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Abstract
Over the years, incredible evolution has been framed in developing particle-induced discrete simulation techniques over 
conventional continuum approaches. In particular, the lattice Boltzmann method (LBM) originated from a flexible and robust 
computational tool for scientific research and various practical applications. LBM is based on a mesoscopic approach that acts 
as a bridge between the microscale and macroscale, offering distinct features in the accuracy of simulations and numerical 
efficiency. LBM has been successfully employed over a broad aspect of disciplines, encompassing biomedicine, geother-
mal energy, flow physics, materials, chemistry, medical treatment, storage of energy, and several engineering disciplines. 
Meanwhile, phase change materials (PCMs) are extensively utilized in thermal energy storage (TES) systems as they can 
absorb and release heat throughout the phase change process. Moreover, phase change heat transfer (HT) has a substantial 
occurrence in industrial and domestic activities. It is expected to enhance the thermal transport rate between HT fluid and 
PCMs for the confinement of a larger amount of heat. This current work aims to provide a comprehensive review of LBM 
for thermo-fluids concentrating on thermal flows and PCM. It also enlightens a brief insight into the LBM formulation of 
heat transfer for PCMs under various external force conditions and the implementation of boundary conditions for PCMs. In 
addition, it also introduces the study and examination of the existing TES systems comprising PCMs for various applications.
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Abbreviations
AR	� Aspect ratio of enclosure/cavity, dimensionless
Da	� Darcy number, dimensionless
F	� External force, N
Ma	� Mach number
ε	� Porosity
fl	� Volume fraction of liquid
p	� Distribution function for flow field
g	� Gravitational acceleration 

(

ms−2
)

Nu	� Average Nusselt number, dimensionless
Nu	� Local Nusselt number, dimensionless
q	� Distribution function for thermal field
C	� Specific heat at constant pressure kJ kg−1 °C−1

ci	� Discrete lattice speed in an ith direction (m s−1)
ΔH	� Latent enthalpy (kJ kg−1)

Δt	� Time step (s)
wi	� Mass function in the particular direction
Ra	� Rayleigh number, dimensionless
Re	� Reynolds number, dimensionless
H	� Total enthalpy (kJ kg−1)
Hl	� Total enthalpy liquidus temperature (kJ kg−1)
Hs	� Total enthalpy solidus temperature (kJ kg−1)
T	� Temperature, K
M	� Nodal number
n	� Power-law index, dimensionless
x,y	� Cartesian coordinates, m
t	� Time, sec
Tm	� Melting temperature
L	� Latent heat of melt (kJ kg−1)
u	� Velocity, m s−1

�	� Dimensionless temperature,
U	� Dimensionless velocity
P	� Dimensionless pressure
Pr	� Prandtl number
φ	� Volume fraction of nanoparticle
St	� Stefan number
Fo	� Fourier number
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�T 	� Thermal expansion coefficient, K−1

� 	� Collision frequency
� 	� Density of the fluid, kg m−3

� 	� Kinematic viscosity, m2 s−1

� 	� Thermal diffusivity, m2 s−1

Ω 	� Collision operator
� 	� Relaxation factor
�p 	� Collision frequency for flow
�q 	� Collision frequency for temperature

Introduction

Over the decades, the energy demand has increased dra-
matically due to rapid population and economic growth. 
The emerging tremendous energy utilization leads to the 
enormous emission of CO2 (carbon dioxide) and yields 
harmful contents, leading to environmental pollution and 
global warming [1–3]. Phase change materials (PCMs) are 
endorsed as one of the potential thermal energy storage 
(TES) media that have been experiencing noteworthy inter-
est over the globe [4–6]. Several techniques have flourished 
and enhanced thermal applications to preserve energy costs 
to treat these disasters. The TES system is a valuable tool 
for increasing energy efficiency to fill the disparity between 
energy demand and furnishing [7]. In general, TES systems 
are categorized as sensible heat thermal energy storage 
(SHTES) and other one is latent heat thermal energy storage 
(LHTES) systems. LHTES employs PCMs to accumulate 
energy and allows the systems to adopt and liberate a tre-
mendous amount of heat energy with a thermal variation by 
the phase change process (PCP) of PCMs. It provides a large 
amount of heat storage density and can potentially preserve 
high heat as latent heat (LH) of fusion with a little number 
of PCMs and a moderate thermal variation [8–10]. However, 
the lower thermal conductivity of PCMs used in the LHTES 
system reduces thermal energy [11]. Heat transfer in PCMs 
has been considered an attractive research scope in thermal 
science. There are several approaches to enhance the thermal 
capability of PCM, i.e., the use of porous foams, miniature 
heat pipes, dispersion of nanoadditives with higher thermal 
conductivity in PCM, and micro- and macroencapsulation. 
The most feasible and economical strategy to enhance the 
thermal capacity of PCMs is the dispersion of high ther-
mal conductivity nanoadditives in PCM (NePCM) [12, 13]. 
PCMs have become an alternative for thermal management 
owing to chemical steadiness, cheap rate, and large energy 
density. Energy and combustion systems usually embrace 
hydrodynamics, thermal transport, chemical reactions, and 
phase change (PC) over scales varying from macroscale to 
microscale via mesoscale. The studies related to PCMs are 
of substantial significance in several engineering and natu-
ral systems. It includes metal smelting and casting, Li-ion 

batteries, solar thermal energy storage, air-conditioning unit, 
refrigeration system, electronic cooling, drug delivery unit, 
crystal growth, TES in buildings, TES, welding, alloys, and 
metallurgical process [14–22]. The matter is exposed to a 
solid–liquid PCP. The number of research publications on 
heat transfer for PCMs by LBM has seen significant growth 
over the last ten years, as illustrated in Fig. 1.

Consequently, the moving interface separates two distinct 
phases and evolves the absorption or release of LH in the 
vicinity of the interface. Mathematical modeling of such a 
system is considered one of the challenging tasks due to 
complex boundary treatment and variations of the thermo-
physical properties. Over the last three decades, LBM has 
been extensively acknowledged and used to numerically 
investigate challenging problems due to its advantage in the 
mesoscopic background and easy execution of boundary 
conditions in parallel computing. Theoretical, experimen-
tal, and numerical studies have yielded broad literature on 
different aspects of the PC study, encompassing fundamen-
tal studies of the PC phenomenon [2, 24], material features 
[25, 26], experimental techniques, thermal transport aug-
mentation [3, 27–29], mathematical modeling, and numeri-
cal methods [30–32]. In contrast, the numerical simulation 
technique is a primary course of action due to its higher 
economy and efficiency, which significantly develops the 
understanding of melting and solidification processes in the 
TES system. Some of the familiar methods utilized to ana-
lyze the melting and solidification models so far as the finite 
element method (FEM) [33], finite difference method (FDM) 
[34], finite volume method (FVM) [35–37], and LBM [38, 
39]. PCMs have extensive applications in various industries, 
including telecommunications, satellites, textiles, medicine, 
submarine equipment, and transportation, given their phase 
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Fig. 1   Research articles published on PCM by LBM [23]
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change temperatures [40], as some of the applications are 
depicted in Fig. 2.

PCMs for thermal energy storage

PCMs are used to store thermal energy, as SHTES and 
LHTES are among the significant classes of modern mate-
rials that largely impart to the efficient use and preservation 
of solar energy and waste heat [41–43]. Nowadays, TES is 
recognized as a promising technology to encounter upcom-
ing energy demand. TES is based on PCMs as an energy 
storage medium due to their cheap rate, easy availability, 
and high storage capacity [44]. Over the globe, researchers 
are investigating TES, especially PCM, for their significant 
benefits in assisting thermal comfort in houses or buildings, 
improving energy efficiency, and lending to the diminution 
of environmental pollution [45].

TES can be attained by heating, melting, solidifying, 
cooling, or vaporizing a material with the energy obtaina-
ble as heat when the process is reversed. PCM is the poten-
tial medium for TES owing to its extensive latent heat 
value (140–970 kJ/Kg) [46]. TES systems can potentially 
boost the effective exercise of thermal energy gadgets and 
assist in large-scale fuel substitution [47, 48]. For effective 
utilization of the TES system, PCM and HT mechanism 
selection plays a significant role [49]. HT augmentation in 
LHTES systems is attained by either geometric arrange-
ment or thermal conductivity augmentation, and the usage 

of extended surfaces like fins (triangular, conical, square, 
and rectangular fins) or heat pipes is one of the standard 
techniques for thermal transport augmentation in LHTES 
systems [50, 51]. The suitable design of TES systems 
utilizing PCMs needs quantitative information about the 
PCM's HT and PCP. In Korea, radiant surface heating 
systems, conventionally worn in residential houses, have 
about 57% of the residential building energy utilization 
in heating [52]. The application of PCMs for solar TES 
capacities has obtained attention due to their vast storage 
capability and the isothermal nature of the storage tech-
nique [53]. PCM-TES has a potent energy-saving solution 
in air-conditioning applications [54].

Moreover, the applications of PCMs in diverse fields 
include thermal therapy of the human body, the thermal 
management of electronic devices, and flexible sensors 
[55]. Nanoencapsulated PCMs are considered one of the 
possible materials for TES [56, 57]. The application of 
organic PCMs can be used for TES systems such as bio-
mass of maize straw and wood; synthesis of core–shell 
paraffin silica nanocomposite is used as PCM [58–62]. 
TES system is extensively utilized in waste heat recov-
ery and consumption, building heating, air conditioning, 
solar thermal power plants, and compressed air energy 
storage [63–66]. The carbon-based nanostructures (CNs) 
with higher thermal conductivity can be considered for 
PCM to improve the thermal properties of the attained 

Fig. 2   Application span of 
PCMs [14–22]
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nanocomposites [67, 68]. The classification of PCMs for 
TES is exemplified in Fig. 3.

Governing equations

The governing equation of heat transfer for PCMs includes 
continuity, momentum, and energy equation, which are illus-
trated below in dimensional form [69–71]

where g, ρ, p, u, μ, and T are the acceleration due to gravity, 
density, pressure, velocity, velocity, dynamic viscosity, and 
temperature, respectively. F symbolizes body force, and q 
stands for heat source term, which occurs through absorption 
or liberation of LH and is expressed as:

(1)
��

�t
+ ∇ ⋅ (��) = 0

(2)
�(��)

�t
+ ∇ ⋅ (���) = −∇p + ∇ ⋅ (�∇�) + �F

(3)
�T

�t
+ ∇ ⋅ (�T) = �∇2T + q

(4)F = g�T
(

T − T0
)

In the above equation ΔH, the latent enthalpy of the 
computational cell experiences a PC, and if the material 
is pure, the second term can be ignored. So, q can become

where L symbolizes the LH of melt and fl is a fraction of 
liquid, which can be determined as

Non‑dimensional form

(5)q =

[

�(�ΔH)

�t
+ ∇ ⋅ (��ΔH)

]

(6)q = −
�(�ΔH)

�t
= −

�
(

�Lfl
)

�t

(7)f l =
ΔH

L

(8)
��

�t∗
+ ∇ ⋅ (�) = 0

(9)
��

�t∗
+ ∇ ⋅ (��) = −∇P + Pr∇2

� + Pr Ra�

(10)��

�t∗
+ ∇ ⋅ (��) = ∇2� −

1
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The subsequent scaling parameters are utilized to 
acquire non-dimensional variables

After exploring the general macroscopic governing 
equations of phase change materials for heat transfer, let us 
briefly look at the mesoscopic technique, i.e., LBM.

Lattice Boltzmann method

LBM has gained massive impetus in science and tech-
nology as the potential tool for solving various engineer-
ing applications. Namara and Zanetti (1988) introduced 
to beat the imperfections of lattice gas cellular automata 
(LGCA) [72]. It is a new technique in computational fluid 
dynamics (CFD). It is a mesoscopic scheme and is promi-
nent among the recent simulation schemes established on 
the molecular hypothesis in CFD. It is established on the 
Boltzmann equation (BE), governed by the kinetic theory 
of gases [73]. These models incorporate essential physics 
[74, 75]. In LBM, the flow particles are replaced by distribu-
tion functions (DFs) of the fractious particles. LBM's evo-
lution occurs through streaming and collision [73, 76–80]. 
With the Bhatnagar–Gross–Krook (BGK) collision model, 
LBM has developed astonishing advances in solving various 
problems associated with fluid flow. It is one of the most 
proficient pseudo-kinetic algorithms. The LBM approach 
solves several problems associated with fluid flow, thermal, 
species transport, multiphase, and heat transfer for phase 
change material (PCM). LBM has several advantages, such 
as coherent in the algorithm, proficiency in treating com-
plicated geometrics, easy execution of boundary treatment, 
eminent accuracy, easiness in parallel computing, improved 
stability, modified pressure estimation, and robustness for 
non-trivial geometries and complex physical phenomena 
[81]. A thermal lattice Boltzmann method (TLBM) is uti-
lized to solve the problems based on HT for PCMs [82–85].

A generalized form of the BE can be yielded as [86–88],

where p is the particle distribution function (PDF), t is time, 
c is lattice, and Ω is the collision operator, and it is in inte-
grodifferential form, which develops the solution of Eq. (12) 
complex. A simple approximation proposed by BGK is usu-
ally used to overwhelm this problem. It is represented as 
follows:

(11)
X =

x

L
, Y =

y

L
, U =

uL

�
, t∗ =

t�

L2
,

P =
p

��2
, � =

T − TC

Th − Tc

(12)
�pi

�t
+ � ⋅ ∇p = Ω

where �, peq, and � are collision frequency, equilibrium dis-
tribution function (EDF), and relaxation factor, respectively.

The BE with BGK approximation can be given as,

The discretization of Eq. (14) in space with time yields 
the lattice Boltzmann equation (LBE), which is introduced 
as follows [89, 90].

The var ious symbols in the above equation 
�, Δx, i, Δt, ci , piand p

eq

i
 are coordinates, lattice step size, 

lattice link direction, time step, discrete velocity, PDF, and 
EDF.

•	 Collision (RHS of Eq. 15)

•	 Streaming (LHS of Eq. 15)

LBM for phase change materials

LBM for the PCMs in heat transfer is discussed herein. In 
general, for the study of the thermal field by LBM, there are 
three crucial approaches for attaining it, i.e., the multispeed 
approach [83] double distribution function (DDF) approach 
[84], and the passive scalar thermal lattice Boltzmann 
method (PS-TLBM) [91]. In the case of PCM for heat trans-
fer, two distribution functions are utilized: flow field (p) and 
thermal field (q). LBM formulation for PCM is expressed as

where f eq
i

 and geq
i

 are the EDF for flow and thermal fields, 
respectively, and they can be formulated as below.

(13)Ω = �(peq − p) =
1

�
(peq − p)

(14)
�pi

�t
+ ci∇pi =

1

�
(peq − p)

(15)
pi
(

� + �iΔt, t + Δt
)

− pi(�, t) = −�
[

pi(�, t) − p
eq

i
(�, t)

]

(16)pi(�, t) = pi(�, t) − �
[

pi(�, t) − p
eq

i
(�, t)

]

(17)pi
(

� + �iΔt, t + Δt
)

= pi(�, t)

(18)
pi
(

� + �iΔt, t + Δt
)

= pi(�, t) − �p

[

fi(�, t) − p
eq

i
(�, t)

]

+ ΔtFi

(19)qi
(

� + �iΔt, t + Δt
)

= qi(�, t) − �q

[

qi(�, t) − q
eq

i
(�, t)

]

(20)

p
eq

i
= wi�(�, t)

[

1 +
6
(

� ⋅ �i

)

2c2
s

+
4.5

(

� ⋅ �i

)2

c4
s

+
1.5(� ⋅ �)

c2
s

]
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where u, �,�
�
 , and wi represents the macroscopic variables 

velocity, density, lattice link velocity, and mass function, 
respectively. The mass function (wi) for the D2Q9 model 
(which is mainly the preferred lattice arrangement) and lat-
tice velocity (ci) can be written as,

The parameter collision frequency (ω) is a function of 
kinematic viscosity and thermal diffusivity; for example, 
collision frequency for flow and thermal are �f and �g , 
respectively. These are expressed as,

The fundamental hydrodynamic and macroscopic quanti-
ties such as density (ρ), velocity (u), and temperature (T) can 
be computed from the distribution by using the following 
equations

The term 'Fi' is the term [92–95].

LBM for solid–liquid PC-based study on thermal LB 
model was suggested by shan [82]. By modifying the EDF 

(21)q
eq

i
= wiT(�, t)

[

1 +
3
(

�i ⋅ �
)

c2
s

]

(22)wi =

⎧

⎪

⎨

⎪

⎩

4∕9 ; i = 0

1∕9 ; i = 1 − 4

1∕36 ; i = 5 − 8

(23)

�i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(0, 0) ; i = 0

c
��

cos (i − 1)�∕2

�

,
�

sin (i − 1)�∕2

��

; i = 1 − 4

c

√

2
�

cos
�

(i − 5)�∕2 +
�∕4

�

, sin
�

(i − 5)�∕2 +
�∕4

��

; i = 5 − 8

(24)�p =
1

3� + 0.5

(25)�q =
1

3� + 0.5

(26)�(�, t) =
∑

i

pi(�, t)

(27)�(�, t) =
∑

i

pi(�, t)ci

�

(28)T =
∑

i

qi(�, t)

(29)
Fi = wiF

ci

e2
s

where es =
1
�

√

3

of the thermal field, a recent approach can be evolved 
to address the LH source term. Later, Jiaung et al. [96] 
introduced a simplified energy model called the enthalpy-
based model. The enthalpy-based method can be used for 
solid–liquid PC problems as it eliminates the requirements 
of meeting conditions at the interface position [71, 96, 
97]. The total enthalpy (H) splits into sensible and LH 
enthalpy components in the vicinity of the solid–liquid 
interface (SLI) for PCM problems. The total enthalpy can 
be evaluated by Eq. (31).

The temperature can be estimated by the total enthalpy 
as follows [98, 99]

TS and Tl stand for solidus and liquidus temperatures, 
respectively (Tl ≥ TS and equal symbol denotes the PCP at 
a fixed temperature); and Hl and Hs are the total enthalpy 
representing the liquidus and solidus temperatures, 
respectively.

For the thermal field, the source term will be added to 
Eq. (19), and later, the thermal DF can be obtained as:

PCM with porous media

For the PCMs in porous media, the external force exercised 
by the porous medium on the fluid is considered. The expres-
sion is given by [100–102]

where ν, K, and cF are the kinematic viscosity, permeability, 
and dimensionless Forchheimer term, respectively 
( cF = 1.75

/

150�3 ) stated by Fu et al. [103]�U� =
√

u2 + v2 . 
The permeability (K) can be computed from Kozeny–Car-
man equation [104]K = �3d2

p

/

150(1 − �2) , where dp is the 
mean diameter of pores of the porous medium. The first and 
second expressions on the RHS (right-hand side) in Eq. (34) 

(30)H = CT(�, t) + flL(�, t − Δt)

(31)H =

n−1
∑

i =0

qi

(32)T =

⎧

⎪

⎨

⎪

⎩

H

C
; T < Ts

Ts +
H−Hs

Hl−Hs

�

Tl − Ts
�

; Ts ≤ T ≤ Tl

Tl +
�

H − Hl

�

∕C; T > Tl

(33)
qi
(

� + �iΔt, t + Δt
)

=qi(�, t) − �q
[

gi(�, t) − qeqi (�, t)
]

− wi
L
C
(

fl(�, t) − fl(�, t − Δt)
)

(34)F = −
��

K
U −

�cF
√

K
�U�U + �G
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stand for Darcy term and Forchheimer drag forces, respec-
tively, amid a fluid and porous structure applied to describe 
the essence of the porous media to the fluid flow within the 
liquid regime. The third expression on the RHS in Eq. (34) 
symbolizes the buoyancy term in which the Boussinesq 
approximation is utilized; so, it is given by

where g is acceleration owing to gravity, β represents the 
thermal expansion coefficient, which expresses variations 
in the volume of the molten PCMs owing to the thermal 
difference, and T0 is reference temperature.

LBM for nanoenhanced PCM

It is substantially acknowledged that when the nanoparticles 
are added to the water or some other working fluid, viscos-
ity, thermal conductivity, and other physical properties will 
vary. The density of the nanofluid is expressed as [105–107],

In the above equations φ, ρnf, ρCnf, ρβnf, μnf, and σnf 
represent the volume fraction of nanoparticles, density of 
nanofluid, heat capacity, thermal expansion, dynamic viscos-
ity, and electrical conductivity, and subscripts nf, f, and sp 
denotes nanofluid, base fluid, and solid particles.

LBM boundary condition for PCM

The perspective of the SLI can be traced by updating the liq-
uid fraction Eq. (32), or the no-velocity condition and total 
enthalpy on the acting interface are dealt with immersed 
boundary condition. The no-slip condition is employed in 
the SLI, and the evolution of Eq. (18) is only executed at the 
melted regime. The no-slip/bounce-back boundary condition 
on the SLI dealt with immersed moving boundary condi-
tion initially suggested by Noble and Torczynski [108]. The 
benefit of this technique is that an integrated evolution equa-
tion of the density DF is implemented on the entire domain. 

(35)G = g�T
(

T − T0
)

(36)�nf = �f(1 − �) + �sp�

(37)�nf =
�f

(1 − �)
2.5

(38)
(

�Cp

)

nf
=
(

�Cp

)

f
(1 − �) + (�C)sp�

(39)(��)nf = (��)f(1 − �) + (��)sp�

(40)
�nf

�f
= 1 +

3
(

�sp

�f
− 1

)

�

(

�sp

�f
+ 2

)

−

(

�sp

�f
− 1

)

�

Similarly, Cook et al. [109], Strack and Cook [110], and 
Wang et al. [111] have successfully implemented this tech-
nique to analyze particle–fluid systems. The immersed mov-
ing boundary condition is used to analyze the moving phase 
interface for PCMs. In this method, the evolution equation 
for the density DF, Eq. (15), can be updated as

where B is the weighting factor associated with fluid fraction 
and Ω is the dimensionless relaxation parameter or extra 
collision term and can be written as,

u and us are the macroscopic velocity and solid velocity, 
respectively. The boundary condition for flow and thermal 
field of LBM can be obtained from [78, 112–114].

Thermo‑physical properties of PCM

The thermo-physical properties of some common PCM and 
solid nanoadditives in PCM as NePCM used in the present 
work are illustrated in Tables 1 and 2.

Numerical modeling of PCM and NePCM

LBM Studies of PCM

In this section, the literature covering the heat transfer for 
phase change materials in cavities/enclosures by LBM is 
discussed herein in tabular form (Table 3).

Luo et al. [24] analyzed LB simulation for convection 
melting within the complex heat storage system occupied 
with PCMs for various Ra and Stefan numbers (St). The 
numerical consequences showed that the transient PCP 
depends on the geometrical and thermal parameters. Huang 
et al. [69] simulated the new LBM model for solid–liquid 
PCM for various Rayleigh numbers (Ra). Comparisons 
between the present results with the previous study demon-
strate the feasibility and accuracy of the current approach 
concluded from the study. Later, Kebriti and Moqtaderi [70] 
examined convective solid–liquid phase change by employ-
ing LBM for various power-law indexes (n) and Ra. Results 
showed that as n augments flow at a specified Ra, the mean 
Nusselt number ( Nu ) at the heated wall and the melting 
rate diminish. Sadehi et al. [115] investigated a numerical 

(41)
pi
(

� + �iΔt, t + Δt
)

=pi(�, t) − �p(1 − B)
[

fi(�, t)
−peqi (�, t)

]

+ Ωs
i + ΔtFi

(42)B =

(

1 − fl
)(

�f − 0.5
)

fl + �f − 0.5

(43)Ωs
i
= p

i
(�, t) − pi(�, t) + p

eq

i

(

�, �s
)

− p
eq

i
(�, �)
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study on the solid–liquid phase change process of multilayer 
Rubitherm PCMs within a tubular heat exchanger. Employ-
ing PCMs with the lowest and highest melting temperature 
in the vicinity of cold and hot boundaries leads to higher 
amounts of liquid fraction during the process. The effects 
of PCMs with respect to thickness and melting temperature 
help to choose proper PCMs with high latent heat capacity 
which leads to fluctuating average temperature.

Huo and Rao [117] studied PCM-based battery thermal 
management at a low temperature within the vertical cavity. 
It was remarked that the temperature of the battery dimin-
ishes gradually, and thermal distribution can be assured with 
the help of the latent heat of PCMs. Moreover, lower thermal 
conductivity, higher LH, and more significant surrounding 
temperature can decelerate the solidification procedure of 
PCMs and maintain the battery temperature. However, at 
higher LH of PCMs, the temperature distribution of the bat-
tery gets non-uniform, diminishing the battery's life [138]. 
Fuentes et al. [118] delineated melting with convection and 
radiation within the participating PCM. It was observed 
that free convection acts an essential role in the transitional 
behavior of the overall HT process. The absorbed heat flux 
within the PCMs was more significant by 3%. On the other 
hand, the enhanced absorbed heat flux in PCMs has a neg-
ligible influence on the melted fraction. Liu and He [119] 
investigated solid–liquid phase change (SLPC) with free 
convection within porous media. The numerical outcomes 

show that the current model is efficient and accurate for 
studying transient SLPC within porous media.

Ren and Chan [120] elucidated PCM melting within 
the system utilizing interior fins. The study concluded that 
employing internal fins could heighten the HT in the PCM 
enclosure. The PCMs melt quicker if more fins are used. 
On the other hand, the quantity of melted PCMs at the final 
state gets less when the number of fins is added to the cavity. 
The melting rate of PCMs rises with the length of the fins. 
Zhu et al. [121] delineated 2D and 3D simulations for free 
convection melting within the square cavity. It was remarked 
that the melting rate of 2D is quicker than 3D in the primary 
stage, but the difference shrinks afterward during melting. 
At higher Ra, the Nu and melting rate increase. Enhance-
ment in breadth has a minor effect on the interface, posi-
tions, and shapes in 3D, which signifies that 3D study is 
essential for related study.

Subsequently, Du et al. [122] proposed melting processes 
of large Prandtl number (Pr) PCMs by utilizing organic 
PCM. It was noticed that the numerical consequences agree 
with the existing data acquired numerically and experimen-
tally. Compared with the existing LBM approaches, the cur-
rent technique can capture the melting interface perfectly 
with a small grid density. Yehya et al. [123] explored the 
combined numerical and experimental characterization of an 
impure PCM employing TLBM. The numerical and experi-
mental results demonstrate good agreement. The approach 

Table 1   Thermo-physical properties of PCM

Thermo-physical properties Paraffin Wax Ice water Octadecane Galium Lauric 
acid

Thermal conductivity (W 
m−1 K−1)

0.21 if T<Tsolidus
0.12 if T>Tliquidus

0.54–0.65 (ice)
0.6 (water)

0.152–0.358 40.6 0.15–0.17

Solidus temperature (K) 319 273 300 303 315–316
Liquidus temperature (K) 321 373 300 2477 570–575
Specific heat (J kg−1 K−1) 2890 2093 (ice)

4186 (water)
2150–2185 0.37 1760–

2810
Latent heat of fusion (J kg−1) 173,400 334,000 189,000 5.59 kj/mol 1600–

2108
Dynamic viscosity (Ns m−2) 0.001 exp

(

−4.25 +
1790

T

) 8.90 *10–3 – 8.90 * 10–4 0.0085 0.390 ± 0.003 mPa.s 7.30 mPa.s
Density (kg m−3) 750

0.001(T−319.15)+1
917 (ice)
1000 (water)

774–814 5904 862–1007

Table 2   Thermo-physical 
properties of nanoadditives

Thermo-physical properties GO Al2O3 TiO2 CuO Ag

Thermal conductivity (W m−1 K−1) 5000 17.65 4.8–11.8 18.0 429
Specific heat (J kg−1 K−1) 717 525 683–697 540 235
Maximum addition in NePCM (mass%) 0–15 0–10 0–15 0.-20 0–5
Coefficient of thermal expansion 28.4 6.54–8.68 0.8 0.85 1.89
Density (kg m−3) 1800 3970 3970–4050 6500 10500
Diameter of nanoparticle (nm) <20 <50 <20 <30 <10
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Table 3   LBM studies for PCM for rectangular geometries

Sl
No

Source Computational domain PCM Model Boundary Condi-
tions

Parameters

1 Luo et al. [24]

 

Solid chemical pure 
substance

lattice Boltz-
mann models

laminar, unsteady, 
natural convection 
with no slip

104 ≤ Ra ≤ 107,

Pr = 0.1,

St = 0.1

2 Veismoradi 
et al. [57]

 

Paraffin Wax Finite element 
method

�T

�x
= 0,

�u

�x
= 0

Ra = 5 × 104,

Tm = 54

3 Huang et al. 
[69]

 

Pure substance lattice Boltz-
mann models

laminar, unsteady, 
natural convection 
with no slip

103 ≤ Ra ≤ 105,

Pr = 0.02,

St = 0.01,

4 Kebriti and 
Moqtaderi 
[70]

 

Solid material lattice Boltz-
mann models

laminar, unsteady, 
natural convection 
with no slip

Ra = 5 × 104,

17 × 104 and

84 × 104,

0.8 ≤ n ≤ 1.8.

5 Sadeghi et al. 
[115]

 

Rubith-
erm-31,35,42,50,58,65,70

Caramn Kozeny Periodic time, 
laminar, unsteady, 
natural convection 
with no slip

Ra = 106

6 Veismoradi 
et al. [116]

 

Paraffin Finite element 
method

�T

�x
= 0,

�u

�x
= 0

Ra = 5 × 104,

Tm = 54

7 Huo and Rao 
[117]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 5 × 104,

Tm = 54
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Table 3   (continued)

Sl
No

Source Computational domain PCM Model Boundary Condi-
tions

Parameters

8 Fuentes et al. 
[118]

 

Fatty acid lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

21.5

9 Liu and He 
[119]

 

Isotropic and homoge-
neous

lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Tm = 29.78,

Ra = 6.0 × 105,

Pr = 0.021

10 Ren and Chan 
[120]

 

Fin (aluminum and steel) lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 1.028×

106,

Pr = 6.198,

St = 0.1,

0.1 ≤ FO ≤ 0.25

11 Zhu et al. 
[121]

 

Gallium lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 6 × 105,

Pr = 0.0216,

St = 0.039,

Tm = 29.78

12 Du et al. [122]

 

Organic material (up 
to Pr = 56.2 such as 
paraffin (Pr = 56.2), 
octadecane (Pr = 56.2)

lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Pr = 56.2,

Tm = 27.6,

103 ≤ Ra ≤ 105

St = 0.045
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Table 3   (continued)

Sl
No

Source Computational domain PCM Model Boundary Condi-
tions

Parameters

13 Yehya et al. 
[123]

 

Octadecane lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Tm = 27.6,

Ra = 1.2 × 104

14 Huo and Rao 
[124]

 

Freon lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Gr = 50000,

Pr = 5,

St = 10

15 Huang et al. 
[125]

 

Paraffin/lauric acid lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 5 × 104,

Tm = 80,

Pr = 1,

St = 1,

F0 = 0.2

16 Gao et al. 
[126]

 

Air lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Da = 1.37 × 10−5

St = 0.124,

Pr = 0.020,

� = 0.385,

Tm = 0.391

17 Peng and 
sadaghiani 
[127]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

0.0 ≤ � ≤ 4.0

Tm = 27

18 Ibrahem et al. 
[128]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

103 ≤ Ra ≤ 105,
0.0 ≤ � ≤ 2.0,
Pr = 6.2
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Table 3   (continued)

Sl
No

Source Computational domain PCM Model Boundary Condi-
tions

Parameters

19 Lin et al. [129]

 

Paraffin RT35 lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

St = 0.080,

0.132, 0.183,
Tm = 18.2

20 Jourabian et al. 
[130]

 

Ice lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Pr = 6.2, Ra = 105, St = 1

21 Gaedtke et al. 
[131]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Tm = 36
12 ≤ Fo ≤ 51

22 Yin et al. [132]

 

Solid PCM lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 5 × 107,
Pr = 0.005,

St = 0.1,ε = 0.81, , and

9.34

23 Rui et al. [133]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 25000,

Pr = 0.02,

St = 0.5,

0.4 ≤ F0 ≤ 1

24 Feng et al. 
[134]

 

Composite lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 2.2 × 105, 
St = 0.042, 
Pr = 0.021,

25 Liu et al. [135]

 

Paraffin lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

Ra = 106,
Pr = 0.02, St = 0.01, 

F0 = 0.36–1.08
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permits highlighting the behavior of PCMs and character-
izes their thermo-physical properties. Huo and Rao [124] 
introduced LBM for solid–liquid PCP of PCM for constant 
heat flux. The consequences demonstrated that additional 
energy on the upper part of the left wall could emphasize 
the clockwise rotation. Additional input energy intent in the 
middle of the left wall is an efficient means to speed up the 
solid–liquid PCP and preserve the temperature of PCMs. 
Huang et al. [125] explored experimentally and numerically 
the melting process of PCMs embedded in open-cell metal 
foams by using LBM. The influence of foam porosity on the 
HT process in porous structures is investigated. The outcome 
indicates that at larger porosities of the metal foams, the 
PCMs prove to raise the melting speed. The importance of 
conduction in PCMs for the melting process in metal foam 
is noticed.

Consequently, Gao et al. [126] presented the melting 
of PCM within the porous media with conducting fins. 
The computational outcomes showed that the melting heat 
transfer could be improved by adding conducting fins in 
the porous material. The speed of melting rises with the 
enhancement in the length of the fin and diminishment 
in the heat capacity of the fin. On the other hand, the fin 
in the vertical position has no significant impact on the 
melting rate. Peng and sadaghiani [127] elucidated the 
improvement of the thermal function of PCM by employ-
ing alumina nanoparticles within the circular, rectangular 
enclosure. The results obtained by the variation of fin num-
bers conclude that the more the fins, the more the MAR 
parameter of PCM, and later the more the improved energy 
storage capability. Further, the effect of the addition of 

nanoparticles of Al2O3 into paraffin showed that 3% of 
nanoparticles can increase the MAR parameter rather than 
lower mass percentage. However, the nanoparticle concen-
tration of more than 3% has no significant effect on the 
MAR parameter.

Ibrahem et al. [128] explored the effect of nanopar-
ticles on the melting process with PCM for several per-
tinent parameters. It was found that the HT by conduc-
tion dominates in the initial melting phase, and then, the 
convection starts dominating. Also, the nanoparticles 
in the PCMs enhance the phase change. Besides, it was 
remarked that the thermal conductivity increases due to 
the addition of copper nanoparticles, but the melting rate 
and latent heat get reduced. Lin et al. [129] delineated 
the complex interaction of free convection and melt-
ing of PCM within a spherical capsule of various sizes. 
The influence of inhomogeneous PCM properties on the 
melting rate was nonlinear in various melting phases. 
Jourabian et al. [130] introduced thermal transport-free 
convection melting of PCMs in a partially heated square 
enclosure. When the heated plates are placed on top or 
middle of the enclosure, convection dominates in the top 
regime of the enclosure.

Gaedtke et al. [131] elucidated the total enthalpy-based 
simulation of melting in metal foam composite/paraffin 
PCM in 2D and 3D. The study describes the multidomain 
HT in 3D; the thermal conductivity of foam is 1000 times 
larger than paraffin. The expected sequence of the melt-
ing front and the effect of various foam-specific surface 
regions closely agree with the previous one. Yin et al. 
[132] conducted a study on SLPC at a pore scale with 

Sl
No

Source Computational domain PCM Model Boundary Condi-
tions

Parameters

26 Liu et al. [136]

 

Paraffin wax lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

104 ≤ Ra ≤ 106, 
Pr = 27.2, 37.2, and 
47.2, St = 0.482, 
0 ≤ F0 ≤ 0.0971, 
Tm = 54 °C

27 Lu et al. [137]

 

Solid pure dielectric 
substance

lattice Boltz-
mann models

Th = Isothermal (left 
wall)

Tc = Isothermal 
(Right wall)

Insulated top and 
bottom wall

No slip

2 × 104 ≤ Ra ≤ 2 × 105, 
St = 0.01, Pr = 0.02, 
0 ≤ F0 ≤ 50

Table 3   (continued)
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central moments in TES. It was noticed that higher sta-
bility was observed at higher Ra and low viscosity. Rui 
et al. [133] presented free convection melting within the 
square enclosure. It was remarked that the top heating 
wall increases the melting time of the solid phase, but 
has a minor influence on the PC in the bottom part. The 
higher liquid fraction in another model was about 16.8% 
augmentation, and the extra top heating hastens the mean 
melting time by 16.8%. Feng et al. [134] explored ther-
mal performance evaluation for bionic porous ceramic 
PCM utilizing micro-computed tomography. The rate of 
melting increases significantly due to the heat transfer 
path. A higher thermal contact resistance leads to lower 
melting time which diminishes the augmentation effect 
of a porous frame. Liu et al. [135] delineated solid–liq-
uid-based phase change HT within the confined annulus. 
It was observed that present outcomes found excellent 
agreement with the previous study. Liu et al. [136] intro-
duced a numerical study of paraffin wax melting within 
circular tubes for various relevant parameters. It was 
remarked from the study that in the SLPC process for 
paraffin melting, heat conduction was the primary cause 
in the early phase of phase transformation. The enhance-
ment in Rayleigh number (Ra) showed the augmentation 
in the strength of free convection, which reduces the 
lessen of the Nu due to the movement of the phase inter-
face. Lu et al. [137] delineated HT augmentation analysis 
of electro-hydrodynamic (EHD) for SLPC inside a square 
cavity. Results showed that, during heating and injection 
from the lower portion, EHD rises thermal transport by 
modifying the onset of the flow motion within the liquid 
zone, whereas in the case of heating and injection from 
the left part, strong enough Coulomb force leads to the 
transition of the convection rolls which augments heat 
transfer at times of the melting.

Tao et al. [139] presented phase change heat transfer (HT 
hereafter) within metal foam or paraffin composite PCMs. 
The outcomes showed that the projected technique could 
enhance the HT process's uniformity and increase HT per-
formance. Feng et al. [140] numerically examined the melt-
ing of nanoparticle-enhanced PCMs within the rectangular 
enclosure heated from the bottom portion. In the early con-
duction phase, melting was the dominating component in 
thermal transport behavior, and the melting interface was 
noticed.

Jourabian et al. [141] numerically studied the melting of 
nanoparticle-enhanced PCMs within the cylindrical tube. 
It was noticed that the melting point is uniform within the 
entire region of the cylinder at lower Ra. At the same time, 
it escalates at the top of the cylinder at intermediate Ra. In 

addition, unstable solid flow in the lower part of the cyl-
inder at a Ra of 106 leads the melting time to acute after a 
specific point [142]. Talati and Taghilou [143] simulated 
the application of LBM on the PCM solidification inside a 
rectangular finned container. It was noticed that the maximal 
time needed for freezing the PCM occurs at the aspect ratio 
of 0.5. Heat loss diminishes by locating the PCM within the 
composite plane wall. Moreover, the maximum analytical 
overestimation takes place at AR = 0.5.

In another study, Jourabian et al. [144] numerically stud-
ied the melting process in the porous media along two heated 
cylinders. The influence of thermal conductivity ratio and 
porosity between PCMs and porous structure is explored. It 
was noticed that a reduction in porosity causes a diminish-
ment in the system melting rate and TES capacity. Moreo-
ver, augmenting the thermal conductivity proportion of the 
porous matrix leads to the enhancement of the melting rate. 
Mabrouk et al. [145] introduced the effect of porosity on the 
PCMs' thermal performance within the porous rectangular 
channel for different porosity effects under the influence of 
Reynold number (Re). It can be remarked from the findings 
that the different features of metal foam, such as porosity 
and conductivity, decrease later, and the augmentation in Re 
enhances the melting due to unsteady, forced, and laminar 
convection.

Han et al. [146] proposed an LBM simulation of melt-
ing heat transfer within the composite PCM. Solid–liquid 
interface and dynamic temperature evolution are analyzed. 
The consequences illustrate that the thermal performance 
of PCMs enhances due to metal particles as nanoparticles. 
Li et al. [147] numerically investigated pore-scale gravity 
effects on the PC HT features. It was concluded from the 
study that free convection acts a substantial character in 
the melting process. In contrast, it steadily attenuates with 
the diminishment in gravity, which induces the inhibit-
ing effect of the melting process and navigates the transi-
tion of the dominant HT mechanism from convection to 
conduction.

Shirbani et al. [148] studied the improved TES occupying 
metal foam as PCMs containing several pore arrangements. 
It was noticed from the study that large pores could render 
better free convection, increasing the HT rate and decreas-
ing the melting period. Chiappini [149] numerically studied 
coupled lattice Boltzmann (LB) FVM for PCM analysis. It 
was concluded from the study numerical, and literature data 
have a good agreement for the upcoming model. Ren et al. 
[150] presented the LBM of PCM and HT characteristics 
within the multilayer deposition to attain rapid prototyping 
and assure bonding quality. The study noticed that prediction 
adopts the best possible temperature state for manufacturing 
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and demonstrates the disparity in temperature trends at vari-
ous positions.

Studies of NePCM by LBM and other traditional 
techniques

This present section studies the melting and solidification 
characteristics of NePCM in various applications with a 
brief description of boundary conditions and preferred mod-
els for formulation. A brief description of literature cover-
ing the heat transfer for NePCM in cavities/enclosures by 
LBM and other techniques is discussed herein in tabular 
form (Table 4).

The dispersion of hybrid nanoparticles in PCMs 
enclosed in a cavity with specific boundary conditions 
provides an enormous alteration of thermo-physical prop-
erties in the melting and solidification phase [163]. In this 
regard, Ghalambaz et al. [151] [164] analyzed the effect of 
0–5% mass fraction Mg–MgO nanoparticles with paraffin 
wax in a square cavity. After melting, the thermo-physical 
properties were assumed to be constant; however, in the 
liquid phase, the hybrid nanofluids are assumed to be 
constant except for the density variation. A marginal vari-
ation in the liquid fraction has been observed due to the 
enhancement of dynamic viscosity greater than thermal 
conductivity enhancement. However, similar researchers 
analyzed the heat transfer of nanoencapsulated PCM in a 
porous cavity with the suspension of nanoparticles. The 
NePCM particles could be able to enhance the heat trans-
fer up to 28% with a fusion temperature of 0.5 and incli-
nation angle of 42°. However, Boukani et al. [165] ana-
lyzed the melting characteristics of NePCM in partially 
filled horizontal elliptical capsules with different aspect 
ratios and nanoparticle volume fractions. The increase in 
nanoparticle concentration enhances the melting rate, but 
decreases the NePCM volume change. It was also found 
that the shape of the solid–liquid interface is a function 
of both heat transfer rate and air void inside the capsule. 
To a similar extent, Selimefendigil et al. [155] analyzed 
the natural convection study of CuO–water nanofluid in 
a cavity with conductive partition and PCM under the 
effect of a uniform magnetic field. The results showed 
an average increase of heat transfer around 31.81% aug-
mentation with a magnetic inclination of less than 5%. 
Chen et al. [1] elucidated a solid–liquid model for PCM 
melting, occupying porous media within the cylinder-
shaped heat exchangers for different parameters. The 

adopted technique is accepted and applied for a broad 
range of PCM phase changes, which promotes the design 
and progress of PCM heat exchangers for TES systems 
was noticed from the study.

However, Ghalambaz et  al. [156] and Zadeh et  al. 
[166] analyzed the thermal performance and response 
time of the petal-shaped shell and tube TES unit. The 
optimum design could improve the amount of storage 
capacity by 23.3% with Cu and 22.5% with GO NePCM 
compared to average designs. The results of this study 
also indicated that the geometric parameters should be 
considered as a primary factor in TES. In comparison, 
Nayak et al. [158] analyzed a free convection heat trans-
fer in NePCM inside a circular cold cylinder with a wavy 
hot baffle of varying amplitude subjected to a magnetic 
field. The amplification of Ra accounts for the fast move-
ment of fluid, while Ha causes the slow movement of 
fluid depending upon the intensity of the natural convec-
tion of NePCM. Similar results with a CFD-developed 
model with a heat transfer acceleration by an increasing 
number of baffles to 3, 7, 11, and 15 baffles provide a 
water temperature enhancement up to 26.37%, 29.38%, 
34.06%, and 37.36%, respectively [167]. Similarly, Zidan 
et al. [159] analyzed the natural convection and entropy 
of NePCM water over a reverse T-shaped porous cav-
ity for low emaciation of energy consumption in build-
ings. The use of NePCM maintains the thermal manage-
ment of buildings efficiently with a better heat transfer 
rate. With the amplification of Ra, the intensification of 
streamlines, velocity fields, and structural changes of the 
PCM zone attained a decrease of Da. There is an uplift 
in Nuavg with an increase in NP concentration from 1 
to 5%, which ensures an increase in heat transfer due 
to the addition of NPs. However, Sadeghi et al. [160] 
investigate natural convection and entropy generation 
in a NePCM-based L-shaped cavity in which St, micro-
rotation, and non-dimensional fusion develop a negative 
impact on heat transfer and reduce Nu up to 25%, 42%, 
and 15%, respectively. Similar results with PCM-based 
heat sinks were also observed in L-shaped paraffin–cop-
per metal foam with heat enhancement in pulse tube with 
steady heat flux [168]. In a similar context, Ghalambaz 
et al.[162] modeled a nanoencapsulated PCM in a coaxial 
cylindrical cavity, which ensures an unsteady charging 
and discharging behavior of NePCM suspension with a 
higher value of temperature at the particle core and an 
increase in heat transfer rate.
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Conclusions

This manuscript is proposed to assess the recent studies 
of PCMs for TES and heat transfer applications in fusion 
with LBM. In recent years, PCM has been recommended 
as a potential TES medium and receiving significant 
attention. LBM has evolved as a potential tool to solve 
problems based on f luid f low, thermal, multiphase, 
PCM, species transport, and many more studies. Most 
studies revealed that paraffin wax had been used as PCM 
for TES. A few studies have considered polyethylene 
glycol, lauric acid, and palmitic acid as PCM for TES. 
The literature associated with PCM for TES by LBM and 
other traditional techniques has been reviewed. TES is 
considered mainly from the theoretical point of view, 
considering various traditional techniques. The LHTES 
method via PCMs is an efficient means of TES and pos-
sesses the benefits of high-energy storage. The outcomes 
associated with various studies revealed pragmatic sig-
nificance in an extensive range. PCM can be consid-
ered a future-generation energy source to encounter 
the increasing demand of energy sources such as solar 
thermal energy storage, air-conditioning unit, refrigera-
tion system, electronic cooling, drug delivery unit, and 
crystal growth.

However, over the few years, the evolution of the 
particle-based discrete simulation method (LBM) has 
provided a robust and flexible approach to melting and 
solidification characteristics of PCM for various TES 
and heat transfer applications. This method develops a 
solid–liquid phase change model to simulate the tran-
sient phase change in porous media. It also combines 
an axisymmetric enthalpy change scheme to simulate 
the phase change efficiently by providing an elemen-
tary volume for modeling the PCM. Moreover, LBM 
coupled with single-relaxation and multirelaxation time 
schemes helps to simulate the fluid flow and tempera-
ture field. This new model is also applicable to predict 
the performance in various TES with brief ideas of heat 
transfer under various external forces. The approach is 
about enhancing the thermal transport area and augment-
ing the thermal conductivity of PCM simultaneously. 
Therefore, it is advised that future research focuses on 
the use of extended surfaces (fins, heat pipes), as well as 
the addition of high-conductivity materials, to improve 
heat transfer in LHTES systems. The authors proposed 
that more examination with visualization is needed to 
analyze the substantial augmentation in PCM for TES 
applications so that the changing of phase, such as the 
melting or solidification patterns within the PCM sys-
tems, can be characterized.
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