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Abstract
We investigate the direct and indirect effects of silica nanoparticles, NP, on the molecular mobility and crystallization of 
a series of polymer nanocomposites, PNCs, based on polylactide, PLA. To that aim, a sum of complementary techniques 
was employed, namely infrared spectroscopy, calorimetry, dielectric spectroscopy, X-ray diffraction, polarized and electron 
microscopy. The introduction of NPs was found to result in formation of interfacial interactions, an in general moderate 
elevation of the glass transition temperature and a suppression of the chains fragility/cooperativity. Regarding crystallinity, 
neither the unfilled PLA nor the PNCs were found to crystallize during cooling from the melt state, whereas all samples 
crystallize upon heating (cold crystallization), suggesting that the initially slow crystallization and poor nucleation of the used 
PLA was not improved. The degree of crystallinity upon the addition of NP is also suppressed. Surprisingly, severely more 
active nuclei were recorded in the PNCs. This is interpreted in terms of the indirect effect of slowing down of the chains’ 
diffusion related to the NP-polymer interaction. This results in slower crystals’ growing around more PLA-nuclei in PNCs 
as compared to the unfilled matrix, within which the antagonistic crystal growing is faster and dominant around less nuclei. 
This is also manifested by altered crystals structuring in terms of crystals with smaller size and lower density. Regarding local 
dynamics, the local β relaxation screening the dipolar motions arising from the crankshaft motion of the backbone ‒C=O 
was recorded to follow, on the one hand, the formation of interfacial interactions via the suppression of its strength and, on 
the other hand, to be sensitive to large scale phase changes (glassy to rubbery). Finally, an additional relaxation process was 
recorded in the highly loaded PNCs and assigned to modified PLA mobility.
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Introduction

A basic motivation that drives materials’ science is the 
improvement of desired properties, furthermore, the crea-
tion of new ones. This is due to the continuously evolv-
ing needs for multifunctional materials-systems aiming at 
gradually more specific applications. A further option is 
the development of composite materials based on polymers 
[1], whereas during the last decades, polymer nanocompos-
ites (PNCs) have attracted the main interest [2]. The lat-
ter arises from the tremendous improvements recorded for 
desired properties and performance (e.g., mechanical) with 
only small amounts of nanoscale fillers [3] as compared to 
conventional macro-/micro- composites [4, 5]. Responsible 
for that is considered the quite large surface to volume ratio 
and aspect ratio of nanofillers. On our days, there has been 
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created another frame for materials science, that of green 
and circular economy [6], which has turned the attention 
toward biobased, non-toxic and renewable/recyclable poly-
mers. Polylactide, or else, poly(lactic acid) belongs to the 
latter category, thus, it has already attracted a great amount 
of interest, for example, from academia and biochemistry [7] 
to industry (packaging, 3D-printing) [8–10].

PLA [11–14] belongs to the class of aliphatic polyesters, 
it is thermoplastic and can be both amorphous and semic-
rystalline. Despite its sustainable character that sets PLA 
an alternative for replacing the traditional petrochemicals, 
in general, neat PLAs demonstrate quite poor mechanical 
performance [13, 15]. Obviously, this can be overcome 
by manipulating the polymer crystallinity in amount, size 
and quality of the crystals by various thermal treatments 
[16–18]. The manipulation can be also achieved by prop-
erly chosen plasticizing additives and/or reinforcement via 
introduction of nanofiller particles [13, 18–22]. As expected, 
the mechanical performance is strongly connected to crys-
tallinity. In particular, for PLA crystallization is rather slow 
and weak, due to poor nucleation and slow chains diffusion 
[23–25]. These depend, among others, on the polylactide 
structure, i.e., the l- to d-lactide ratio and the polymer chain 
length (molar mass) [13, 19, 26]. Crystal nucleation and 
growth can be tuned again by different thermal treatments 
(large/small supercooling, isothermal annealings, etc.) [16, 
27–29], being, however, expensive and non-ecofriendly.

The most effective way to manipulate crystallinity and, 
subsequently, the mechanical [19, 22], permeation [21, 30] 
or, even, the heat transport [31] performance, seems to be 
the dispersion to the PLA matrix of nanoparticles. Moreover, 
there is the possibility to employ nanoparticles of various 
chemical structures (metal oxides, carbon-based, clays), 
1–3-nano-dimension forms (platelets, tubes, spheres) and 
surface chemistries (pure or modified). Interestingly, the 
impact of nanofillers on crystallization can be direct, for 
example, when the fillers act as additional crystallization 
nuclei, and indirect, for example when the filler ‘steal’ the 
positions of endogenic nuclei. We have experimentally 
shown, in PLA [18, 24, 25, 32, 33] and other polymers 
(thermoplastics [34, 35] and rubbers [36]), that the effect of 
nanofillers facilitating nucleation increases when increas-
ing the fillers aspect ratio and the specific surface area, 
furthermore, when decreasing the strength of the attractive 
interfacial filler–polymer interactions [34]. Such results have 
been partly supported by computer simulations [37]. Thus, 
there has been demonstrated that the same type of filler, 
for example silicon dioxide spherical nanoparticles (silica) 
or carbon nanotubes (CNT), are able to impose opposite 
effects on the crystallization of a semicrystalline polymer 
(including PLA) [34, 38]. The degree and strength of the 
interactions between PLA and a filler (e.g., silica) can be 
evaluated via the degree of disturbance of the ester group 

(‒C=O, polar group) vibration [39] due to bonding with a 
filler surface group (e.g., ‒Si‒OH) [18]. Indirectly, the same 
interfacial interaction can be evaluated via the corresponding 
suppression in the heat capacity change during glass transi-
tion that is generally recorded in the PNCs as compared to 
the unfilled matrices [40, 41]. Within the described effects, 
it is crucial to involve the type of nucleation (homogeneous, 
heterogeneous, endo- or exo-genic) [16, 17] and the polymer 
chains mobility in terms of diffusivity and cooperativity. The 
latter two can be assessed by following the glass transition 
temperature [40], the polymer chains dynamics and fragility 
[42], via more sophisticated techniques, such as dielectric 
spectroscopy [40, 41, 43] and rheology [44]. Therefore, to 
conclude to a definite impact of nanofillers on the perfor-
mance of a studied PNC, a sum of various parameters should 
be followed, namely from the macro- to nano-scale.

In this context of semicrystalline PNCs, herein, we 
attempt to check the impact of fumed silica nanoparticles 
at a relatively wide range of loadings (2–10 mass%) on the 
crystallization, glass transition and molecular dynamics of 
a specific PLA, namely of moderate molar mass and con-
taining ~ 96 l- and ~ 4 d-lactic isomers. To that aim, a bat-
tery of complementary techniques is employed here, as fol-
lows. For this structure-mobility relationship investigation 
we employed Fourier transform infrared (FTIR) spectros-
copy, conventional differential scanning calorimetry (DSC), 
polarized light microscopy (PLM), X-ray diffraction (XRD), 
scanning electron microscopy (SEM) and broadband dielec-
tric spectroscopy (BDS) [43, 45]. Moreover, we compare the 
results by the present study with those for similar or differ-
ent PLA (e.g., of 100% l-lactide and severely longer chains) 
reinforced by the same or different silicas [18, 38] as well as 
various other nano-inclusions [24, 25, 33].

Materials and experimental methods

Materials

PLA with ~ 96% l- and ~ 4% d-lactide (else called PLDLA), 
and molecular weight of Mw = 75 kg mol-1, under the trade 
name Ingeo™ Biopolymer 3052D, was kindly supplied by 
Plastika Kritis S.A. (Iraklion, Greece). Fumed silica (SiO2) 
nanoparticles Aerosil® 200 with specific surface area of 
200 m2 g-1 and initial nanoparticle size < 15 nm were sup-
plied by Evonik, Essen, Germany. All other used solvents 
and reagents were of analytical grade and purchased from 
Sigma Aldrich (USA).

Preparation of polymer PNCs

A series of PLA/silica PNC films of different silica load-
ing, namely 2, 4, 6, 8 and 10 mass%, were prepared using 
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the solvent casting method. Briefly, dispersions of a final 
concentration 10% w/v (3 g of PLA and nanofiller/30 mL 
solvent) were formed, by first dissolving PLA in chloroform 
and then by dispersing the appropriate amount of nanosilica 
using a sonicator probe. The mixtures were continuously 
stirred for 2 h in a fume hood and were then poured on a 
glass plate. The obtained PLA/silica films were dried at 
room temperature, RT, for 24 h and, afterward, for 8 h under 
vacuum to reach total solvent evaporation.

Characterization methods

FTIR spectra were obtained using a Perkin-Elmer FTIR 
spectrometer, model Spectrum One. The materials were 
in the form of thin films with thickness of approximately 
15  μm and in the amorphous state. The spectra were 
obtained in absorbance mode and in the spectral region of 
400–4.000 cm−1 using a resolution of 4 cm−1 and 64 co-
added scans.

Conventional calorimetry (DSC) was employed to assess 
the polymer’s thermal transitions. For that, a TA Q200 
series DSC instrument (TA, USA), combined with a liquid 
nitrogen control system, calibrated with sapphires for heat 
capacity and indium for temperature and enthalpy, was used. 
The measurements were performed in high purity nitrogen 
atmosphere, on samples of ~ 7 mg in mass closed in Tzero 
aluminum pans of TA and in the temperature range from 
‒10 to 200 °C. The selected measurement protocols are 
described below and are schematically shown in Fig. 1a for 
more clarity. Upon erasing of any thermal history (scan 1) 
by a first heating scan at 200 °C, (scan 2) the samples were 
subjected to cooling from the melt state at 10 K min−1 and 
(scan 3) at the highest achievable rates, i.e., ≥ 100 K min−1 
at the temperature range of expected the crystallization 
(Fig. 1b, ‘jump’ command). Subsequently, the samples were 
heated at 10 K min−1 up to 200 °C. Since neither of the 

samples could crystallize during cooling a final scan was 
performed (scan 4) on the super-cooled samples, involving 
heating at 10 K min−1 from − 10 to 120 °C, i.e., above glass 
transition and below melting, isothermal stay there until 
completion of cold crystallization (10 min being found suf-
ficient), subsequent cooling to − 10 °C and, finally, heating 
of the semicrystalline sample up to 200 °C.

The semicrystalline morphology of the samples was 
examined employing PLM, by means of a Nikon Optiphot-1 
polarizing microscope equipped with a Linkam THMS 600 
heated stage, a Linkam TP91 control unit and a Jenoptik 
ProgRes GRYPHAX® NAOS 20mp microscope camera, 
during cold crystallization at the 120 °C beginning from the 
amorphous state (similarly to scan 4 in DSC).

To assess any effects on the structure of the PLA crystals, 
XRD at RT was employed on samples suffered cold crystalli-
zation at 120 °C (again beginning from the amorphous state, 
as in the DSC scan 4). The XRD spectra were recorded by 
means of a MiniFlex II XRD system (Rigaku Co., Japan), 
with Cu Ka radiation (λ = 0.154 nm), over the 2θ range from 
5° to 50° with a scanning rate of 1° min−1.

The surface morphology of the prepared materials was 
determined by SEM/Energy-Dispersive X-ray spectroscopy 
(SEM/EDS) using the JEOL JMS-840 system (JEOL USA 
Inc., Peabody MA, USA) operated at 5 kV.

Finally, BDS was employed to study the molecular mobil-
ity on all samples in the initially amorphous state. Meas-
urements were performed by means of a Novocontrol BDS 
setup (Novocontrol GmbH, Germany), in nitrogen gas flow 
atmosphere on samples in the form of sandwich-like capaci-
tor. In particular, pieces of the samples were placed between 
finely polished brash disk-electrodes, melted at 200–210 °C 
using thin silica spacers (~ 100 μm) to keep the distance 
between the electrodes constant and prevent electrical con-
tact. Based on the results by DSC, this process produces 
amorphous samples. The diameter of the upper electrode 
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was fixed to 14 mm. The complex dielectric permittivity, 
�∗(f ,T) = ��(f ,T) − i ⋅ ���(f ,T) , was recorded isothermally 
as a function of frequency in the range from 10–1 to 106 Hz 
and in the temperature range between − 150 and 120 °C, 
upon heating at steps of 5 and 10 K. For the selected PNC 
with 10% silica, BDS scans were recorded also upon sub-
jecting the sample to cold crystallization at 120 °C (as in 
DSC scan 4).

Results and discussion

Structure and polymer‑filler interactions

In Fig. 2a we present results by FTIR for all samples, neat 
PLA and the corresponding PNCs, data for initial silica 
being also including for complicity. The results are in 
accordance with findings from the literature on PLA [18, 
25, 33]. The molecular origins of the main recorded peaks 
(methyls, carbonyls of PLA) are described on the plot.

Following other basic studies, on PLA [18] and different 
polymers [39], we focus on carbonyl site (–C=O) [46] which 
is located within the wavenumber range from ~ 1600 to 
1850 cm–1 in Fig. 2a. Since this group is the most polar site 
of PLA, it is most probable to be involved within any inter-
facial (or inter chain interactions). On the other hand, sili-
cas are characterized by large numbers and surface density 
of surface silanols (–Si–OH) [47], the hydroxyls (–OH) of 
which are expected to directly interact with PLA, most prob-
ably via formation of hydrogen bonds with the carbonyls.

In Fig. 2b, we have reproduced the results from Fig. 2a, 
focused on the region of the stretching/vibration of the PLA 
carbonyls [48] and performed baseline corrections and 

shape normalizations to each peak maxima [18, 39]. The 
said peak demonstrates a broadening in PNCs and a system-
atic increasing of the contribution at the lower wavenumbers 
side with the increasing of silica loading (vertical red arrow 
in Fig. 2b). Such effects, of the same [18, 39] as well as 
other polar groups [34], have been interpreted in terms of 
increasing of the bound (disturbed) group fraction at the 
expenses of the free (unbound) ones. More precisely, when 
the corresponding FTIR carbonyls peak is located at high 
wavenumbers, the vibration is expected to be more extensive 
or/and faster and, thus, more energy consuming. This occurs 
in the case of free –C=O. On the other hand, when some of 
the –C=O are implemented within direct interactions with 
some of the surface –OH of silica, the freedom of vibra-
tion for –C=O is suppressed. This is recorded in FTIR as 
an increasing of contributions toward lower wavenumbers 
(less energy consuming). The latter non-free carbonyls are 
considered ‘bound’ [39]. We recall that the shown FTIR 
spectra have been recorded from samples in the amorphous 
state and, therefore, any affects recorded on the disturbance 
of the PLA carbonyls are due to the abovementioned inter-
facial interactions.

From the analysis of the complex peaks of Fig. 2b in 
terms of mathematical models, namely fitting Gaussians for 
the free and bound contributions [39] (not shown), we may 
estimate the area of the bound carbonyls contribution, Abound. 
When comparing the latter with the total area for carbonyls 
(bound and free), ATOTAL, [39] a first approximation on the 
fraction of bound carbonyls, XFTIR(%) =

Abound

ATOTAL

× 100 , is 
gained. The results for XFTIR are shown in the inset to 
Fig. 2b, demonstrating a continuous increase from 7% (for 
2% silica) up to 14% (for 10% silica). The trend is not linear, 
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moreover, the slope decreases with increasing silica. This 
most probably denotes that the fraction of accessible silica 
hydroxyls (accessible) surface area for PLA is not analogue 
to the number of nanoparticles. Quite easily, the effect is 
rationalized by the expected aggregation of the silica parti-
cles for higher contents, despite the solution casting method 
employed for the preparation of PNCs. Finally, from the 
employed method of XFTIR calculation, for neat PLA XFTIR 
is 3% (i.e., ≠ 0). This suggests, that a number of carbonyls 
are already ‘bound,’ possibly due to chain-chain entangle-
ments, if not also due to formation of crystallization nuclei 
(physical crosslinks) [49], as the samples were already 
supercooled [17]. Given the relatively high amounts of silica 
here, XFTIR is low, comparing with previous polylactides [18, 
25] as well as other polymers [39] filled with silica. This 
could be due to the strength of its individual interaction [33] 
and/or the high chain rigidity [41, 50] of the specific PLA 
here.

In previous studies on various PNCs [18, 26, 34, 39, 47], 
XFTIR was directly correlated with the amount of the interfa-
cial rigid amorphous fraction (RAF) [40] obtained by DSC. 
Such correlation is being attempted in the following.

Glass transition, rigid amorphous fraction 
and crystallization

In Fig. 3, we present the DSC traces for neat PLA for all 
performed scans. Therein, PLA exhibits no melt (hot) crys-
tallization, neither by cooling at 10 K min−1 (dashed line in 
Fig. 3a) nor by faster rates (not shown). Eventually, upon 
conventional cooling, sharp glass transition steps recorded 
during scans 1–3 (Fig. 3b) that correspond to amorphous 

samples. The characteristic temperatures of glass transition, 
Tg, estimated by the half heat capacity (cp) change, Δcp, are 
57 °C for scans 1 and 3 and 56 °C for scan 2, i.e., almost 
identical. The corresponding Δcp is 0.54–0.55 J g−1 K−1 for 
the amorphous PLA. An overshoot is observed during glass 
transition, again for the amorphous samples, the strength 
of which is quite large for scan 1 (erasing history scan), 
moderate for scan 2 (upon moderate cooling rate) and less 
for scan 3 (upon faster cooling). The overshoot is related 
to the structural relaxation [51, 52] and connected to high 
freedom of chain motions; therefore, the recorded results 
are expected in terms of enhancement of the overshoot with 
increasing the time periods of the samples stay at tempera-
tures closely below Tg [53, 54]. The overshoot vanishes in 
the case of semicrystalline samples (scan 4, Figure 3b) due 
to additional and severe constraints induced to the polymer 
chains mobility [53].

Coming back to scans 1–3, PLA exhibits strong cold 
crystallization during heating, with the exothermal peaks 
maxima (minima in Fig. 3), Tcc, being between 103 and 
107 °C. The effect suggests not significant effect by ther-
mal history on the crystallization (nucleation) of the spe-
cific PLA. The same connection between absence of hot 
crystallization and presence of cold crystallization has 
been observed before in similar PLA (namely PLDLA 
with ~ 4% d-lactide and Mw of 63 kg  mol−1 [25]) with, 
however, weaker cold crystallization. The absence of hot 
crystallization has been connected to poor nucleation due 
to the said d-lactide content in combination also with the 
moderate Mw. For example, in the case of PLA with 0% 
d-lactide (i.e., PLLA) and higher Mw (e.g., 700 kg mol−1 
[32]) the polymer easily crystallizes during a conventional 
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cooling from the melt state. On the contrary, PLA consist-
ing of uniquely d-form (i.e., PDLA) is completely amor-
phous [26]. The crystalline fraction, CF, or else called 
degree of crystallinity, can be estimated by comparing 
(Eq. 1) the enthalpy change during cold crystallization, 
ΔHcc, with the theoretical value for the enthalpy change 
of a fully crystalline PLA, taken usually as 93 J g−1 from 
the work by Fischer et al. [55]. Prior to that, the recorded 
ΔHcc should be normalized (ΔHcc,n) to the polymer mass, 
wpolymer.

Here, ΔHcc,n is 34–35 J g−1 and CFcc equals 0.37–0.38 
for neat PLA and scans 2–3. It should be noted, for the 
sake of completeness, that more recently compared to 

(1)CFcc =
ΔHcc

wpolymer ∙ ΔH
PLA
100%

=
ΔHcc,n

ΔHPLA
100%

Fischer et al., Righetti et al. [29] reported larger values 
for enthalpy of melting of 100% crystalline poly(l-lactic 
acid), namely 107 and 143 J  g−1, for α- and α′-crystal-
forms, respectively.

At higher temperatures in Fig. 3a, the recorded endother-
mal peaks correspond to the melting of crystals. Melting is 
structured as ‘double’ peak, expected for the specific type of 
PLA [25, 33], and the characteristic peak temperatures are 
Tm1 = 149 °C and Tm2 = 157 °C.

Coming to scan 4, when subjecting the samples to cold 
crystallization from RT to 120  °C and staying isother-
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We may discuss now the situation in the PNCs, particu-
larly, the effects imposed by the silica addition on PLA. In 
Fig. 4, the overall raw DSC data for scans 1–3 are shown 
in the form of comparative heating and cooling traces. In 
addition, the corresponding results by scan 4 are shown 
in Fig. 5.

The main thermal transitions observed above for PLA, are 
also recorded in the PNCs with mainly quantitative changes. 
One of the most important results by this work refers to hot/
melt crystallization. In Fig. 4b, none of the PNCs exhibits 
melt crystallization peaks. In addition to that, in Fig. 4c, d, 
all PNCs exhibit retarded and weaker cold crystallizations as 
compared to that of neat PLA. These recordings are strong 
indications that the employed nanosilicas do not facilitate 
crystallization, neither in terms of nucleation nor in easier 
chains diffusion. Looking back in previous works on PLA/
silica PNCs, there can be found cases of the same and other 
silicas facilitating the melt crystallization of PLLA [18, 38] 
as well as the cold crystallization of PLDLA [25].

To more easily follow the aspects on crystallization as 
well as glass transition and melting, all data by DSC were 
evaluated in terms of characteristic values (temperatures, 
enthalpy and heat capacity changes) and the latter are pre-
sented as silica content dependences in Figs. 6, 7and8.

First, we focus on the glass transition. In the amorphous 
state, Δcp,n, the measure of the mobile amorphous fraction 
(MAF) [56], is lower in the PNCs, as shown in Fig. 6a. This 
effect has been interpreted in various works on PNCs [40, 41, 
56–59] to be due to the immobilization of polymer chains onto 
the filler’s surface when attractive interfacial interactions are 
formed. The presence of the fillers with attractive interactions 
may result in general in hindering of chains diffusion, recorded 
as an elevation of the Tg [40, 41, 56, 60]. This is also true here 
in Fig. 6a, wherein the Tg of the PNCs elevates by 1–2 K. 
The changes in both Δcp and Tg are non-monotonic with the 
silica loading. Similar trends are discussed in the following 
on the characteristic crystallization. The effects suggest that 
most probably the nanosilicas are better dispersed in the PLA 
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matrix at low contents (2 and 4 mass%), whereas aggregation 
has taken place for larger loadings [56]. We attempted to check 
that by SEM (results shown in Figure S1 in Supplementary 
Material), nevertheless, unsuccessfully, mainly due to the need 
for extremely better resolution.

Both the Δcp and Tg do not show tremendous changes in 
the PNCs, which suggests weak interfacial interactions. To 
evaluate this by DSC, we may employ a ‘two-phase’ model 
[40, 57, 61] for our PNCs in the amorphous state (scans 2 and 
3), considering that the polymer consists of mobile and rigid 
(interfacial) amorphous fractions, MAF and RAF, respectively, 
with ‘RAF + MAF = 100%.’ The MAF is that contributing to 
the glass transition. Thus, we may estimate RAF via Eq. 2.

The results on RAF are shown in Fig. 7. Since RAF can 
be used as a measure of the polymer-silica interaction, 

(2)RAF(%) = (1 −MAF) ⋅ 100 = (1 −
ΔcPNC

p,n

ΔcMATRIX
p,n

) ⋅ 100

we may compare it with the more direct result by FTIR, 
XFTIR. Keeping in mind the in principle different routes of 
estimation (inset scheme to Fig. 7), we interestingly come 
in front of quite similar values of RAF and XFTIR, at least 
for the lower silica loadings. The low RAF values here, 
as compared to previous works of PNCs with attractive 
polymer-particles, are confirmed by DSC. It is also worth 
to recall some results from the literature on PNCs, within 
which the increase in Tg is directly correlated with the 
increase in the interfacial RAF [57, 58, 61, 62], which fits 
with our case here and the barely increased Tg.

From another point of view, another indirect evidence 
for the weak interfacial interactions and their low effect 
on molecular mobility, can be extracted by the recorded 
preservation of the overshoot during the glass transition 
in the amorphous PNCs (insets to Fig. 4c, d). The strong 
overshoot is indicative of the preservation of the bulk-like 
freedom of motions here. In previous cases of PNCs with 
quite more strong interfacial interactions the overshoot is 
minimized or, even, disappears [40, 41, 63].

Coming to the semicrystalline PNCs, we follow in 
Fig. 8a an increasing trend of Tcc with the silica loading, 
with a discontinuity of the increase for 6% silica. At the 
same time the cold crystallization enthalpy changes (inset 
to Fig. 8a); consequently, CFcc in Fig. 8b decreases in the 
PNCs. The results for CFcc are almost identical with CF 
estimated via the enthalpy of melting (CFm, not shown). 
The lower CFcc value is recorded at 4% silica, while CFcc 
increases for the higher silica loadings. As discussed above 
with Δcp and RAF, the non-monotonic changes should be 
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due to differences in the particle’s distributions throughout 
the polymer matrix.

When the polymer is subjected to cold crystallization 
(scan 4), upon the subsequent heating (Fig. 5a), CFm was 
estimated and the data are included in Fig. 8b. The trend is 
qualitatively similar to those of CFcc, while CFm is larger by 
about 0.05 for scan 4.

Regarding melting, the view of double melting peaks 
observed in neat PLA is kept in the PNCs (Figs. 4c, d and 
5b) and this is independent from the employed thermal 
treatments. The higher temperature peak (Tm2 = 157 °C) 
is unchanged between all cases in Fig. 8c. The lower tem-
perature peak (Tm1) migrates toward higher temperatures at 
the addition of silica in Fig. 8c. Interestingly, Tm1 is almost 
identical upon scans 2 and 3, whereas it is elevated upon 
scan 4. We could conclude that while Tm2 represents the 
main and more stable crystals of PLA, Tm1 originates on the 
melting of less stable crystals and, most probably, of lower 
quality/density.

Recalling previous knowledge, PLA exhibits crystal poly-
morphism [16, 29, 64], for example, α and α′-type crystals. 
In the case of melt crystallization at temperatures greater 

than 120 °C, the orthorhombic α-type crystals dominate, 
with an equilibrium melting temperature of around 220 °C. 
On the other hand, isothermal crystallization from the melt 
at temperatures lower than 120 °C or isothermal annealing at 
temperatures higher than Tg leads mainly to the formation of 
α′-crystals characterized by lesser order. The dependence of 
PLA’s crystallization behavior from the annealing tempera-
tures, time periods, the heating rate and the l-/d-isomers con-
tent has been systematically investigated in previous works 
[27, 29, 65]. In our case, we expect the domination of α′-
type crystals, thus, low level of ordering which is reflected 
on the discussed effects on Tm1. The effect of silica on the 
increasing of Tm1 should be indirect, as the crystals seem to 
grow away from the nanoparticles (not nucleating agents, 
opposite to previous cases [32, 36, 66]); however, the ori-
gins seem not straightforward based only on the calorimetric 
recordings.

Regarding DSC, a last but not least point refers to Fig. 5a, 
b. Therein, during heating at temperatures just prior to the 
melting peaks, a step-like event is observed for all samples. 
The step is clear upon scan 4, compared to scans 1–3, due to 
the absence of the cold crystallization exotherm. Such step 
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has been observed before in semicrystalline polymers (e.g., 
isotactic polystyrene [67] and polylactide [68]) by conven-
tional as well as temperature modulation DSC. This transi-
tion has been proposed to originate on the vitrification of 
rigid amorphous chains located around the polymer crystals 
(RAFcrystal) [67, 68].

Semicrystalline morphology and crystal structure

To visualize the situation around the crystallization of PLA 
and the PLA/silica PNCs, PLM was employed, in particular, 

imitating the thermal treatment of scan 4 in DSC. In Fig. 9, 
the PLM micrographs of all samples are shown during their 
cold crystallization from the initially amorphous state at RT, 
heating to 120 °C and isothermal stay there until completion 
of crystallization.

Surprisingly, all PNCs seem to crystallize faster (left 
side of Fig. 9) and fill the sample volume with more crys-
tals (right side of Fig. 9) as compared to neat PLA. At first 
thought, this seems completely opposite to the calorimet-
ric recordings, as the recorded semicrystalline view of our 
PNCs resembles previous cases of PNCs were in the fillers 
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act as crystallization agents and the crystals are developed 
also around the particles [18, 20, 25, 33]. However, in those 
previous cases, the DSC results showed acceleration and 
enhancement of both the melt and cold crystallization at the 
presence of the nanofillers, that is opposite to our case. Thus, 
we are in front of an apparent although serious discrepancy 
between calorimetry and PLM.

From the PLM data we were able to make a rough esti-
mation of the spherulitic growth rate, G(t). This was done 
during the crystallization steps (not isothermally as usually) 
by following the free growth of a minimum of three spheru-
lites before they impinged on one another. Then, the radius 
of each spherulite was measured and plotted as a function 
of measurement time. From this plotting, we estimated the 
slope, which represents G. G was found ~ 60 μm min−1 for 
unfilled PLA, while drops almost systematically with the 
silica addition, from 52 down to 41 μm min−1. Please note, 
that the uncertainty in δG is rather high, δG ~ 20 μm min−1.

One way to rationalize the overall results and explain the 
discrepancy between calorimetry and PLM can be the fol-
lowing. Prior to the cold crystallization of neat PLA, there 
have been created large numbers of crystal nuclei, due to 
the strong cooling involved. During the cold crystallization, 
upon heating at temperatures closely above Tg, only a frac-
tion of the overall existing nuclei seem to be active, or in 
other words, only some of the nuclei favor a fast crystalliza-
tion. These initial crystals seem to grow fast and preclude 
the formation of secondary crystals. This way, we expect the 
formation of low number of crystals with, however, large 
size and potentially high density or thick lamellae packing. 
For the PNCs, we recall the slightly elevated Tg, thus, an 
expected deceleration of molecular mobility, which actu-
ally seems to have the key-role on the following crystal-
lization. In the presence of nanofillers, PLA seems to also 
form large numbers of nuclei with, according to PLM, more 

active nuclei. It is possible that due to the retarded chains 
diffusion there is no antagonism between initial (faster) and 
secondary (slower) crystals and mainly the ‘slower’ ones 
survive. For the PNCs, to rationalize the lower CFcc values 
recorded in DSC (Fig. 8b) along with the ‘contrary’ larger 
number of crystals observed in PLM (Fig. 9), we could only 
suppose that the many  crystals formed should be of quite 
lower quality/density. This is not supported by the melting 
(Tm1,2) from DSC. To more firmly check the situation on the 
crystals structuring we employed XRD.

Figure 10 shows the corresponding XRD results on PLA 
and its PNCs that had previously suffered the same thermal 
protocol to those of scan 4 in DSC and PLM.

The results by XRD in Fig. 10a reveal mainly the same 
number of crystalline peaks between the unfilled matrix 
and the PNCs. Upon analysis of the XRD spectra (exam-
ples being shown in Figure S2 in Supplementary Material), 
we could estimate the crystalline fraction of the samples by 
comparing the areas of the crystalline peaks, Acryst, with the 
total area of the spectra (amorphous halos and crystalline 
peaks), ATOTAL, according to Eq. 3.

The CFXRD values against the silica loading are shown 
in Fig. 10b along with those by CFm by DSC scan 4. The 
results by the two techniques are quantitatively different, 
with CFXRD being lesser by 10–15% than CFm, however, the 
silica loading trends are quite similar.

The most important finding by XRD is a migration of 
the diffraction peaks toward higher 2θ positions in the 
PNCs, with the exception of PLA + 10% silica. Actually, 
the migration is weak for 2 and 4% silica and stronger for 
6 and 8% silica. The migration toward higher 2θ can be 
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understood as formation of thinner crystalline lamellae 
[33], thus, worse crystal density and lower ordering level. 
This comes to support the scenario described above, at 
least partly, since one PNC shows similar XRD positions 
to those of neat PLA.

At this point, we recall some results from the literature. 
In previous cases of PNCs, based on PLA [18, 20, 24, 25, 
33] and other polyesters [34, 69], with the fillers (includ-
ing silica) acting as crystallization nuclei, the crystal-
lization (melt and cold) was accelerated and enhanced in 
DSC. Additionally, the corresponding XRD diffraction 
peaks migrated toward lower 2θ, being interpreted therein 
as formation of more dense crystals in the PNCs. The lat-
ter effects on crystal structuring were found to correlate 
in PLM with both smaller and larger spherulites in the 
PNCs as compared to each unfilled matrix.

Local and segmental molecular mobility

Molecular mobility is investigated by BDS, in particular 
via effects on the imaginary part of dielectric permittivity, 
ε″, which expresses the dielectric losses [43]. The initial 
recordings, namely isothermal ε″(f) spectra were recorded 
at various temperatures from − 150 °C up to 120 °C on ini-
tially amorphous samples, intending to illuminate the direct 
filler-effects. These overall data can be found in Figure S3 in 
Supplementary Material. The molecular dipolar relaxations 
are followed in these data as ‘peaks’ of the ε″(f), the maxima 
of which are located at gradually increasing frequencies, 
fmax, with increasing of the temperature (dynamics). For the 
sake of simplicity, in the main article we show representa-
tive results in Fig. 11, in the form of comparatives for all 
samples.

Two types of relaxations are clearly recorded within the 
studied temperature range. At the lower temperatures, from 
about − 100 to − 20 °C (glassy polymer state), the local β 
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relaxation is followed as a relatively weak peak. β has been 
assigned [70, 71] to arise from dipole moments originat-
ing from the crankshaft motions of the carbonyl at the PLA 
backbone (inset scheme to Fig. 11a). At temperatures closely 
above Tg (rubbery state), the dielectric analogue of glass 
transition is recorded via a stronger ε″(f) peak (Fig. 11b). 
This is the so-called α relaxation that originates from the 
segmental chains’ motions, in particular, arising from 
the dipoles perpendicular to the chains (inset scheme to 
Fig. 11b). Up to about 85 °C in Figure S3, the magnitude of 
α decreases with temperature, as expected for amorphous 
polymers [43], whereas for further temperature increase, 
the relaxation exhibits a sharp strength suppression. This is 
due to the evolution of cold crystallization and occurs in all 
samples. In Fig. 11a, there are not recorded severe alterna-
tions in the fmax of β relaxation, with the case of PLA + 4% 
silica showing slightly faster β (elevated fmax). Regarding α 
relaxation in Fig. 11b, the silica addition tends to decelerate 
the process, with the exception of PLA + 10% silica. These 
moderate effects on α are in general in agreement with the 
calorimetric findings for Tg.

In Fig. 11c, we compare some of the results for α of 
the present work with those on similar and quite different 
PLAs from previous studies [25, 32, 33, 38]. The intension 
is to show that independently from the type of PLA (l-/d-
lactide ratio and molar mass) the weak or strong PLA/filler 
interfacial interactions result to decelerations of α, i.e., in 
the cases of metal oxide nanoparticles (SiO2, TiO2) which 
‘carry’ many surface hydroxyls. On the other hand, in the 
case of absent direct interactions between the polymer 
and filler (e.g., Ag nanoparticles), accelerations can be 
recorded [32], for example, due to increase in the polymer 
free volume [24, 54].

Observing the raw data of Fig. 11a, b from another 
point of view (vertical arrows), it is interesting to note the 
almost systematic suppression of the relaxations’ magni-
tude (area below the ε″ trace) in the PNCs. To further 
evaluate this, in terms of dielectric strength (Δε), as well 
as the time scale, the BDS results were analyzed by ‘criti-
cally’ fitting to the experimental data [72] of a widely 
used model function to each process, namely the Havril-
iak–Negami (HN) [73] function (Eq. 4).

In Eq. 4, f0 is a characteristic frequency related to the 
frequency of maximum ε″, ε∞ describes the value of ε′ 
for f > > f0, while βHN and αΗΝ are the shape parameters of 
relaxation for the symmetry and the width of relaxation 
times, respectively. An example of such fitting is demon-
strated in a later figure.

(4)
�∗(f ) = �∞ +

Δ�
(

1 + (
if

f0
)
�HN

)�HN

Combining the outcomes by the said fitting process, we 
constructed the overall dielectric relaxation map in Fig. 12, 
in terms of time scale (Arrhenius plots in Fig. 12a) and the 
reciprocal temperature dependence of Δε (Fig. 12b).

β relaxation shows a linear time scale in Fig. 12a which 
is the typical ‘Arrhenius’ behavior of local dynamics. The 
corresponding points could be fitted with the Arrhenius [43] 
Eq. 5,

by which the activation energy was estimated, 
Eact ~ 48 kJ mol−1 (0.5 eV).

According to the fitting results, at low temperatures β 
is symmetric and wide (αΗΝ ~ 0.2 and βΗΝ ~ 1 in Eq. 4) and 
when temperature increases above Tg the same process 
becomes more narrow (αΗΝ ~ 0.3–0.4, βΗΝ ~ 1), while its 
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Δε exhibits a strong increase (Fig. 12b). The results sug-
gest decreased width of relaxation times, thus, increased 
homogeneity, and at the same time enhanced polarizabil-
ity. Moreover, it is interesting that a local process senses 
the large scale structural change of the matrix, from glassy 
to rubbery. This is not trivial in the literature. However, 
we have recently discussed [24, 74] that similar situa-
tion between local and segmental mobility is recorded in 
PLA [24, 25] and other polyesters {polycaprolactones, 
poly(alkylene furanoate)s and poly(alkylene vanillate)s}
[74, 75]. Therefore, we have proposed that the phenom-
enon is observed when the local relaxation arises from 
dipolar motions at the polymer backbone (ester groups, 
furan- or vanillic-rings). A final very interesting point on 
β is its almost systematic Δε suppression (Fig. 12b) with 
the addition of silica. Considering the molecular origins of 
β and the data by FTIR discussed in the previous (Fig. 2b), 
it is tempting to propose that this suppression is directly 
correlated to the interfacial PLA-silica interaction, which 
leads to a reduced fraction of free carbonyls and their cor-
responding dipoles.

α relaxation in the amorphous state is fitted better by 
an asymmetric HN term (αΗΝ ~ 0.6 and βΗΝ ~ 0.6–0.7 in 
Eq. 4), while upon the involvement of cold crystallization, 
α weakens and changes to symmetric (βΗΝ = 1) and slightly 
wider (αΗΝ ~ 0.4–0.5). These recordings are expected and 
come in accordance with previous studies [32, 45, 76, 77]. 
The time scale of α does not change significantly with 
composition, exhibiting only slight decelerations in almost 
all PNCs and a mild acceleration in PLA + 4% silica. The 
curved lines connecting the points of α in Fig. 12a are 
fittings of the Vogel–Fulcher–Tammann–Hesse (VFTH) 
model function [43] (Eq. 6), the characteristic behavior of 
cooperative dynamics.

In this equation, f0,VFTH is a frequency constant varying in 
the range 1012–1014 Hz, T0 is the so-called Vogel tempera-
ture and B is a material constant (= D∙T0, where D is the so-
called fragility strength parameter) [78]. After fitting Eq. 6 
to the experimental data corresponding to the uncrystallized 
sample and fixing f0,VFTH to the phonon value 1013 Hz [41, 
43, 61], we may obtain two values. First, the dielectric glass 
transition temperature, Tg,diel, as the extrapolated point of 
VFTH to the equivalent frequency of conventional calorim-
etry, i.e., ~ 10‒2.8 Hz (100 s) [43]. We may also estimate from 
the values for T0 and D the fragility index of α relaxation, 
mα, according to Eq. 7.

The results on Tg,diel and mα are shown as a function of 
silica loading in Fig. 13a. mα equals 154 for neat PLA and 
drops in the PNCs almost systematically (145–147). This 
suggests reduced cooperativity of the bulk-like PLA in the 
PNCs, or else increase in the cooperativity length [43], 
most probably due to the additional constraints imposed by 
the presence of the fillers. The decrease in fragility in the 
amorphous state could be also one of the origins for the 
recorded thinner lamellae upon the crystals formation (XRD, 
Fig. 10a).

Tg,diel does not significantly nor systematically vary 
between the different samples, as it scatters around 54 °C 
(neat PLA) by ± 1 K in Fig. 13a. We recall that the most 
systematic trend recorded in the calorimetric Tg, namely 
an increasing with silica by1–2 K, in addition to Tg being 
3–4 K larger as compared to Tg,diel. The discrepancy between 
these different techniques suggests the decoupling between 
Tg and segmental dynamics. This has been found true also 
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in previous works on various PNCs [33, 58, 79]. There has 
been proposed that the different Tgs are due to following 
quite different physical properties, large scale thermal-phase 
transition (DSC) against dipole moments relaxation (BDS) 
[58, 80]. This seems true in general in the cases of weak Tg 
changes related to more factors, such as the weak polymer 
chains flexibility, the low amounts of nanofillers and/or the 
low amounts of interfacial bound polymer [41, 62].

From the dielectric data on Δε, in particular from the 
suppression of Δε of α relaxation (Fig. 12b), we performed 
an estimation of the ‘dielectrically bound-rigid’ amorphous 
polymer fraction (RAFBDS), employing a ‘two-phase’ model 
as in DSC by an equivalent route (Eq. 8) [18, 32, 38].

In Eq. 8, Δ�PNC
α

 and Δ�MATRIX
α

 are the dielectric strengths 
of α relaxation in the PNC and in neat PLA, respectively, 
at a temperature above Tg and below cold crystallization. 
This temperature was chosen here at 70 °C and, thus, the 
RAFBDS values obviously correspond to amorphous sam-
ples. Please note that the employment of Eq. 8 implies the 
serious assumption that the polarizability of the mobile poly-
mer chains [39, 80] is similar for the unfilled PLA and the 
PNCs. The data for RAFBDS are shown in Fig. 13b compara-
tively with RAF by DSC and XFTIR by FTIR. RAFBDS shows 
an increasing trend with silica addition not being monotonic. 
The absolute values for RAFBDS are significantly larger 
(30–57%) as compared to those for RAF by DSC (4–9%) 
and XFTIR (3–14%), which could indicate the higher sensitiv-
ity of the dielectric technique.

Finally, we would like to report that due to the high 
resolving power of BDS in combination to the power of 
analysis [71, 72], an additional process could be resolved 
apart from β and α. This is the case of process 1, the exist-
ence of which is more clear even from some raw data, such 
as those of PLA + 10% silica (Fig. 14a). In the PNCs filled 
with 8 and 10% silica, process 1 was necessary for the fit-
ting of the overall frequency ε″ response. The process is 
exceptionally weak as compared to α (please see its low 
Δε in Fig. 12b) and could be unbiasly fitted (αΗΝ ~ 0.65–0.7 
and βHN = 1, quite narrow HN) within only the said PNCs. 
The fitting was actually enabled by the simultaneously sup-
pressed contributions of α and ionic conductivity contribu-
tions. The same process can be fitted also with the rest of 
the samples only via biased fitting. Therefore, it is not clear 
whether the process is related directly to the filler.

From the more solid results on process 1, we con-
structed the Arrhenius plots, being shown in Figs. 12a and 
14b. Its time scale is almost linear and exhibits modes 
both slower and faster as compared to α relaxation. In 

(8)

RAFBDS(%) =
(

1 −MAFBDS

)

⋅ 100 =

(

1 −
Δ�PNC

α

Δ�MATRIX
α

)

⋅ 100

PLA + 10% silica, the process was even more clear upon 
evolution of cold crystallization (Fig. 14a) and its Δε was 
suppressed similarly to that of α. The results suggest that 
process 1 should possibly arise from the polymer rather 
the filler [47, 81], moreover, from the amorphous frac-
tion of PLA. Similar dynamics and correlations of addi-
tional processes with α have been reported in PNCs of 
PLA and other polymer-based PNCs [24, 25, 35, 82, 83], 
in polymers in the form of thin films adsorbed at solid 
surfaces [84], in bulk polymers (e.g., atactic/syndiotactic 
polystyrene [85]) and, recently, in polystyrene single chain 
nanoparticles [86]. Among these works, three potential 
origins of process 1 are involved, namely the dynamics of 
polymer chains spatially confined between nanoparticles 
[82], constrained dynamics in the adsorbed layer onto the 
solid surfaces [84] or dynamics of bulky chains of, how-
ever, special conformations (e.g., local fluctuations within 
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helical ‘rods’) [85]. Due to the limited data on this weak 
process here, we cannot securely conclude to its origins.

Interesting effects were recorded in this work; neverthe-
less, some questions regarding crystallinity, filler dispersion 
and molecular dynamics occurred. The employment of more 
advanced techniques on structure, for example, transmission 
electron microscopy, small angle X-ray scattering [87, 88] 
and fast scan chip calorimetry [17, 68, 87], could shed more 
light on the opened issues.

Conclusions

A series of new PLA-based PNCs filled with 2–10% fumed 
silica PNCs were prepared by solution casting and investi-
gated. Interfacial interactions between the fillers and poly-
mer were manifested, in particular, between the surface –OH 
and the PLA backbone –C=O. The degree of interaction was 
evaluated by three routes, namely directly via the distur-
bance of the carbonyl vibration in FTIR and indirectly via 
the formation of interfacial rigid amorphous chains by DSC 
and BDS. Additional indications were interestingly revealed 
by the suppression of local PLA dynamics, β relaxation 
that dielectrically screens the local crankshaft motion of 
the backbone carbonyl. The segmental mobility was found 
moderately decelerated in DSC (elevated Tg by 1–2 K) and 
mainly unaffected by BDS, with, however, the nanosilicas/
PLA interactions were found responsible for imposing a 
decrease in the α process fragility. Coming to the effects of 
the nanofillers on PLA crystallization, which is developed 
only via cold crystallization for the said PLA (4% d-lactic, 
75 kg mol−1 in molar mass), according to DSC, the fillers 
addition suppresses both the rate and the degree of crystal-
lization. This suggests that the nanosilicas do not offer addi-
tional crystallization sites, which is not the common case in 
case of PLA-based PNCs. Interestingly, the results by PLM 
provide indications for an opposite behavior of the fillers, as 
more crystals seems to be developed in the PNCs. This ini-
tially contradictory behavior, was interpreted by a complex 
although realistic scenario. The latter involves the indirect 
filler effect (interactions) on slightly hindering molecular 
mobility, however, activating more of the PLA’s endogenic 
nuclei. At the expenses of latter, the quality (density) of 
the crystals seems to be worse in the PNCs. As in previ-
ous works on PLA-based systems, this sustainable polymer 
seems to be a still promising and worth to study material, as 
it offers for variety of physical properties manipulation and, 
consequently, macroscopic performance (mechanical, small 
molecules permeation, heat transport, etc.).
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