synergy angle � (Eq. 20) 
between the temperature gradient and the moisture gradi-
ent is proposed.

The field synergy theory is not only applicable to the 
transfer of heat and mass but also to the study of the propa-
gation process of sound waves. Cao [48] expressed the 
synergy between the flow field and the sound field as the 
synergy between the velocity field and the pressure gradi-
ent field during the study of the flow noise mechanism 
propagation of the shell-and-tube heat exchanger and 
established the synergy equation (Eq. 21) and the formula 
of the synergy angle.

The field synergy angle and the field synergy number 
are used as the evaluation indexes of the synergy effect. 
The smaller the synergy angle is, the better the synergy 
effect will be. When considering the whole heat transfer 
process, the field synergy number (Eq. 22) is used to eval-
uate the heat transfer synergy effect [49]: when Fc = 1, that 
is Nux = Rex Pr , the synergy effect is the best, but for the 
actual single-phase heat transfer process, Fc is much less 
than 1, indicating that there is a huge room for improve-
ment in enhanced heat exchange. The equations of the field 
synergy theory are shown in Table 1.

With the deepening of field synergy research, its the-
ories have become more and more mature, the research 
objects have ranged from ideal laminar fluids [7, 8, 11, 50] 
to more general turbulent fluids [14], the basis for theoreti-
cal research has transferred from the energy control equa-
tions [11, 13] such as thermal energy conservation [7] to 
the multi-theoretical thinking such as the variational prin-
ciple [44], and the evaluation criteria of the field synergy 
effect is range from the average field synergy angle [11, 
13] to the field synergy number [14]. At the same time, 

the area of field synergy is not only limited to the study 
of convective enhanced heat transfer, but also extends to 
the research of convective mass transfer and heat-mass 
synergy, and has achieved certain results, proving the 
applicability and the maturity of the field synergy theory.

Application of field synergy

Based on the proposal and development of field synergy, 
the theory of field synergy is becoming more and more per-
fect and mature. Many scholars have applied the theory to 
engineering practice based on research on the theory and 
achieved fruitful results.

Heat exchanger

The application of field synergy theory in heat exchangers 
mainly improves the synergy of velocity field and tempera-
ture gradient field by changing the structure of channels and 
fins, and adjusting the shape and number of fins. In addition, 
the heat exchanger can also be combined with a desiccant to 
improve the efficiency of heat and mass transfer.

Channel structure

Heat exchangers have widely used components in produc-
tion and living areas, and improving their heat exchange 
efficiency is an important content of scholars' dedicated 
research [51, 52]. Besides improving the heat transfer perfor-
mance of the heat exchanger, it is also necessary to consider 
factors such as saving manufacturing costs, saving structural 
space, and reducing pumping power [17]. The field synergy 
theory can improve its heat transfer performance by improv-
ing the synergy between parameters without changing the 
original boundary conditions. The research on improving 
the performance of heat exchanger pipes by using the theory 
of field synergy has been relatively common and mature, 
mainly reflected in corrugated pipes [11], circular pipes [14, 
44, 53–55], trapezoidal pipes [19], cosine pipes [20], fin 
pipes [13, 23, 24, 56], shell pipes [57, 58], elliptical pipes 
[59], rotating pipes [55], cavity-ribbed pipes [45], and so on.

Hamid [59] analyzed the heat exchange performance of 
heat exchangers with circular and elliptical tubes based on 
the theory of field synergy in the study of seawater desalina-
tion devices using solar-assisted multi-effect distillation. The 
average synergy angle of the elliptical tube is smaller than 
that of the circular tube, and the average synergy number 
and heat transfer rate are increased by 22.68% and 35.98%, 
respectively. Kuo [19] conducted a numerical simulation 
study on a heat exchanger with a trapezoidal tube structure 
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to evaluate its fluid flow characteristics and heat transfer 
performance, the result indicated that the trapezoidal tube 
structure can improve the field synergy between the veloc-
ity vector and the temperature gradient, thereby enhancing 
the heat transfer effect. Zhang [20] studied the heat transfer 
performance of cosine tube heat exchangers and analyzed 
the effect of different amplitudes on the heat transfer perfor-
mance according to the theory of field synergy. The smaller 
the amplitude is, the smaller the average of the field synergy 
angle will be, which can lead to better field synergy and a 
higher heat transfer capacity. Zhai [45] studied the syner-
gistic optimization of secondary flow and heat transfer in 
cavity-ribbed double-layer microchannels with three differ-
ent cross-sections, indicating that the geometric design of 
layered microchannels must consider the synergistic effect of 
temperature field and velocity field. The research on differ-
ent types of heat exchanger pipes has yielded fruitful results, 
in view of this, the principle of field synergy can be used to 
guide the design of heat transfer units and heat exchangers 
[11, 12, 60], including improving the structure and shape of 
pipe fittings [34, 44], thus inducing multiple longitudinal 
vortices [61], and then promote the research and optimal 
design of vortex generators [56, 62], and eventually improve 
the heat exchange efficiency of the heat exchanger.

Fin structure

The structural design of heat exchangers is not only reflected 
in the selection and optimization of heat exchanger pipes 
but also related to the design of the fins [63]. By analyzing 
the synergistic effect of the fluid velocity field and the tem-
perature gradient field under the different structural forms 
of the fins, we can seek the optimal design with the best 
synergy effect.

The optimal design of the fin structure of the heat 
exchanger is mainly reflected in the selection and arrange-
ment of the number, position, and shape of the fins [22–26], 
and then selected the optimal combination with the highest 
synergistic efficiency. He [64] established a three-dimen-
sional numerical model to study the effect of the five factors 
of Reynolds number, fin spacing, tube row number, trans-
verse and longitudinal tube spacing on the laminar flow ther-
mal exchange and fluid flow characteristics of plate fin-tube 
heat exchangers and analyzed the results from the perspec-
tive of field synergy. With the increase of Re, the average 
synergy angle increases, and the synergy between velocity 
and temperature gradient weakens. When the fin spacing 
is 0.6 mm, the average synergy angle is the smallest, that 
is, the synergistic effect between velocity and temperature 
gradient is the best. This result is consistent with the field 
synergy theory. At the same time, the field synergy angle 
increases with the increase of the number of tube rows, so 
when the flow rate is constant, increasing the number of 

tube sections can reduce the synergistic effect of the fluid 
velocity field and the temperature gradient field. Important 
progress has also been made in the morphological design 
of heat exchanger fins, such as the use of flat fins composed 
of continuous metal sheets, corrugated fins that generate 
streamlined pipes by bending the base plate [65], slotted fins 
with raised strips [56, 61, 62, 66, 67], shutter fins, triangular 
fins [68], sawtooth fins [69], punched fins [70], outer fins 
[55, 71], special fins [72, 73], H-fins and composite fins [74, 
75]. Mehra [76] studied three different types of finned heat 
exchangers, and analyzed and evaluated their heat transfer 
performance according to the theory of field synergistic heat 
transfer enhancement, the heat exchanger structure with the 
best synergy effect can improve its 7% of heat transfer per-
formance., while saving 14.4% of aluminum sheet usage, 
which greatly saves costs.

The combination of channels and fins

In the first two sections, the channels and fins were opti-
mized separately, and the optimization design study of the 
combination of the channels and fins was also started, and 
people began to seek the possibility of triple effect from 
a comprehensive perspective. For the integrated design of 
the combination of channels and fins, it is more common 
in micro-heat sinks, which are widely used in the design 
of microelectronic devices and chips [36]. The research on 
micro-radiators mainly includes arranging fins in the center 
of microchannels with cavities, which aims to study their 
heat transfer performance [7, 8, 14]. From the perspective 
of field synergy, using the synergistic relationship between 
the fluid velocity field and the temperature gradient field can 
evaluate the performance of micro-components [11, 12, 36, 
60, 77]. Li [78] applied the field synergy theory to the study 
of a new type of micro-channel radiator with the combina-
tion of the cavity and fin, which provided a new idea and 
method for the development of the radiator.

Whether a single-phase flow [79] or a converging flow 
channel [80] such as non-Newtonian fluids[81], the heat 
transfer in the cavity is affected by microscale effects [82]. 
To optimize the design of the combination of the cavity and 
fin from the perspective of field synergy and seek the best 
heat transfer effect, Li [78] designed a new type of micro-
channel heat radiator (Fig. 3), due to the symmetry charac-
teristics and to simplify the simulation, the part marked in 
the orange dotted box in the figure is selected for simula-
tion research. The isosceles triangular cavity microchannels 
with four different fins, namely rectangular, streamlined, rear 
descending fin, and front descending fin, are numerically 
simulated and studied, and an unobstructed conventional 
channel is selected for comparison. The channel structure 
diagram is shown in Fig. 4, among which four micro-com-
plex channels are isosceles triangle cavity rectangular fin 
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(ITC-RF), isosceles triangle cavity streamlined fin (ITC-SF), 
isosceles triangle cavity posterior fall fin (ITC-BDF), isos-
celes triangle cavity front fall fin (ITC-FDF).

The fluid flow and heat transfer of four new microchan-
nel heat radiators with the combination of the cavities and 
fins were studied by applying the theory of field synergy 
in the range of Re from 173 to 635. Figure 5 reflects the 
variation of the synergy angle � between the fluid velocity 

field and the temperature gradient field of different types of 
microchannels at different flow rates. Compared with the 
traditional barrier-free channel, the synergy angle of the new 
microchannel structure is significantly reduced. According 
to the Eq. (2), Eq. (3), the smaller the � is, the smaller effect 
of the synergy between the velocity field and the tempera-
ture field will be, that is, the synergistic effect of the new 
microchannel structure is better than that of the traditional 

Fig. 3  Structure diagram heat 
radiator [78]
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structure, which is more conducive to enhancing convec-
tive heat transfer. At the same time, among the four new 
microchannel structures, the synergy angle of the ITC-RF 
microchannel is the smallest, indicating that the rectangular 
fin is the microchannel structure that is most conducive to 
promoting the synergy between the velocity field and the 
temperature gradient field, which is consistent with the 
graph of Nu in Fig. 5. The comparison graph of the number 
of field synergies in Fig. 6 better reflects the highest syner-
gistic effect of the ITC-RF microchannel [78].

The combination with the heat exchanger and desiccant

Conventional heat exchangers [83] mainly play the role 
of enhancing convective heat transfer. Based on conven-
tional heat exchangers, the surface is covered with des-
iccant, so that it has the dual functions of heat exchange 

and dehumidification [84], and the desiccant-coated heat 
exchanger (DCHE) [85] was developed based on this prin-
ciple. When the hot and humid air flows through the DCHE, 
in addition to the heat exchange of the heat exchanger and 
the dehumidification of the desiccant coating, the desiccant 
coating will generate adsorption heat when absorbing water 
vapor, which is taken away by the cold fluid of the heat 
exchanger, so DCHE is a coupled process of heat and mass 
transfer [27]. To study its coupling process, many schol-
ars have improved its heat and mass transfer capacity by 
establishing mathematical models to analyze its character-
istics [86–89], changing desiccant materials [1, 90–95], and 
changing heat exchanger types [94, 95]. And they also use 
the field synergy theory to guide the design of DCHE, as a 
result, its structure size is optimized [27].

Based on the theory of heat and mass field synergy, Li 
[27] explored the effect of different fin pitches on the heat 

Fig. 4  Structure diagram of 
different types of microchan-
nels [78]
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and moisture transfer process and obtained the optimal 
design. Under the condition that other parameters remain 
unchanged, five models with different fin pitches are selected 
as shown in Table 2. In the research on the synergistic effect 
of heat and mass transfer fields, the smaller the synergy 
angle is, the better the synergy effect will be, and the more 
conducive to improving the heat and mass transfer. From the 
synergy angle curves of 5 different fin pitches (Figs. 7, 8), 
the synergy angle of different processes was compared and 

analyzed. Under the condition of constant fin length, width, 
number, and coating quality. The smaller the field synergy 
angle is, the higher the cooling (sensible cooling) ability in 
the dehumidification process will be, which also leads to a 
better effect on the dehumidification. And in the regenera-
tion process, with the increase of the fin pitches, the field 
synergy angle becomes larger, and the sensible heat capac-
ity also becomes lower. Therefore, it should be considered 
that the actual engineering needs to design the DFHE. If it 
is a refrigeration and dehumidification function in summer, 
a DFHE with a larger fin pitch should be designed, while a 
DFHE with a smaller fin pitch should be used in winter to 
improve its heating and humidifying effect.

The previous research on enhanced heat transfer based on 
the field synergy theory mainly analyzed the average field 
synergy angle of the entire heat exchanger to evaluate its 
overall heat transfer effect, but it could not evaluate the local 
heat transfer effect. Based on this limitation, some scholars 
carried out research on the local heat transfer effect and the 
local field synergy angle and got some progress. Habchi [74] 
analyzed the synergistic effect of the local synergy angle 
when studied vortex generators with different structures of 
turbulent fluids; Zhu [96] analyzed the local Nu number and 
the local synergy angle of the laminar and turbulent flow 
between two parallel plates and concluded that the field syn-
ergy theory can be used to analyze the local Nu number. 
Mehra [17] studied the effect of local field synergy on heat 
transfer performance by changing the structure of flat fins 
and found a new flat fin structure that can save 14.4% of 
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Fig. 6  Variation curve of the field synergy number with volume flow 
in different microchannels [78]

Table2  The structure size 
parameters of five DFHEs[27]

Parameters Length of the 
fins/m

Depth of the 
fins/m

Width of the 
fins/m

Layer number of 
fins/m

Fin pitches/m

DFHE 1 0.3 0.044 0.214 0.142 1.184
DFHE 2 0.3 0.044 0.258 0.142 0.994
DFHE 3 0.3 0.044 0.3 0.142 0.863
DFHE 4 0.3 0.044 0.342 0.142 0.765
DFHE 5 0.3 0.044 0.386 0.142 0.685

Fig. 7  Variation curve of 
synergy angle of velocity field 
and temperature gradient field 
with different fin pitches in 
dehumidification and regenera-
tion process [27]
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aluminum material and improve heat transfer performance 
by 7%.

The field synergy theory is not only applicable to the 
study of heat transfer performance of heat exchangers but 
also to the study of sound energy transmission. Cao [48] 
used the theory of field synergy to study the noise propaga-
tion process of shell-and-tube heat exchangers. By establish-
ing the flow field and pressure gradient field which reflect its 
propagation performance, they concluded that improving the 
synergy of the flow field and the sound field can increase the 
exchange of acoustic energy between the fluid and the wall.

Closed wet cooling tower

The closed wet cooling tower (CWCT) is a cooling system 
widely used in the chemical industry, construction, metal-
lurgy, and other fields [97]. Many scholars have carried out 
a lot of research to improve its cooling heat transfer per-
formance and water-saving performance. Xie [37] carried 
out numerical simulations of CWCT with different fin-tube 
structures to analyze the influence of parameters such as 
inlet air angle on heat and mass transfer by using multi-field 
synergy theory and obtained the conclusion that the increase 
in the degree of synergy between the velocity field, tempera-
ture field and humidity field can enhance the heat and mass 
transfer. The heat and mass transfer performance of a CWCT 
is expressed by the heat transfer coefficient � (Eq. 23) and 
the mass transfer coefficient � (Eq. 24): 

where, ma is the mass flow of dry air, kg  s−1; T is the tem-
perature, K.

(23)� =
macpa

S
ln

(
Tw − Ta,in

Tw − Ta,out

)

(24)� =
ma

S
ln

(
i
�

w
− ia,in

i
�

w
− ia,out

)

where, ia is the enthalpy of the air, J; and S is the heat or 
mass transfer area, m.2

Xie [37] carried out the numerical simulation of the 
closed wet cooling tower model (Fig. 9) and obtained the 
change curves of humidity difference, heat transfer coeffi-
cient and mass transfer coefficient with the angle of intake 
air (Fig. 10). When the intake angle is from 30° to 45°, the 
humidity difference, heat transfer coefficient and mass trans-
fer all show an upward trend. When the temperature exceeds 
45°, the parameters all decrease with the increase of the 
intake angle, indicating that the performance of CWCT is 
the best when the intake angle is 45°. In addition, the heat 
transfer coefficient and the mass transfer coefficient of the 
finned tube are higher than those of the ordinary tube. When 
the intake angle is 45°, the finned tube structure is about 75% 
higher than the ordinary tube structure. This is since when 
the inlet air angle increases from 30° to 45°, the synergy 
gradually increases with the decrease of the synergy angle. 
When the synergy angle is 45°, the heat transfer coefficient 
and mass transfer coefficient are about 1.15 and 1.5 times 
that of 30°, respectively.

Fig. 8  Synergy angle of humid-
ity gradient field and velocity 
field (a), and synergy angle of 
humidity field and temperature 
gradient field (b) with different 
wing pitches in the dehumidifi-
cation process[27]
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Combustion reactor

Based on the theory of field synergy, Wang [98], Zeng [99] 
used numerical simulation to analyze the velocity field, 
temperature gradient field and the distribution of the field 
synergy angle of the advanced vortex combustor under dif-
ferent inflow velocity, inflow temperature, wall temperature 
and gas equivalence ratio. On the premise of considering 
the convective and radiative heat transfer losses, E [100] 
carried out the numerical simulation and field synergistic 
analysis of the finite reaction rate model and vortex crushing 
combustion model which established when methanol fuel is 
diffused in an alcohol-based fuel burner. Biomass pellet fuel 
has broad application prospects in the field of combustion 
reactors due to its high efficiency and environmental protec-
tion. Jia [29] carried out a numerical simulation of the bio-
mass rotary combustion process and studied the performance 
of the biomass rotary burner and the influence of and excess 
air coefficient on the combustion effect of biomass rotary 
burner base on the field synergistic analysis.

Figure 11 is a schematic diagram of the structure of the 
biomass pellet rotary burner. With Chinese fir pellets as the 
biomass fuel, the combustion conditions of the biomass 
pellet burner under four working conditions of excess air 
coefficients of 1.0, 1.4, 1.8, and 2.4 are simulated. Through 
numerical simulation, the cosine distribution diagram of the 
angle between the velocity vector and the enthalpy gradient 
in the combustion chamber under the conditions of different 
excess air coefficients is obtained (Fig. 12). It can be seen 
from the figure that the temperature field changes accord-
ingly due to the intensity of the combustion reaction which 
is changed with the increase of the excess air coefficient. 
The gas in the combustion chamber also changes due to the 
expansion degree of the combustion heat, which leads to the 
difference in the velocity field, as a result, causing the cosine 
distribution of the angle between the velocity vector and the 
enthalpy gradient in the combustion chamber to change with 
the excess air coefficient. When |cos �| ≥ 0.8 , the combus-
tion performance of the biomass rotary burner is the best. 
According to the combustion calculation results (Table 3) 

and the distribution of the optimal area ratio (Fig. 13) under 
different excess air coefficients, the optimal combustion 
area of   the biomass rotary burner combustion heat transfer 
process is at the excess air coefficient of about 1.2, and the 
proportion is 29.2%; the synergy effect between the veloc-
ity vector and the enthalpy gradient in the combustion heat 
transfer process of the biomass rotary burner is well, which 
reflects the highest combustion rate and highest combustion 
efficiency of the biomass rotary burner.
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Fig. 12  Field synergistic cosine 
angle distribution diagram of 
the burner [29]
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Screw plasticizing system

The screw plasticizing system is a polymer plasticizing 
device used in extrusion, injection molding, and other pro-
cesses. Optimizing the structure of the screw is extremely 
important to enhance the growth rate of the polymer and 
improve its product quality and production efficiency [101]. 
Jian [33] carried out numerical simulations of screw ele-
ments with different torsional structures and screw struc-
tures, respectively, and analyzed their heat transfer and flow 
characteristics based on the field synergy theory. Elements 
with torsional structures improved the synergy effect of tem-
perature gradient and velocity vector, increased the Nusselt 
number and local heat transfer coefficient, which had better 
heat transfer performance.

Jian carried out numerical simulations of screw elements 
with six different structures from A to F (Fig. 14), where 
E is a pure screw structure element, F is a pure torsional 
structure element, and their geometric structure is shown in 
Fig. 15, A–D is the different arrangement of screw structure 

Table 3  Field Synergistic calculation results of combustion process 
of biomass rotary burner [29]

The excess 
air factor

Optimal area 
ratio / %

velocity /  m\
cdots−1

Temperature / K

1.0 8.5 0.418–0.836 636–1390
1.2 29.2 0.418–0.836 568–1520
1.4 15.9 0.620–1.510 826–1660
1.6 16.7 0.667–1.670 848–1740
1.8 18.2 0.749–1.870 851–1750
2.4 21.4 0.992–0 716–1770
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Fig. 13  Optimum ratio of combustion under different excess air coef-
ficients
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and torsion structure, the screw structure and the torsion 
structure show different heat transfer characteristics due to 
their different fluid flow states (Fig. 16).

According to the change curve of the average field syn-
ergy angle with the screw speed (Fig. 17a), the synergy 
angle of structure E is the largest, indicating that the syn-
ergy between its velocity vector and gradient is the smallest, 
and the synergy angle of structure F is the smallest, which 
means the better synergistic effect of the speed vector and 
temperature gradient. The synergy angle of A-D showed a 
similar change trend, indicating that different arrangements 
have less effect on the synergistic effect. The variation curve 
of the Nu number in Fig. 17b shows the opposite character-
istic of the synergy angle, so the correlation curve between 
the Nu number and synergy angle was drawn (Fig. 18) to 
explore the effect of synergy on convective heat transfer. It 
can be seen from the figure that the number of Nu decreases 
with the increase of the synergy angle, indicating that the 
larger the synergy angle is, the worse the synergy effect and 
the lower the heat transfer performance will be. According 
to the correlation coefficient diagram, when the screw speed 
is greater than 3600r /s, the correlation coefficient increases 

Fig. 17  The variation curve of 
the average field synergy angle 
of velocity vector and tempera-
ture gradient and the Nu number 
with screw speed [33]
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gradually with the rotation speed, and the increment of Nu 
is mainly from the size of the synergy angle, that is, the 
synergistic effect of the velocity field and the temperature 
gradient field.

To more intuitively express the effect of screw structure 
and torsional structure on heat transfer, the local field syn-
ergy angle and local heat transfer coefficient of structure 
A element with a screw speed of 4800 r/s were analyzed 
(Fig. 19). The torsional structure has a smaller synergy angle 
and a larger heat transfer coefficient than the screw structure, 
indicating that the synergistic effect of the torsional struc-
ture is better, which can enhance the heat transfer effect. 

According to Fig. 20, from the distribution of synergy angles 
at different sections, it can be seen that at sections b, d, and f, 
that is, the screw structure, the local synergy angle is larger 
and the synergy effect is poor, and at the sections a, c, e, 
that is the torsion structure, the synergy angle is alternately 
arranged, and the synergy effect is better.  

Closed oscillating heating tube

The closed oscillating heating tube (COHP) is widely used in 
solar collectors [102], drying systems [103–105], microelec-
tronic components [106], and other fields [34] due to its simple 
structure and good heat transfer performance. COHP is com-
posed of three parts: evaporation, adiabatic, and condensation, 
and its heat transfer process is completed through the phase 
transition of the fluid [34]. E [34] studied the heat transfer 
performance of COHP with a new narrow tube by numerical 
simulation and experiment method based on the field synergy 
theory. The model diagrams of the conventional tube and the 
new narrow tube COHP are shown in Fig. 21.

Based on the field synergy theory, the data results of three 
different models are obtained by numerical simulation, which 
is shown in Table 4. Model C has the best synergy effect, while 
the conventional COHP structure, that is, structure A has the 
worst synergy effect. From the synergistic effect diagram of 
the velocity field and temperature field of structures A and C 
(Fig. 22), it can be found that under the same other conditions, 
the temperature of structure A is generally higher than that of 
structure C, especially in region 2. And the velocity direction 
of structure A is more disordered, reflecting its poor synergy 
with the temperature gradient field. To explore the relationship 
between the field synergy effect and heat transfer performance, 
E [34] quoted the average heat transfer coefficient (Eqs. 25, 26) 
and Prandtl number (Eq. 27) which react to the heat transfer 
performance. From Fig. 23, the average heat transfer coeffi-
cient of structure C is 31.93% higher than that of structure A 
in wall-1 and is 26.37% higher in wall-2, the Prandtl number of 
structure C is also obvious higher than that of the A structure, 
indicating that the C structure has better heat transfer ability. 
The comprehensive analysis of the field synergy effect and the 
heat transfer ability show that improving the field synergy can 
improve the heat transfer ability, so structure C can be used to 
optimize the design of the COHP.

Wall-1 Wall-1 Wall-1

Wall-2

H= 0m H= 0.0001m

A B C

H= 0.0003m

Wall-2 Wall-2

Fig. 21  Physical model diagram of COHP(A is the conventional 
structure, B and C are the new narrow tube structures) [34]

Table 4  Result of the field 
synergy calculation [34]

Model num-
ber

Synergy degree/% Velocity/m\cdots Maximum temperature 
of wall-1/K

Minimum 
temperature of 
wall-2/K

A 7.492 0.21–2.12 369.436 273.619
B 9.492 0.35–2.53 306.859 282.199
C 13.631 0.49–2.91 301.111 284.792
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where, heff1 is the heat transfer coefficient of wall-1, W\
cdot(m2\cdotK)−1; heff2 is the heat transfer coefficient of 
wall-2, W\cdot(m2\cdotK)−1; Qwall−1 is the average heat 
transfer of wall-1, J;Qwall−2 is the average heat transfer of 
wall-2, J; Twall−1 is the average temperature of wall-1, K; 
Twall−2 is the average temperature of wall-2, K; Tref1 is the 
reference temperature for evaporation section, K;Tref2 is the 
reference temperature for condensing section, K.

(25)heff1 =
Qwall−1

Twall−1 − Tref1

(26)heff2 =
Qwall−2

Twall−2 − Tref2

where, cp is the mean isobaric heat capacity,  J\cdotK−1; � 
is the average dynamic viscosity, Pa\cdots; k is the average 
thermal conductivity,  W\cdotm−1\cdotK−1.

Other fields

In the process of enhancing heat transfer, nanoparticles have 
a wide range of applications due to their special properties 
[107–114], and the research on nanofluids mainly focuses 
on turbulent flow characteristics and enhanced heat transfer 
mechanisms [115–122]. Yang [123] studied the heat trans-
fer of Cu nanofluids with volume fractions of 0.25%, 0.5%, 
1.0% and 2.0% at Reynolds numbers of 200, 250, and 300 

(27)Pr =
cp�

k
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Fig. 22  The synergistic effect of velocity field and temperature field of structures A and C [34]

Fig. 23  Comparison of average 
heat transfer coefficients and 
Prandtl numbers for structures 
A and C [34]
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according to the theory of field synergy, and concluded that 
when Re is 300 and the volume fraction of Cu is 2.0%, the 
effect of the heat transfer is the best, and the maximum heat 
transfer enhancement efficiency is 30%; Cui [124] simulated 
the enhanced heat transfer mechanism of nanoparticles with 
different mass fractions. As the mass fraction of nanopar-
ticles increases, the field synergy angle decreases, and the 
synergistic effect becomes better. Long [32] analyzed the 
ion selectivity based on the synergy parameter in the analy-
sis of the energy harvesting to enhance salinity gradients 
in the nanofluid reverse electrodialysis system. The results 
showed that the nano-blocker can significantly improve 
ion selectivity, increase membrane potential, and thus 
improve electrical energy and energy conversion efficiency. 
Among them, the power and energy conversion efficiency of 
3.5 ×  10−9 m nano-blockers are 100 times higher than that of 
traditional nanochannels, which can be increased by 362% 
and 1603.4%.

In addition to applications in heat exchangers, CWCT 
reactors, combustion reactors, etc., field synergy is also used 
in polysilicon chemical vapor deposition reactors (CVD) 
[38], photocatalytic oxidation reactors (POC) [35] heat and 
mass transfer analysis. An [38] used the field synergy theory 
to study the local heat and mass transfer performance of 
polysilicon chemical vapor deposition reactors with differ-
ent channel configurations, the trapezoidal and wavy chan-
nel structures had a smaller synergistic angle between the 
velocity vector and temperature gradient, and the smaller 
synergy angle between the velocity vector and concentra-
tion gradient, which showed better heat transfer and mass 
transfer performance, so trapezoidal and wavy channels can 
be considered in the optimal design of silicon CVD reac-
tors. Catalytic oxidation technology using ultraviolet radia-
tion can reduce indoor pollutant concentrations and improve 
health problems, which has the advantages of both innova-
tion and practicality [35, 50, 125–128]. The field synergy 
theory can optimize and analyze the photocatalytic oxida-
tion reactor (POC) [35], improve the removal efficiency of 
pollutants and realize the enhancement of convective mass 
transfer [67]. Chen [35] deduced the field synergy equa-
tion of the photocatalytic oxidation reactor under specific 
boundary conditions. By solving the equation, the optimal 
velocity field with a high mass transfer rate can be obtained, 
it is proved by the numerical method that generating mul-
tiple longitudinal vortices in the plate reactor can enhance 
the mass transfer effect of laminar flow, and developed a 
new type of reinforced inner fin-discrete double diagonal 
rib plate (Fig. 24), with 9 pairs of diagonal fins along the 

fluid flow direction while 2 pairs perpendicular to the fluid 
flow. Through the numerical simulation of the diagonal rib, a 
longitudinal vortex is generated near the diagonal rib, which 
enhances the synergistic effect between the velocity field and 
the pollutant concentration gradient field.

With the development and maturity of the field synergy 
theory, its research has become more complete, and it has 
also been explored and applied in more and more fields. Its 
application in fluid flow drag reduction [129] has improved 
the fluid flow efficiency. The field synergy theory is also 
widely used in seawater desalination process [36], silica gel 
regeneration process [130, 131], heat pump system [132], 
thermoelectric system [133], electric vehicle [134, 135], 
diesel engine [136, 137], solar energy system [138], fuel 
cells [26], porous media [28], and so on. By establishing a 
dynamic three-dimensional computational fluid dynamics 
model, Li [36] conducted a field synergistic analysis of the 
heat and mass transfer system of the adsorption desalina-
tion cooling system and studied the synergy angle which 
expressed the heat transfer and the synergistic effect of the 
flow resistance and the adsorption driving force. It is found 
that the smaller the synergy angle is, the better the adsorp-
tion performance will be; when analyzing the output power 
combined system of the diesel engine [136, 137], the maxi-
mum increase of the optimized diesel engine is 6.5%, and 
the maximum braking specific fuel consumption is reduced 
by 6.1%. The field synergy theory can also guide the optimal 
design of diesel particulate filters [64, 70, 71, 76] and the 
fuel cells [26]. By optimizing the design of fuel cells [26], 
the influence of square and trapezoidal ducts was explored 
[65], and a new type of wavy airflow duct was designed 
[139]. Zhao [28] conducted experiments on the heat transfer 
process of porous media and analyzed their heat transfer 
performance based on field synergy (Fig. 25).  

Fig. 24  The discrete double-inclined ribs plate [35]
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Analysis and application of field synergy 
theory in the cooling exchanger

Application background of cooling exchanger

In recent years, shallow coal mine resources have been con-
tinuously excavated due to the continuous increase in the 
demand for coal resources, and the coal mining work has 
continued to penetrate deeper into the ground. The continu-
ous increase of mining depth, the rising of original ground 
temperature and the increasing of underground seepage 
have led to the increasingly prominent problem of heat and 
humidity in mines, which constantly threatens the health 
of workers and the development of mining work [39–42]. 
According to the survey, the accident rate of the working 
face at 303–310 K is 1.3–2.3 times higher than that of the 
working face below 303 K[140]. When the working envi-
ronment temperature exceeds 305 K, it is considered a 

high-temperature working environment, and when the rela-
tive humidity exceeds 60%, it is considered a high-humidity 
environment [141]. As shown in Table 5, more and more 
coal mines suffer from the damage of high temperature and 
humidity [142–145].

Heat damage in mine depends not only on the conditions 
of the rock mass itself [146, 147], such as thermal conduc-
tivity, internal rock gaps, and water content in the rock mass, 
but also on the mine ventilation equipment [148–150], such 
as the location and the parameter settings of fans and air 
ducts, and at the same time, the underground humid and 
hot air environment [82, 151], the heat dissipation of elec-
trical and mechanical infrastructure [152], the oxidation of 
transported ores [153], and the self-compression heat of the 
underground air flow [154] can also have an impact on the 
environment. Research on the damp-heat environment in 
mines and mastering its damp-heat theory are crucial for 

Pipe structure

FinsHeat exchanger

Combined with desiccant

COHP

Solar system

Microelectronic 

Components

Screw plasticizing system

Nanofluid

Mass transfer

Heat-mass transfer
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Fig. 25  is a summary diagram of the application of the field synergy
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improving the damp-heat conditions and seeking cooling 
and dehumidification measures [40, 155].

In 1981, Hou [156] first proposed the view that the heat 
released by the surrounding rock and absorbed by the wind 
flow should include two parts: sensible heat exchange and 
latent heat exchange, and pointed out the fact that there is 
moisture exchange between the wind flow and the surround-
ing rock. The theory of heat and moisture exchange between 
wind flow and surrounding rock includes three processes: 
heat conduction inside the rock, convective heat transfer 
between rock and wind flow, and convective mass transfer 
between rock and wind flow. The heat released by the sur-
rounding rock (Eq. 28) is partly used to consume the latent 
heat of water evaporation on the wall, and partly used to be 
the sensible heat used for wind flow, as shown in Fig. 26 
[157].

 where, qw is the total heat flux density that dissipates 
heat from the surrounding rock to the wind flow, J\cdot(s\
cdotm2)−1; qs is the sensible heat flow density entering 
the wind flow from the surrounding rock wall, J\cdot(s\
cdotm2)−1; ql is the latent heat flow density entering the wind 
flow from the surrounding rock wall, J\cdot(s\cdotm2)−1.

As for the influence of the damp-heat environment in 
the mine, scholars often analyze the damp-heat influence 
on the wind flow of the rock from the sensible heat and 
latent heat of the damp-hot surrounding rock, that is, only 
the water evaporation of the surrounding rock is con-
sidered. On this basis, Gao [158] considered the influ-
ence of water evaporation factors in the wind flow on the 
humid and hot environment of the mine, the sensible heat 
(Eq. 29) emitted by the surrounding rock wall into the 
wind is partly used to increase the temperature of the wind 
flow and partly used for the heat absorbed by the water 
evaporation in the wind flow.

where, qs is the sensible heat flow density entering the wind 
flow from the surrounding rock wall, J\cdot(s\cdotm2)−1; qf 
is the sensible heat that increases the air flow temperature, J\
cdot(s\cdotm2)−1;qt is the latent heat required for the evapo-
ration of water in the wind, J\cdot(s\cdotm2)−1.

(28)qw = qs + ql

(29)qs = qf + qt

Fig. 26  Schematic diagram of 
heat and moisture exchange 
between a wet surrounding rock 
and wind flow

qs

q1

Wall

Wall

Unsaturated air

Boundary layer
Boundary layer

Water drop

Unsaturated air

qw

Table 5  Deep Mine Temperature and Humidity Chart [142–145]

Mine Working 
face level/m

Air temperature/K Relative 
humidity /%

Zhangxiaolou −1000 307 95
Zhangshuanglou −1200 307–309 95–100
Jiahe −800 307 Almost 100
Zhouyuanshan −650 303 95
Sanhejian −980 308 94.2
Fenglong −900 304 84
Jisan −880 305.5 92
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The high temperature and high humidity environment 
of deep well mining have become an important factor 
restricting mine production, and the use of a fan is the 
most common way to improve the underground wet and 
hot environment conditions. Due to the increase in under-
ground mining depth, the temperature of the air inlet of 
the fan is too high, and it is difficult to transport air at 
the appropriate temperature to the working face, which 
makes the cooling and dehumidification work efficiency 
low. Therefore, how to reduce the inlet air temperature has 
become a new research topic.

To this end, this paper proposes a new scheme design 
of the cooling fan system, the core of the scheme is the 
research and design of a fan cooling exchanger, the low-
temperature water of the mine can be used to absorb the 
heat of the air flow, reduce the air flow temperature, and 
transport the geothermal air flow to the working surface, 
so as to reduce the temperature of the deep mining face 
and create a good working environment.

Design principle of cooling exchanger

As an important part of the cooling fan system, the cooling 
exchanger has the advantages of reducing air flow tempera-
ture, low cost, simple equipment, and effectively improving 
the operating environment of deep Wells. It is a technical 
measure put forward after years of experience accumulation 
and working practice, and it is very feasible. The schematic 
diagram of the scheme is shown in Fig. 27, the fan, cooling 
exchanger, and cooling water circulation circuit in the fig-
ure form a complete cooling fan system. According to the 
need to meet the deep well working requirements of the tem-
perature range, the design of cooling system components, 
including heat exchanger heat transfer area, heat exchanger 
size, cooling capacity, pump flow and power, fan flow rate 

and other parameters, among which, the design of cooling 
exchanger is one of the important links.

According to the layout requirements of the cooling sys-
tem in the mine, the cooling exchanger should be arranged 
in front of the fan, and its layout space is limited. It is the 
basic requirement of cooling exchanger design to increase 
the heat transfer rate of the fin surface and control the vol-
ume of the cooling exchanger. The improvement of the heat 
transfer rate of the cooling exchanger mainly depends on 
two aspects. On the one hand, the fin surface heat transfer 
should be strengthened to improve the heat transfer coeffi-
cient, so as to improve the heat transfer performance of the 
cooling exchanger. On the other hand, the cooling exchanger 
structure and the corresponding fin structure parameters are 
optimized to improve the cooling performance of the cooling 
exchanger. The improvement of the heat transfer rate of the 
cooling exchanger mainly depends on two aspects. On the 
one hand, the fin surface heat transfer should be strengthened 
to improve the heat transfer coefficient, so as to improve the 
heat transfer performance of the cooling exchanger. On the 
other hand, the cooling exchanger structure and the corre-
sponding fin structure parameters are optimized to improve 
the cooling performance of the cooling exchanger. With 
the development of high power, low fuel consumption and 
lightweight, the design of cooling exchangers is also mov-
ing toward compact and high efficiency. In addition to the 
application of new materials, the structure of the cooling 
exchanger also plays a crucial role in optimizing the cool-
ing exchanger structure to improve its structural perfor-
mance while reducing the mass of the parts. By changing 
the fin structure of the cooling exchanger, the heat exchange 
efficiency of the fin surface of the cooling exchanger is 
improved to achieve the increase in heat exchange per unit 
area, and the predetermined heat dissipation performance is 
achieved with a smaller volume of the cooling exchanger, so 

Fig. 27  Schematic diagram of 
cooling system
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as to save manufacturing materials and reduce manufactur-
ing costs.

Research on cooling exchangers based on field 
cooperation theory

Feasibility analysis

Since the field synergy theory was put forward, its theory 
has gradually developed and matured, the depth of the 
research has changed from the initial research of laminar 
ideal fluid to the exploration that can be used to solve the 
actual turbulent fluid, and the breadth of research has gradu-
ally changed from the initial analysis of the essence of heat 
transfer enhancement to the study of mass transfer theory 
and the study of heat-mass transfer in more complex situa-
tions. The derivation of each theoretical equation, and the 
exploration of the synergistic effect of the velocity field, the 
temperature gradient field, and the concentration gradient 
field, all reflect a solid theoretical foundation for field syn-
ergy. Under the guidance of the mature field synergy theory, 
many scholars have begun to solve practical engineering 
problems. Among them, the use of the field synergy theory 
to improve the enhanced heat transfer performance of heat 
exchangers is the most extensive, from the design of channel 
and fin to the synergistic action with desiccant. In addition, 
the field synergy theory has also been widely researched 
and developed in other fields, including nanofluids, combus-
tion reactors, screw plasticizing systems and COHP for heat 
transfer applications, POC devices and seawater desalina-
tion adsorption systems for mass transfer applications, and 
the CWCT devices and CVD devices for heat-mass syn-
ergy applications; All these researches have proved that the 
theory of field synergy can be used to solve practical prob-
lems in engineering applications and provide guidance for 
improving the efficiency of heat and mass transfer.

It has always been the goal of mine researchers to study 
the damp-heat mechanism of the mine and improve the 
underground working environment. It is a good way to 
improve the underground working environment by install-
ing a cooling exchanger at the end of the fan working in a 
deep well, and the structure design of the cooling exchanger 
is an extremely important part of the design of the cooling 
system at the end of the fan. The design of a cooling heat 
exchanger is mainly to design the fin structure, which can 
improve the heat transfer efficiency of the fin surface of the 
cooling exchanger, and realize the increase of heat transfer 
per unit area.

The field synergy theory can be used to explore the 
essence of heat and mass transfer to enhance its transfer 
effect, the working principle of cooling heat exchanger is the 
heat and moisture exchange process between cooling water 
and underground high temperature and humidity, which has 

extremely high similarity and adaptability with the research 
content of the field synergy theory. Therefore, it is of certain 
research significance to apply the theory of field synergy to 
the study of the structural design of cooling exchangers in 
deep wells, to explore the mechanism of underground wet 
and heat transfer, and to improve the underground moisture 
and heat environment.

Preliminary study on the structural design of cooling 
exchanger based on the theory of field synergy

(1) Analysis of heat transfer mechanism of different cooling 
exchanger fin structures.

In the existing research, the fin structure of heat 
exchangers is diverse, and it needs a long and complicated 
process and cycles to study and explore the fin in differ-
ent categories. As the first exploration of analyzing deep 
well cooling exchanger based on field cooperation princi-
ple, starting with the study of the fin structure, this paper 
analyzes the synergistic effects of airflow velocity field 
and temperature gradient field, velocity field and mois-
ture concentration gradient field, evaluate the influence of 
moisture and heat exchange with cooling water under the 
model conditions of the straight fin structure, H-shaped fin 
structure and H fin structure with open shutters (Fig. 28).

The distribution of airflow velocity field, temperature 
gradient field and water concentration gradient field under 
different fin structures are analyzed by numerical simula-
tion, Because of the different structure features of the fins, 
when the wet hot air goes through the fin, the wind flow 
will be affected by different levels of resistance, which 
changes the direction of the wind, the corresponding, 
the angle between the velocity field and the temperature 
gradient and the angle between the velocity field and the 
concentration gradient has varying degrees of change. It 
is of great significance for the selection of the fin structure 
of the cooling exchanger to explore the degree of field 
synergy.

(2) Influence of fin structural parameters.
Through the above research on the heat transfer perfor-

mance of cooling exchangers with different fin structures, 
the heat and humidity exchange between hot-wet air flow 
and cooling water under different air flow directions can be 
obtained, and from the perspective of field synergy theory, 
the situation that the minimum coordination angle means the 
best coordination effect is analyzed, so as to provide guid-
ance for the design of fin structure of cooling exchangers. 
Taking the H-shaped louvered fin structure as an example, 
we can explore the influence of fin thickness and fin spacing 
on heat transfer performance. By analyzing the synergis-
tic effect of each field under different fin thickness and fin 
spacing based on field synergistic theory, the setting of the 
exchanger can be optimized, the heat exchange efficiency of 
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hot-wet air and cooling water can be improved, and the inlet 
temperature of fan can be improved. Figure 29 shows the 
structure diagram of the louvered fin.

(3) Research on the optimization design of enhanced heat 
and mass transfer based on the combination of field synergy 
theory and ventilation system power consumption.

The research of cooling exchanger design based on field 
synergy theory can improve the heat and mass exchange 
between hot-wet air flow and cooling water and strengthen 
heat and mass transfer. However, in actual working con-
ditions, factors such as cooling exchanger resistance, 
pressure drop, heat transfer coefficient of fin surface and 
exchanger cost need to be considered. At the same time, 
whether the optimal enhanced heat transfer condition is 
suitable for the environmental conditions of underground 
personnel is also one of the criteria to be measured. There-
fore, it is our goal and focuses to combine the field synergy 
theory with the power consumption of ventilation system 
settings and explore the optimal design for improving and 

strengthening heat and mass transfer to meet the demands 
of workers' working environment under the condition of 
reasonable power consumption.

The above-mentioned assumption of the idea of the 
cooling exchanger based on the field synergy theory is a 
preliminary exploration and attempt. It is only analyzed 
and optimized from the perspective of the structure of the 
fins. Many other factors affect the velocity field, tempera-
ture gradient field, and water concentration gradient field, 
such as air viscosity coefficient, frictional resistance, the 
number and arrangement of fins, etc., which can be used 
in subsequent research work.

Conclusions

(1) Since the field synergy was proposed, its theory has 
gradually developed and matured. The properties of 
the fluid have been extended from laminar flow to 
more realistic turbulent flow, the applicable objects 
have also expanded from heat transfer enhancement 
to mass transfer and then to the synergy of heat-mass 
coupling, and the formulas were derived.

(2) In the practical engineering application of the field syn-
ergy theory, enhancing the heat exchange performance 
of the heat exchanger is the most widely used; and it is 
also applied to various reactors, nanofluids, silica gel 
regeneration technology, seawater desalination technol-
ogy, and other fields. It is a great guiding significance 
to optimize the design of the structures by improving 
the field synergy effect.

(3) Reducing the inlet air flow temperature is an effective 
measure to improve the efficiency of underground heat 
transfer. It is a bold attempt to apply the field synergy 
theory to the research and development of the cooling 
exchanger under a high-temperature environment in a 
deep well. By analyzing its feasibility and exploring 
the fin structure and parameter design of the exchanger 
based on the field synergy theory, the exchanger struc-
ture with the best heat transfer performance can be 
selected.

(4) In practical engineering applications, the optimal 
design of maximizing heat transfer and dehumidifica-
tion with minimum power consumption can be obtained 
by combining field synergy theory with system power 
consumption.
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Fig. 28  Schematic diagram of cooling exchanger of the different fin 
structure

(a) straight fin (b)H-shaped fin

(c) H-shaped fin with shutters 

Fig. 29  The structure diagram of the louvered fin
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