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Abstract
Nitrocellulose is a typical nitro-energetic material that has been widely used in civil and military fields; however, its high 
flammability and explosibility have made it the main hazard factor in many industrial accidents. Understanding the thermal 
characteristics of this material is the basis for effective hazard control. Therefore, we investigated the thermal stability param-
eters of nitrocellulose by using multiple calorimetric techniques (thermogravimetry, differential scanning calorimetry, and 
adiabatic accelerating calorimetry). The Friedman, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Starink, and Vyazovkin 
thermokinetic methods were used to analyze the activation energy of nitrocellulose under different oxygen contents (0%, 5%, 
10%, 15%, and 21%). In addition, the mechanisms of thermal decomposition, adiabatic temperature rise, time to conversion 
limit, and self-accelerating decomposition temperature were determined. The results reveal that the thermal decomposition 
of nitrocellulose in a nitrogen atmosphere was a one-step autocatalytic reaction. The activation energy under different oxygen 
contents showed an “increase–stabilize–decrease” trend during thermal decomposition. The findings of this study can serve 
as a reference for the suitable production, storage, transportation, and usage of nitrocellulose.

Keywords Thermal decomposition · Reaction kinetics · Adiabatic temperature rise · Time to conversion limit · Self-
accelerating decomposition temperature

List of symbols
A  Frequency factor (1  s‒1)
Ea  Apparent activation energy (kJ  mol‒1)
T  Absolute temperature (K)
M  Sample mass (mg)
m0  Initial mass of sample (mg)
me  Final mass of sample (mg)
t  Time (s)
k  Reaction rate constant
T0  Onset temperature (°C)
Tp  Peak temperature (°C)
ΔH  Heat of reaction (J  g−1)

ΔTad  Adiabatic temperature rise (°C)
f(α)  Differential form of reaction mechanism function
G(α)  Integral form of reaction mechanism function
R  Universal gas constant [8.314 J (mol K)‒1]
R2  Coefficient of determination
CK  Constant for Kissinger method
CO  Constant for Ozawa method
CB  Constant for Boswell method
Cs  Constant for Starink method
TCL  Time to conversion limit (day)
TMR  Time to the maximum reaction rate (day)
SADT  Self-accelerating decomposition temperature (°C)
ϕ  Factor of thermal inertia
α  Conversion rate
β  Heating rate (°C  min−1)

Introduction

Nitrocellulose is a typical nitro-energetic material that can 
be prepared through the esterification of cellulose and nitric 
acid [1, 2]. This material is currently widely used in civil and 
military fields to produce paints, films, plastics, explosives, 
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and rocket propellants [3–6]. However, nitrocellulose has 
been the main hazard factor in many industrial accidents 
because of its high flammability and explosibility. The 
thermal runaway of nitrocellulose has caused many disas-
ters, such as the ones in Shinagawa Ward (July 14, 1964), 
Zhongshan (August 16, 2006), Xingtai (January 24, 2014), 
and Tianjin (August 12, 2015) [3, 7–9]. The worst tragedy 
in recent years was the fire and explosion at Tianjin port, 
in which 165 people died, eight people were lost, and 798 
people were injured. In addition, the direct economic loss 
caused by this accident was RMB6.866 billion. The hazard-
ous properties of nitrocellulose dramatically limit its appli-
cations, and the associated thermal safety issues have been 
studied extensively by scholars worldwide [10–15].

Many researchers have investigated the thermal hazard 
of nitrocellulose in terms of its decomposition, combus-
tion, and explosion characteristics. Kinetic analysis has 
been conducted often in such studies, and the parameters 
of the Arrhenius equation have been obtained, which are 
crucial for evaluating the safety level of nitrocellulose in its 
manufacturing, storage, and transportation [5, 10, 16–18]. 
Pourmortazavi et al. investigated the thermochemical behav-
ior of nitrocellulose samples with different nitrate contents 
and obtained the activation energy, frequency factor, and 
critical explosion temperature of nitrocellulose [1]. Lin et al. 
computed the activation energy of nitrocellulose during its 
thermal decomposition by conducting thermogravimetric 
analysis (TGA) and differential scanning calorimetry (DSC) 
experiments. In addition, they compared the data fitting 
results obtained using these two methods [13]. Wang et al. 
found that the thermal decomposition of nitrocellulose satis-
fied the first-order equation, and on the basis of this informa-
tion, they computed the critical explosion temperature and 
activation energy [19]. He et al. investigated the effects of 
humectants on the activation energy of nitrocellulose decom-
position in a nitrogen atmosphere. The results indicated that 
nitrocellulose with isopropanol had higher activation energy 
and stability than that with ethanol or without a humectant 
[20]. Luo et al. studied the decomposition characteristics 
of nitrocellulose in air and computed its activation energy 
under different conversion rates [21]. Mi analyzed the ther-
mal stabilities of fiber and chip nitrocellulose and found that 
the activation energy ratio of these two forms was 1.6 [22]. 
Wei et al. investigated the effect of aging time on the kinetic 
parameters of nitrocellulose by using a TG–DSC analyzer. 
The results indicated that minimum parameters values were 
achieved under an aging time of 24 days and an aging tem-
perature of 90 ℃ [23]. Gao et al. studied the thermal kinet-
ics and reaction mechanism of nitrocellulose pyrolysis in a 
nitrogen atmosphere. The relationship between activation 
energy and conversion was obtained by multi-kinetics and 
the reaction model was reconstructed [2]. Yang et al. investi-
gated effect of metal chloride on the thermal decomposition 

of nitrocellulose and found that divalent metal chlorides can 
increase the activation energy and pre-exponential factor of 
nitrocellulose, whereas trivalent metal chlorides have the 
opposite effects [9].

In the literature, extensive investigations and useful 
conclusions pertaining to the thermal stability and runa-
way characteristics of nitrocellulose have been reported. 
However, in these investigations, kinetic parameters were 
obtained mainly in nitrogen or air atmospheres, the oxy-
gen contents of which are 0% and 21%, respectively. In real 
conditions, nitrocellulose is often stored and transported in 
confined spaces. If fires occur in such places, the combustion 
of a massive quantity of nitrocellulose results in the rapid 
consumption of oxygen, which cannot be easily replaced by 
air from the external environment. For example, the Tianjin 
accident occurred because of the combustion of nitrocel-
lulose stored in a container, which represents an oxygen-
lean environment (0% <  O2% < 21%). Oxygen content has 
a crucial influence on kinetic parameters [24, 25]; however, 
few studies have investigated the thermal characteristics of 
nitrocellulose under oxygen-lean conditions. Therefore, in 
the present study, we used a thermogravimetric analyzer in 
conjunction with multiple thermokinetic methods, namely 
the Friedman, Flynn–Wall–Ozawa (FWO), Kissinger–Aka-
hira–Sunose (KAS), Starink, and Vyazovkin methods, to 
obtain the activation energy (Ea) values of nitrocellulose 
under various oxygen contents. A differential scanning cal-
orimeter and an adiabatic accelerating calorimeter (ARC) 
were used to analyze the thermal characteristics of nitro-
cellulose. Critical thermal stability parameters such as adi-
abatic temperature rise, time to conversion limit, and self-
accelerating decomposition temperature were determined to 
evaluate the thermal hazards of nitrocellulose. The findings 
of this study can further deepen the understanding regard-
ing nitrocellulose and serve as a reference for its suitable 
production, storage, transportation, and usage.

Experimental

Sample preparation

In the experiments conducted in this study, we used samples 
of floccule-type nitrocellulose with a nitrogen content of 
11.5–12.2%. Ethyl alcohol with a content of 30% was used 
as the humectant to prevent possible spontaneous combus-
tion. The samples were sealed and stored in an anti-explo-
sion refrigerator at temperatures of 2‒6 ℃.

Thermogravimetric analysis

TGA, which is a typical thermal analysis technology, was 
used in this study to obtain the relationship between material 
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mass and temperature. In our experiments, we used TGA 2 
(Mettler Toledo Co., Zurich, Switzerland) to determine the 
thermodynamic behavior of the samples. The original mass 
of the samples was 7.44 ± 0.07 mg. The temperature of the 
samples was increased from 30.0 to 300.0 °C under heating 
rates of 2.0, 4.0, 6.0, 8.0, and 10.0 °C  min−1. An oxygen-lean 
environment was created precisely by using two mass-flow 
control instruments (Alicat, America). Oxygen contents of 
0%, 5%, 10%, 15%, and 21% were achieved by controlling 
the mass flows of oxygen and nitrogen separately. The oxy-
gen and nitrogen flows were then combined and input into 
the thermogravimetric analyzer at a total gas flow rate of 
50 mL  min−1.

Differential scanning calorimetry

The sample in TG experiment was tested in an open environ-
ment while the DSC experiment was performed in a sealed 
crucible; hence, DSC experiments were carried out in this 
paper as a reference in analyzing the thermal stability of 
samples. In the DSC experiments, the relationship between 
heat flux and temperature was obtained by measuring the 
flux difference between the samples and reference materials 
during a temperature-programmed process. A DSC 3 (Met-
tler Toledo Co., Greifensee, Switzerland) instrument was 
used to analyze the thermal decomposition reaction of nitro-
cellulose. The samples were heated from 30.0 to 300.0 °C 
at rates of 2.0, 4.0, 6.0, 8.0, and 10.0 °C  min−1 in a nitrogen 
atmosphere. The mass of the samples was 2.05 ± 0.03 mg, 
and the nitrogen gas flow rate was 50 mL  min−1.

Adiabatic accelerating calorimetry

Adiabatic accelerating calor imeters possess a 
“Heat–Wait–Search” mode for measuring the temperature, 
enthalpy, and pressure of a chemical reaction in an adiabatic 
environment. Therefore, we conducted adiabatic accelerating 
calorimetry experiments to supplement the TGA and DSC 
tests. An ARC 244 (Netzsch, Selb, Germany) instrument was 
used to measure the temperature and pressure of the sam-
ples. The sample mass was 102 mg, and the samples were 
tested in a Hastelloy sample container. In the ARC experi-
ments, the temperature was increased from 120 to 300 °C 
under a heating rate of 10.0 °C  min−1.

Thermokinetic models

According to the theory of thermal analysis, kinetic analysis 
methods can be categorized as isothermal and non-isother-
mal methods. Moreover, non-isothermal methods can be 
subdivided into single-heating-rate and multiple-heating-
rate methods [24, 26]. These non-isothermal methods with 
multiple heating rates, which are also called iso-conversional 

or model-free methods, have been paid more attention as 
they can be used to obtain reliable activation energy values 
without reaction mechanism functions [24, 27, 28]. There-
fore, we adopted typical model-free methods (the Friedman, 
FWO, KAS, Vyazovkin, and Starink methods) to calculate 
the activation energy of nitrocellulose under different oxy-
gen contents. The details of these methods are provided in 
the following text.

Friedman method

The Friedman kinetic model is based on a single-step kinetic 
mechanism, and this model can be derived from the follow-
ing equations in a progressive manner [29–31]:

where α is the conversion rate at a certain time; m is the 
sample mass; m0 and me represent the mass at the start and 
end points; t denotes the time; k denotes the reaction rate; 
f(α) represents the reaction model; A and Ea are Arrhenius 
parameters that represent the pre-exponential factor and 
activation energy, respectively; and R is the universal gas 
constant (8.314 J mol  K−1).

FWO method

The FWO model is a typical integral kinetic model that has 
been used extensively in literature [30, 32–35]. In Eq. (5), 
G(�) is the integral of f(α)−1, and β is the heating rate. The 
activation energy can be calculated from the slope of the 
linear fitting line of lgβ and T−1.

KAS method

The KAS model is an integral model based on the 
Coats–Redfern approximation, which is expressed in Eq. (6) 
[36, 37]. The value Ea can be obtained from the slope of the 
plot of ln(β T−2) versus T−1.
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Vyazovkin method

Vyazovkin established an integral kinetic model based on 
the Arrhenius equation and type I kinetic equation. This 
model is expressed in Eq. (7) [30, 38].

Starink method

The Starink method was established according to the con-
sideration that the Kissinger model (Eq. (8)), Ozawa model 
(Eq. (9)), and Boswell model (Eq. (10)) can be generalized 
into a single formula [24]. After transformation and opti-
mization, the Starink model was obtained. This model is 
expressed in Eq. (11) and is considered to be highly accu-
rate for calculating Ea [26, 39]. The parameters CK , CO , CB , 
and CS are the constants of the equations of the Kissinger, 
Ozawa, Boswell, and Starink models, respectively.

Results and analysis

Thermokinetic analysis

Figure 1 displays the typical TGA results obtained for nitro-
cellulose. The curves under different oxygen content have 
similar variation tendency and the oxygen content in Fig. 1 is 
5%. Only one major mass-loss period existed in the decom-
position process. When the temperature exceeded 180 °C, 
the sample mass decreased by approximately 90% within 
a short time, as displayed in the derivative thermogravi-
metric (DTG) curves. The DTG peaks moved toward the 
high-temperature side as the heating rate increased, and the 

(6)ln

(

�

T2

)

= ln
AR

EaG(�)
−

Ea

R

1

T

(7)− ln t = ln
A

G(�)
−

Ea

R

1

T

(8)ln

(

�

T2

)

= CK −
Ea

R

1

T

(9)lg � = CO − 1.0516
Ea

RT

(10)ln

(

�

T

)

= CB −
Ea

R

1

T

(11)ln

(

�

T1.8

)

= CS − 1.0037
Ea

R

1

T

corresponding temperature increased to 184.90‒194.52 °C. 
In addition, The TG curve also shows a slight increase at 
temperature around 190 °C when β was 10.0 °C  min−1; it 
could be explained that large heat would be released rapidly 
at high heating rate, which could have led to a blast in the 
sample container. Consequently, the created reverse pres-
sure was exerted on the inside scale of the TGA, leading to 
a transient increase in the sample mass.

By using the thermokinetic models mentioned in 
(“Thermokinetic models” section), Ea values can be 
obtained. Figure 2 shows the variation in Ea with conversion 
rate under different oxygen contents. The curves obtained 
using the KAS, FWO, Starink, and Vyazovkin methods 
exhibited synchronous variation, and the KAS and Star-
ink curves almost coincided with each other. However, the 
Friedman curves exhibited certain differences and fluctu-
ated over the conversion rate range of 0.3‒0.8, especially 
when the oxygen content was 0%, 10%, and 15%, as illus-
trated in Fig. 2(a, c, and d), respectively. Table 1 lists the 
average Ea values and determination coefficients (R2) of the 
thermokinetic models under three oxygen content values. 
The average Ea obtained using the Friedman method was 
the smallest among all the methods, and the larger values 
obtained using the other four methods were close to each 

– 1.2

– 1.5

– 1.8

175

50 100 150 200 250 300

180 185

Temperature/°C

190

DTG curves:

195 200

– 0.9

– 0.6

– 0.3

0.0

M
as

s 
lo

ss
 d

er
iv

at
iv

e/
%

 m
in

–1

0

20

40

M
as

s/
%

60

80

100

= 2.0 °C/min–1 β
β
β
β
β

= 4.0 °C/min–1 

= 6.0 °C/min–1 

= 8.0 °C/min–1 

= 10.0 °C/min–1 

TG curves:

= 2.0 °C/min–1 β
β
β
β
β

= 4.0 °C/min–1 

= 6.0 °C/min–1 

= 8.0 °C/min–1 

= 10.0 °C/min–1 

Fig. 1  Thermogravimetric curves of nitrocellulose at 5% oxygen con-
tent



5033Thermal stability assessment of nitrocellulose by using multiple calorimetric techniques…

1 3

other. Moreover, the R2 value of the Friedman method was 
lower than those of the other four methods. Thus, compared 
with the KAS, FWO, Starink, and Vyazovkin models, the 

Friedman model would not be very appropriate to calculate 
Ea of nitrocellulose using thermogravimetric data.

In addition, the Ea curves of the KAS, FWO, Star-
ink, and Vyazovkin models indicate that the Ea had an 
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“increase–stabilize–decrease” tendency throughout the heat-
ing process. Similar results were reported in a previous study 
[40]. In the initial reaction period, Ea reached its minimum 
value under each oxygen content when the conversion rate 
was 0.1, which indicated that limited energy was required to 
activate the reaction. Therefore, necessary measures should 
be emphasized and implemented, especially at the begin-
ning of nitrocellulose reaction. As the reaction proceeded, 
Ea increased dramatically and peaked when the conversion 
rate was 0.3. The average increase rate of Ea obtained using 
the four methods was up to 98% under an oxygen content of 
21%. The Ea value then tended to stabilize as the conversion 
rate increased from 0.3 to 0.8. The average rate of varia-
tion in Ea was only 4.9% under different oxygen contents. 
When the conversion rate exceeded 0.8, Ea decreased with 
maximum and average change rates of 41% and 18%, respec-
tively. The average Ea values under the oxygen contents of 
0%, 5%, 10%, 15%, and 21% were calculated to be 281.87, 
283.97, 276.17, 276.57, and 326.05 kJ  mol−1, respectively, 
which indicated that the Ea values were relatively stable in 
oxygen-lean environments. The aforementioned Ea values 
are lower than that in the air. Similar results were obtained in 
a previous study for nitrocellulose solution (20–30 mass%), 
which was prepared by dissolving nitrocellulose in ethyl 
acetate [41].

Thermal characteristic analysis

The heat production data of nitrocellulose under five heat-
ing rates (β) were obtained through DSC, as illustrated in 
Figs. 3–4. The corresponding thermodynamic parameters 
are summarized in Table 2. Figure 3 and Table 2 indicate 
that the heat production curves moved toward the high-
temperature side as β increased. The initial decomposition 
temperature T0 and maximum decomposition temperature 
Tp were 172.68‒199.98 °C and 192.31‒213.94 °C, respec-
tively. These temperatures increased as β increased, and the 
trends of change in the maximum heat production and β 
were similar. According to Fig. 4, high reaction and heat 
production rates were achieved at large β values, espe-
cially those exceeding 6.0 °C  min−1, as indicated by the 
substantial increase in heat production under β values of 
8.0–10.0 °C  min−1. Moreover, according to Table 2, the heat 

enthalpy under the heating rate of 6.0 °C  min−1 was rela-
tively high, with an average value of 3877.76 J  g−1. The heat-
ing enthalpy was 3274.69 J  g−1 when β exceeded 6 °C  min−1. 
Thus, the thermal decomposition of nitrocellulose can 

Table 1  Average Ea and 
determination coefficient (R2) 
values of the five models under 
different oxygen contents

Methods Oxygen 0% Oxygen 10% Oxygen 15%

Ea/kJ  mol−1 R2 Ea/kJ  mol−1 R2 Ea/kJ  mol−1 R2

Friedman 254.53 0.9428 243.32 0.9611 245.81 0.9558
KAS 284.48 0.9582 270.09 0.9839 267.25 0.9578
FWO 277.83 0.9602 264.15 0.9847 261.45 0.9599
Starink 284.20 0.9584 269.86 0.9840 267.03 0.9580
Vyazovkin 280.98 0.9572 266.62 0.9835 263.78 0.9568
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release adequate heat when the environmental tempera-
ture increases at a slow rate. Therefore, suitable ventilation 
should be provided to prevent gradual heat accumulation 
during the storage and transportation of nitrocellulose.

For further exploring the reaction process and reaction 
mechanism of nitrocellulose, a one-step autocatalytic model 
was adopted to calculate the heat release rate during the 
thermal decomposition of nitrocellulose. The corresponding 
results are illustrated in Fig. 5, indicating high consistency 
between the simulation and experimental data. Therefore, 
the thermal decomposition of nitrocellulose in a nitrogen 
atmosphere is an “A → B” one-step autocatalytic reaction, 
which is consistent with the results reported in literature 
[16, 17].

Nitrocellulose was thermally decomposed under an adi-
abatic condition in ARC, as illustrated in Figs. 6–8. Figure 6 
shows the complete temperature and pressure curves cor-
responding to this process; Fig. 7 displays the variations in 
the temperature and heating rate with time in the aforemen-
tioned decomposition process; and Fig. 8 depicts the varia-
tions in the pressure and the rate of pressure increases with 
time in the decomposition of nitrocellulose. The heating rate 
tended to first increase and then decrease. The maximum 

Table 2  Thermodynamic parameters of nitrocellulose under different 
heating rates

β/℃  min−1 T0/℃ Tp/℃ ΔH/J  g−1

2.0 172.68 192.31 3848.32
4.0 188.89 200.70 3975.44
6.0 192.14 204.98 3809.51
8.0 198.73 211.49 3315.94
10.0 199.98 213.94 3233.43
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heating rate was 0.19 °C  min−1, and the corresponding tem-
perature was 166.20 °C. This heating rate corresponded to 
the maximum intensity of the decomposition reaction. Dur-
ing the decomposition process, the pressure in the confined 
container increased dramatically because of the release of 
heat and gaseous products. The trend of the rate of pres-
sure increase was similar to that of the heating rate. The 
maximum pressure change rate was 0.0506 bar  min−1, which 
occurred at a temperature of 168.30 °C.

During the ARC experiments, the heat released by nitro-
cellulose could be partly absorbed by the reactor. To com-
pensate for this phenomenon, the factor of thermal inertia 
(ϕ) was introduced in the analysis. This factor represents 
the inertia of a substance against heat. High thermal inertia 
reduces the reaction rate and rate of temperature change. 
The ϕ value of a reaction system is 1 under ideal condi-
tions. For the experiments conducted in this study, ϕ was 
calculated to be 47.538, which is considerably higher than 
the ideal value. Therefore, the adiabatic temperature rise 
ΔTad obtained from the experiment was relatively small at 
15.20 °C. The theoretical ideal Tad′ value of a sample can 
be obtained using Eq. (12) [42, 43], and this value was up to 
722.58 °C in this study.

Table 3 presents the criteria for assessing the severity of 
thermal runaway [44, 45]. According to these criteria, the 
thermal runaway severity of nitrocellulose is catastrophic, 
which indicates that heavy damage would be caused by the 
violent reaction of nitrocellulose.

During the storage and transportation process, the ther-
mal stability of a material can be considerably affected by 
the environmental temperature. Therefore, time to conver-
sion limit (TCL) and time to reach the maximum reaction 
rate (TMR) were considered when evaluating the thermal 
stability of nitrocellulose [6, 46, 47]. These parameters were 
determined using the aforementioned one-step autocatalytic 
model (Fig. 9). A conversion limit of 10% was selected in 
this study. TCL and TMR decreased as the temperature 
increased, and a dramatic decrease was observed in these 
parameters when the temperature increased from 30 to 60 
℃, which indicates that nitrocellulose has high-temperature 
sensitivity. The TCL and TMR were less than 24 h when the 
temperature exceeded 93 °C and 79 ℃, respectively. When 

(12)Tad� = �ΔTad

the temperature exceeded 100 ℃, the aforementioned param-
eters stabilized at extremely small values. Thus, a prompt 
reaction was achieved, consistent with the large mass-loss 
rates depicted in Fig.  1 and high heat production rates 
depicted in Figs. 3–4.

Self-accelerating decomposition temperature (SADT) is 
another vital safety parameter used in the thermal stabil-
ity analysis of hazardous materials [28, 39, 48]. SADT is 
defined as the lowest environmental temperature at which 
a packaged chemical can decompose in a self-accelerating 
manner within 7.0 days. The SADT and reaction progress of 
nitrocellulose in a 50 kg package were determined (Fig. 10). 
The temperature at the center of the nitrocellulose pack-
age was 6 ℃ higher than the environmental temperature 
within 5.9 days of self-accelerated decomposition. The 
SADT was calculated to be 49 ℃, which is similar to the 
values reported in literature [48]. According to the critical 

Table 3  Assessment criteria for 
the severity of thermal runaway 
of nitrocellulose

Level ΔTad/°C Criticality

1  < 50 Negligible
2 50‒100 Medium
3 200‒400 Critical
4  > 400 Catastrophic
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temperature relationship presented in Table 4 [28, 49], the 
control and alarm temperatures of nitrocellulose are 39 and 
44 ℃, respectively.

Conclusions

In this study, the thermal stability of nitrocellulose was 
investigated through TGA, DSC, and ARC. The main con-
clusions of this study are as follows:

(1) The activation energy (Ea) of nitrocellulose under 
oxygen contents of 0%, 5%, 10%, 15%, and 21% was 
obtained using the Friedman, FWO, KAS, Starink, and 
Vyazovkin methods. The results revealed that Ea exhib-
ited an “increase–stabilize–decrease” trend during ther-
mal decomposition, and the Ea values in oxygen-lean 
environments were relatively stable and lower than that 
in air. Compared with Friedman method, the other four 
methods exhibited optimal applicability for Ea analysis 
based on TGA data.

(2) The results of the DSC experiments indicated that 
the initial and maximum decomposition temperatures 
increased as β increased, and the heat enthalpy was 
higher under lower heating rates. The thermal decom-
position of nitrocellulose in a nitrogen atmosphere was 
an “A → B” one-step autocatalytic reaction.

(3) The adiabatic temperature increase of nitrocellulose 
was obtained, and the thermal runaway severity of 
nitrocellulose was determined to be catastrophic. TCL 
and TMR decreased as the temperature increased, and 
their values were less than 24 h when the temperature 
exceeded 93 and 79 ℃, respectively. The calculated 
SADT of a 50 kg package of nitrocellulose was 49 ℃, 
and the control temperature was 39 ℃, which is the 
upper-temperature limit for nitrocellulose storage.
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