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Abstract
In this paper, the crystallization kinetics of  Hf26Be18Ti18Zr18Cu7.5Ni12.5 high mixing entropy amorphous alloys under non-
isothermal conditions are studied. The alloy shows two different crystallization events. In addition, the activation energies of 
the two crystallization events are calculated using the Kissinger, Augis-Bennett, and Ozawa methodologies. Similar values 
are obtained by the three equations. The activation energy of the first crystallization event is slightly less than that of the 
second crystallization events, which indicates that the first crystallization can easily occur. The modified Johnson–Mehl–
Avrami (JMA) equation is then used to further analyze the non-isothermal crystallization kinetics. The Avrami exponent 
(n(α)) is between 1.5 and 2.5 for the first crystallization even and most instances (0.1 < α < 0.5) of the second crystallization 
event, which demonstrates that the crystallization mechanism has mainly been controlled by a three-dimensional growth 
with a nucleation rate decrease. Moreover, n(α) is between 1 and 1.5 in the second stage of the second crystallization event 
(0.5 < α < 0.9), which implies a direct growth of crystal nuclei. Compared with the other alloys,  Hf26Be18Ti18Zr18Cu7.5Ni12.5 
has stronger high entropy effect, leading to more sluggish diffusion and more difficult crystallization.

Keywords High mixing entropy amorphous alloys · Non-isothermal crystallization behavior · Activation energy · Avrami 
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Introduction

Due to the lack of dislocations, grain boundaries, and other 
defects in the amorphous alloy, it has high strength, high hard-
ness, high wear resistance, and other unique properties, that cur-
rently attract more attention [1–4]. The previously developed 
amorphous alloys are multicomponent alloys containing one or 
two principal elements [5–8]. In recent years, with the develop-
ment of the amorphous alloy concept, several kinds of equia-
tomic or near equiatomic amorphous alloys that are defined as 
high entropy amorphous alloys, have been presented [9]. High 
entropy amorphous alloys have high glass-forming ability (GFA) 
and unique mechanical properties compared with conventional 
amorphous alloys. This provides a new idea for the discovery 
of new amorphous alloy systems and is of great significance 
for their application. For example, the  Pd20Pt20Cu20Ni20P20 high 
entropy amorphous alloys [9] have a large GFA with a diameter 

of 10 mm. Zhao [10] recently studied the mechanical properties 
and the glass-forming ability of the  Ti20Zr20Hf20Be20(Cu20-xNix) 
high entropy amorphous alloys. Among those amorphous alloys, 
the  Ti20Zr20Hf20Be20(Cu50Ni50)20 alloy has the best GFA, a 
critical diameter greater than 25 mm, and a yield strength up to 
2019 MPa. In addition, the Hf-based high entropy amorphous 
alloy has larger GFA than the other alloys, its critical diameter is 
15 mm, and its strength at room temperature reaches 2539 MPa 
[11].

According to the studies presented in [12, 13], the 
amorphous alloys have very good plastic deformation in 
the supercooled liquid region, which resolves the issue of 
amorphous alloys being difficult to be mechanically pro-
cessed due to their low plasticity at room temperature. 
Amorphous alloys are generally metastable materials, and 
they will crystallize during high-temperature deformation, 
which will affect their performance. Therefore, it is very 
important to analyze the crystallization kinetics of amor-
phous alloys, which will help to understand their crystalliza-
tion during high-temperature deformation. Different models 
are used to describe the crystallization kinetics according 
to the heating process. Activation energies are calculated 
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using the Kissinger, Ozawa, and Augis-Bennett methods 
in non-isothermal mode [14]. The crystallization kinetics 
is usually studied using the Johnson–Mehl–Avrami (JMA) 
method [15, 16]. Several studies on the thermal properties 
and behaviors of amorphous alloy crystallization have been 
performed. However, few studies focused on the crystalliza-
tion kinetics of the Hf-based high-entropy amorphous alloys.

In this paper, the crystallization behaviour of the 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 high mixing entropy amorphous 
alloy in non-isothermal condition was studied. The activa-
tion energy and kinetic parameters of crystallization were 
calculated to explain the nucleation and growth mechanism.

Experimental

Master alloy ingots with nominal composition of 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 (at.%) were prepared by arc 
melting the mixture of Hf, Be, Ti, Zr, Cu, and Ni metals 
(purity ≥ 99.9%) in a high-purity argon atmosphere. They 
were remelted 4 times to ensure the complete melting and 
the composition homogeneity. The cylindrical rods, having a 
diameter of 4 mm, were then produced by copper mold suction 
casting. The microstructure of  Hf26Be18Ti18Zr18Cu7.5Ni12.5 
was studied by X-ray diffraction (XRD, bruker D2 PHASER, 
Cu (Ka)) and transmission electron microscopy (TEM, JEOL 
JEM-2010). The non-isothermal crystallization behavior was 
determined using a differential scanning calorimeter (DSC, 
METTLER-TOLEDO TGA/DSC1) under heating rates of 10, 
20, 30, 40, and 50 K  min−1.

Results and discussion

Figure  1A shows the XRD pattern of the as-cast 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 amorphous alloy. A broad diffuse 
scattering peak in the range of 35–50° can be observed, indi-
cating that the alloy has a fully amorphous structure. Figure 1b 

shows TEM micrographs of the  Hf26Be18Ti18Zr18Cu7.5Ni12.5 
alloy. A uniform microstructure can be observed from the 
bright-field image. In addition, the consequent selected area 
of the electron diffraction pattern exhibits an amorphous ring, 
which shows a fully amorphous structure.

The DSC curves of  Hf26Be18Ti18Zr18Cu7.5Ni12.5 obtained 
at different heating rates are shown in Fig. 2. The repre-
sentative temperatures, including the glass transition (Tg), 
onset crystallization (Tx), and crystallization peak (Tp) tem-
peratures, are indicated by arrows. The DSC curves have two 
exothermic peaks that are related to the crystallization of the 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 amorphous alloy. The character-
istic temperatures, such as Tg, Tx1, Tp1, Tx2, and Tp2, as well 
as the temperature difference △Tx (△Tx = Tx–Tg), are pre-
sented in Table 1. The results show that these characteristic 
temperatures increase with the increase of the heating rate, 
which indicates that there is a significant correlation between 
the crystallization rate and the heating rate.

E may be used to represent the difficulty of crystallization, 
which can be calculated using the Kissinger, Augis–Bennett, 
and Ozawa equations. The Kissinger equation is given by [17]:

where β denotes the heating rate, R represents the constant, 
and T is the temperature.

E can also be calculated using the Ozawa equation [18]:

Finally, the Augis–Bennett equation is given by [19]:

It can be observed that Eq. (3) describes a linear relationship 
between 1/T and ln(T/β).
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Fig. 1  XRD pattern (a) and TEM images (b) of the as-cast  Hf26Be18Ti18Zr18Cu7.5Ni12.5
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Equations (1), (2), and (3) are then used to calculate 
the activation energies of the  Hf26Be18Ti18Zr18Cu7.5Ni12.5 
amorphous alloy. The Kissinger, Ozawa, and Augis–Ben-
nett plots are shown in Fig. 3. Ex1, Ep1, Ex2, and Ep2 are 
shown in Table 2. It can be observed that the activation 
energies calculated using the three equations are very 
similar. However, the activation energies calculated using 
Eq. (2) are larger than those calculated using Eqs. (1) and 
(3).  Hf26Be18Ti18Zr18Cu7.5Ni12.5 has larger Ep and Ex val-
ues than  Hf20Ti20Zr20Be20(Cu10Ni10) (Ex1 = 262 kJ  mol−1, 
Ep1 = 242.6  kJ   mol−1, Ex2 = 492.8  kJ   mol−1, and 
Ep2 = 483 kJ  mol−1) [20], which demonstrates that it has a 
high thermodynamic stability.

Tx is related to the nucleation process. In addition, it can 
be observed that Tp is also related to its growth process 
[21]. Therefore, Ex1 and Ex2 can represent the activation 
energy of grain nucleation, while Ep1 and Ep2 can repre-
sent the activation energy of the growth process. It can be 
deduced from Table 2 that Ex1 is lower than Ex2, which 
implies that the barrier of energy for the second crystal-
lization is larger than that of the first crystallization. This 
also indicates that the first crystallization is more likely 

to occur. Moreover, Ep1 is lower than Ep2, which indicates 
that the growth process during the first crystallization 
event is more likely to germinate than the second crystal-
lization event. Finally, it can be deduced that Ep is lower 
than Ex, which indicates that the nucleation is more likely 
to occur than the grain growth during crystallization.

Using the previously described methods, it can be 
deduced that E is related to the first and second crys-
tallizations. However, due to the difference of the grain 
growth and grain nucleation, the activation energy for 
distinct crystallized volume fractions (α) may change. 
Consequently, the dependence of the activation energy on 
α should be further discussed during the crystallization 
process.

α can be computed as [22]:

where T0 and T∞ are the temperatures of crystallization start 
and crystallization end in the amorphous alloys, respec-
tively. Figure 4 presents α for two exothermic peaks for 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5. A temperature sigmoid depend-
ency at various heating rates is observed for all the amor-
phous alloys during the non-isothermal crystallization pro-
cesses [23], which indicates that the rate of crystallization 
is slower at α < 0.1 and α > 0.9. It can also be observed that 
the crystallization reaction quickly occurs for 0.1 < α < 0.9.

The activation energies Ea(α) at different crystallized 
volume fractions are calculated using the Kissinger–Aka-
hira–Sunose (KAS) equation [16, 24, 25]:

Figure 5 shows the KAS curves for the two crystalliza-
tion peaks for the  Hf26Be18Ti18Zr18Cu7.5Ni12.5 BMG. It is 
determined for the evolution of Ea(α) function of α through 
linear fitting (Fig. 6). It can be deduced that the average 
activation energies for the first and second crystallization 
events are 204.8 kJ.mol−1 and 222.5 kJ.mol−1, respectively. 
In particular, Ea(α) of the second crystallization peak is 
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Fig. 2  DSC curves of  Hf26Be18Ti18Zr18Cu7.5Ni12.5 at different heating 
rates

Table 1  Temperature 
parameters of 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 at 
different heating rates

Heating rate/K 
 min−1

Tg/K Tx1/K Tp1/K Tx2/K Tp2/K △Tx/K

10 650.21 689.16 706.06 743.17 774.04 38.95
20 649.56 696.15 720.03 760.33 784.78 46.59
30 650.21 704.04 727.00 770.00 798.51 53.83
40 654.02 708.82 730.55 775.33 803.14 54.80
50 656.49 713.03 738.3 781.5 806.96 56.54
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smaller than that of the first crystallization peak. Note that 
these results are consistent with the calculated results. The 
higher the Ea(α) values of the first crystallization stage, the 
more difficult the crystallization, which results in a slow 
increase of α (Fig. 4). Ea(α) starts to first increase, and it 
finally decreases after the beginning of the crystallization.

The isothermal crystallization kinetics can be derived 
from the JMA equation [26]:

(6)ln[−ln(1 − �)] = nln(t − �) + nlnk
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Fig. 3  Kissinger (a), Ozawa (b), and Augis–Bennett (c) plots for  Hf26Be18Ti18Zr18Cu7.5Ni12.5

Table 2  Activation energies of  Hf26Be18Ti18Zr18Cu7.5Ni12.5, calcu-
lated with different methodologies

Method First peak Second peak

Ex1/kJ  mol−1 Ep1/kJ  mol−1 Ex2/kJ  mol−1 Ep2/kJ 
 mol−1 l

Kissinger 285.6 246.3 492.9 481.5
Ozawa 298.8 260.1 525..3 510.0
Augis–Ben-

nett
291.9` 252.3 509.1 496.0
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where � is the crystallized volume fraction, t represents the 
annealing time, and � denotes the incubation time. However, 
the JMA equation can only be used for isothermal modes. 
Blázquez [27] proposed an extended version of the JMA 
equation for non-isothermal conditions:

where T
0
 represents the initial temperature crystallization 

and E
a
 is the corresponding activation energy.
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Figure  7 shows the curves of ln([−ln(1 − �)]) and 
[ln

(

T − T
0

)

∕�] for  Hf26Be18Ti18Zr18Cu7.5Ni12.5. Based on 
Eq. (7) and Fig. 7, n(α) varies with respect to the crystallized 
fraction (α), as shown in Fig. 8. For the first crystallization 
event, the n value reaches 2.5 at α = 0.1 at the beginning of 
the crystallization process. When α increases, n decreases. 
At α = 0.9, n is mostly larger than 1.5. It can be observed 
that in almost the entire crystallization process, n(α) ranges 
between 1.5 and 2.5 for 0.1 < α < 0.9, which indicates that the 
crystallization process is dominated by diffusion-controlled 

three-dimensional growth with the decrease of the nuclea-
tion rate [13–15]. For the second crystallization event, n(α) 
ranges between 1.5 and 2.5. However, the second crystal-
lization should have two steps. When α is in the range of 
0.1–0.5, n ranges between 1.5 and 2, which indicates that 
the crystallization mechanism is guided to diffusion-con-
trolled three-dimensional growth with the decrease of the 
nucleation rate. When α is in the range of 0.5–0.9, n is less 
than 1.5, which indicates that a more crystal nuclei directly 
grows up [13–15]. The second crystallization of the amor-
phous alloy can be divided into two steps: precipitation of 
the small crystallites, and growth and aggregation of the 
crystal grains.

In order to analyze the phase precipitation during the two 
crystallization events for  Hf26Be18Ti18Zr18Cu7.5Ni12.5, the 
samples are annealed at 720 K and 784 K for 10 min. The 
XRD patterns of the annealed sample are shown in Fig. 9. 
The alloy annealed at 720 K (Tp1) generates a small num-
ber of diffraction peaks, representing the precipitation of 
FCC and BCC solid solutions. When the annealing tem-
perature increases to 784 K, the  Ni7Zr2 and  Cu5Zr are also 
detected in the XRD curves, in addition to BCC and FCC 
solid solutions. Figure 9 shows that completely crystallized 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 samples are detected in the four 
crystalline phases. However, HfTiZrBeCu and HfTiZrBeNi 
high-entropy amorphous alloys [27] can be detected in only 
three phases.  Hf26Be18Ti18Zr18Cu7.5Ni12.5 has stronger high 
entropy effect, leading to more sluggish diffusion and more 
difficult crystallization.
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Conclusions

In this paper, the non-isothermal crystallization kinetics of 
 Hf26Be18Ti18Zr18Cu7.5Ni12.5 high mixing entropy amorphous 
alloys were investigated by XRD and DSC. The conclusions 
are as follows:

1. Hf26Be18Ti18Zr18Cu7.5Ni12.5 had two distinct crystalliza-
tion events. In addition, the characteristic temperatures 
(Tx1, Tp1, Tx2, and Tp2) increased with the increase of the 
heating rate.

2.  The activation energy was calculated using the Kiss-
inger, Augis–Bennett, and Ozawa methods, and similar 
values were obtained. It was observed that the activation 
energy of the first crystallization event is slightly lower 
than that of the second crystallization event. This indi-
cates that the first crystallization can easily occur.

3.  The local Avrami exponent value (n(α)) ranges between 
1.5 and 2.5 for the first crystallization even and most of 
the instances (0.1 < α < 0.5) of the second crystallization 
event, which indicates that the crystallization mecha-
nism is guided to diffusion-controlled three-dimensional 
growth with the decrease of the nucleation rate. In the 
second stage (0.5 < α < 0.9), for the second crystalliza-
tion event, n(α) ranges between 1 and 1.5, which indi-
cates that a more crystal nuclei directly grows up.

4.   Hf26Be18Ti18Zr18Cu7.5Ni12.5 shows four crystalline 
phases in the corresponding complete crystallization. 
The alloy demonstrates stronger high entropy effect, 
leading to more sluggish diffusion and more difficult 
crystallization.

5.  Due to the fact that the sluggish diffusion remains amor-
phous during heat processes at a temperature less than 
Tp1,  Hf26Be18Ti18Zr18Cu7.5Ni12.5 can be used for various 
applications such as the precise instrument and biomedi-
cal field in different crystallization temperature ranges.
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