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Abstract
Formation of substituted lithium ferrite Li0.5SmxFe2.5–xO4 (where x = 0.06 and 0.2) from Sm2O3/Fe2O3/Li2CO2 precursors was 
studied by X-ray diffraction analysis, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. 
The mixture of powders was subjected to preliminary mechanical activation in a planetary mill. We analyzed samples based 
on the precursors and synthesized at 900 °C for 4 h in a laboratory furnace. It was found that ball milling of the precursors 
mixture in a planetary mill increases the powder reactivity. In spite of this, no substituted lithium ferrites were formed. It was 
shown that a two-phase composite that consists of pure lithium ferrite Li0.5Fe2.5O4 and SmFeO3 is formed during synthesis. 
An increase in the Sm2O3 content in the initial mixture provides an increase in the amount of the formed SmFeO3 phase. 
The synthesis of Li0.5Fe2.5O4 ferrite was confirmed by XRD analysis data, the Curie temperature (627–630 °C) measured 
using TG analysis in a magnetic field, and by the presence of an endothermic peak on the DSC curve corresponding to the 
order–disorder transition in the Li0.5Fe2.5O4 phase.
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Introduction

Good magnetic properties, including high Curie tempera-
ture and saturation magnetization, make it possible to use 
lithium ferrites in various microwave devices, in lithium-ion 
batteries as a cathode material, and in gas sensors [1–4]. It 
should be noted that lithium ferrites are of relatively low cost 
among the whole variety of ferrite materials.

Structural and electromagnetic properties of ferrites 
depend on both the chemical composition and the synthesis 
method [5–8]. Various methods of ferrite synthesis include 
sol–gel [9 − 11], combustion [12, 13], co-precipitation [14, 
15], etc. However, a solid-state method using oxides and 

carbonates is most widespread for producing lithium ferrites 
[16, 17]. Here, mechanical activation of the initial oxides can 
significantly accelerate and reduce the temperature of ferrite 
synthesis [18–22].

Properties of Li-ferrite substituted by various metal ions 
such as Ti, Zn, Ni, Mg, Mn, and Co were studied by many 
researchers [23–30]. This substitution made it possible to 
obtain ferrites of complex compositions with a specific com-
bination of electrical and magnetic properties. However, fer-
rites of new compositions with unique properties are cur-
rently of increased interest [31].

Recent studies have focused on the properties of vari-
ous ferrites with rare earth elements. It is known [32] that 
ions of rare earth elements have unpaired 4f electrons, which 
provide magnetic anisotropy due to their orbital shape. Mag-
netocrystalline anisotropy in ferrites is associated with the 
4f-3d bond between transition metal ions and a rare earth 
element. Thus, doping of spinel ferrites with rare earth ions 
can improve their electrical and magnetic properties. In par-
ticular, such changes in the properties of ferrites occur when 
they are doped with gadolinium (Gd) [33–39], dysprosium 
(Dy) [37, 40–43], neodymium (Nd) [38, 44–46], samarium 
(Sm) [33, 47–51], lanthanum (La) [45, 52–54], terbium (Tb) 
[37, 40, 55–57], cerium (Ce) [33, 37, 58, 59], thulium (Tm) 
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[60], erbium (Er) [37, 45, 47, 61, 62], holmium (Ho) [55, 
63], ytterbium (Yb) [37], and praseodymium (Pr) [55].

As shown in [34, 35, 40, 64, 65], the introduction of rare 
earth elements, including Sm, is also of significant effect on 
the electromagnetic properties of lithium ferrites. In most 
studies, synthesis of ferrites with rare earth elements and 
their microstructural characteristics were investigated using 
X-ray diffraction analysis. It was suggested that substituted 
ferrites are formed with a small inclusion of secondary 
phases, for example, GdFeO3 and SmFeO3, depending on 
the doped rare earth element. Such phases affect the proper-
ties of the synthesized ferrites.

As shown in [40, 61, 63, 66, 67], thermal analysis meth-
ods provide more reliable data on the synthesis of ferrites 
with rare earth elements. Therefore, in this study, synthesis 
of lithium ferrite Li0.5SmxFe2.5-xO4 from mechanically acti-
vated precursors Sm2O3/Fe2O3/Li2CO3 was investigated by 
X-ray diffraction (XRD), thermogravimetric (TG), and dif-
ferential scanning calorimetric (DSC) analyses. The micro-
structure of the synthesized ferrite was examined using a 
scanning electron microscope (SEM).

Experimental

The procedure for preparing powders for synthesis included 
the following stages:

•	 Drying of precursors powders in a laboratory furnace at 
200 °C for 180 min;

•	 Weighing of Sm2O3/Fe2O3/Li2CO3 powders (the ratio of 
the phase concentration is given in Table 1) using an ana-
lytical balance Shimadzu AUW-D to obtain proportions 
in accordance with the reactions:
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•	 Additional sieving through a metal sieve with a mesh size 
of 100 mµ;

•	 Mechanical activation of powders mixtures in a planetary 
mill at 300 rpm for 15 min with steel grinding jars and 
balls. The mixture-to-ball mass ratio was 1:10;

•	 Pressing of the mechanically activated mixture using a 
hydraulic press at 200 MPa for 3 min.

After the above procedure for preparing powders, com-
pacted samples S1 and S2 were synthesized at 900 °C for 
240 min in air.

TG/DSC measurements were performed using a STA 
449C Jupiter thermal analyzer with corundum crucibles. 
The heating rate was 10 °C min−1. The formed phases of 
magnetic ferrite were additionally monitored by TG analysis 
in a magnetic field, the technique of which is described in 
[68, 69].

X-ray diffraction was performed using an ARL X'TRA 
diffractometer with CuKα radiation. Qualitative and quanti-
tative XRD analysis was performed using the PDF-4 + pow-
der database of the International Center for Diffraction 
Data (ICDD). PowderCell 2.4 software was used to quan-
tify phases, determine crystallite sizes using the Wil-
liamson–Hall method, and specify the lattice parameters. 
For quantitative XRD analysis, a set of experimental data 
obtained using a diffractometer was modeled by pseudo-
Voigt profile function. The ultimate goal of this modeling is 
to obtain the best theory–experiment approximation.

The microstructure of the samples was investigated using 
a Hitachi TM-3000 scanning electron microscope.

Results and discussion

Thermal analysis of precursors and synthesized 
ferrites

In this study, a thermal analysis of the initial oxides used for 
ferrite synthesis was performed. TG/DSC analysis for iron 
oxide powder (not shown in this article) revealed no change 
in mass and significant calorimetric effects up to 800 °C. 
Only a small endothermic DSC peak at 677 °C associated 
with the magnetocaloric effect at the Néel temperature of 
α-Fe2O3 was revealed.

Figure 1 shows the TG and DSC curves for the Sm2O3 
and Li2CO3 precursors obtained in the heating mode in a 
thermal analyzer. For Sm2O3, a three-step mass reduction 
occurs in the temperature range of 260–460 °C. However, 
the TG curve shows that the mass change is insignificant 
and, according to the data reported in [70], it is due to the 
loss of physically and chemically adsorbed water.

Table 1   Phase concentration of precursors

Sample Phase composition Phase concentration

mol% mass%

S1 Li2CO3
Fe2O3
Sm2O3

16.7
81.3
2.0

8.2
87.1
4.7

S2 Li2CO3
Fe2O3
Sm2O3

16.7
76.7
6.6

7.8
77.5
14.7
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Thermal analysis of Li2CO3 lithium carbonate indicates 
that the mass changed near its melting point, which is known 
to vary within 720–735 °C. Therefore, the peaks on the DSC 
curve correspond to melting and decomposition of Li2CO3 
with the release of carbon dioxide according to the reaction:

The total mass change on the TG curve equal to 57.06% 
and the enthalpy on the DSC curve equal to 245 kJ mol−1 for 
the release of CO2 are close to the calculated values of 60% 
and 230 kJ mol−1, respectively, in accordance with formula 
(3).

Thermal analysis of Sm2O3/Fe2O3/Li2CO3 precursors 
mixed in the ratio required to obtain samples S1 and S2 is 
illustrated in Figs. 2 and 3.

When unmilled powders are heated in the furnace of the 
thermal analyzer (Figs. 2a and 3a), the TG curve indicates 
a decrease in mass in several stages. The first stage in the 
temperature range of 280–450 °C, if compared with Fig. 1, is 
associated with the mass changes in Sm2O3. The decreased 
mass (0.43 and 0.86% for samples S1 and S2, respectively) 
and the enthalpy of the associated heat effect for these sam-
ples correspond to the mass content of samarium oxide in 
the total mixture.

The change in mass in the temperature range of 
470–700 °C is associated with the diffusion interaction 
between the reagents. The total mass loss in this tempera-
ture range is 5.01 and 4.59% for samples S1 and S2, respec-
tively. These values are close to the expected ones of 4.92 
and 4.64% for CO2 release calculated from Eqs. (1) and (2), 
respectively. In [18], thermal analysis was used to study the 

(3)Li
2
CO

3
→ Li

2
O + CO

2

synthesis reactions of lithium ferrites substituted by zinc 
and titanium. Mass spectrometric analysis of gasses showed 
only CO2 release in this temperature range. The DSC peak 
indicates an endothermic peak with an enthalpy of 107 J g−1 
for both samples close to the thermal effect of the interaction 
of iron oxide and lithium carbonate observed in [19].

It is known [18, 19] that mixing lithium carbonate with 
metal oxides accelerates the process of its decomposition. 
In particular, in a mixture with Fe2O3, acceleration of the 
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Fig. 2   TG/DTG/DSC curves at heating mode (a, c) and cooling mode 
in magnetic field (b, d) for S1 sample unmilled (a, b) and milled for 
300 rpm (c, d)
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lithium carbonate decomposition is associated with the pre-
dominant diffusion of Fe3+ cations into the Li2CO3 crystal 
lattice. Thus, Fig. 1 shows that the pure lithium carbonate 
decomposition begins at 700 °C. However, Figs. 2 and 3 
illustrate a lower decomposition temperature for Li2CO3 
with the release of CO2 in the Sm2O3/Fe2O3/Li2CO3 mixture, 

which is at least 250 °C lower than that for pure Li2CO3. In 
this case, the reagents interact in two stages.

The study of the interaction between the Fe2O3 and 
Li2CO3 reagents to obtain lithium ferrites showed that the 
limiting stages of the reaction differ depending on the reac-
tion temperature [19, 71]. At 500 °C and above, the reac-
tion is mainly limited by diffusion interactions. However, 
in this case, the initial reaction product at low temperatures 
is lithium ferrite LiFeO2, regardless of the ratio of the ini-
tial components. With the initial molar ratio of Li2CO3 and 
Fe2O3 equal to 1:5 and a further increase in the temperature 
and duration of the synthesis, the reaction product is lithium 
ferrospinel Li0.5Fe2.5O4.

In this regard, a two-stage change in mass on the TG 
curve and a double peak on the DSC curve observed in 
Figs. 2a and 3a at 470–700 °C are associated with the for-
mation of transition phases of lithium ferrite. This is evi-
denced by a small peak on the DSC curve at 750–760 °C, 
which is due to the order–disorder (α → b) phase transi-
tion in the formed Li0.5Fe2.5O4 phase [18, 72]. The higher 
enthalpy of 0.96 J g−1 for sample S1 compared to the value 
of 0.42 J g−1 for sample S2 characterizes the higher ferrite 
content in sample S1 synthesized at the time of recording 
the DSC signal. This transition but with a higher intensity 
due to additional heating can similarly be observed on the 
DSC curve obtained at the cooling stage (Figs. 2b and 3b). 
The obtained enthalpy values of 8.9 J g−1 and 8.2 J g−1 for 
samples S1 and S2, respectively, are very close to the tran-
sition enthalpy for pure lithium ferrite with the DSC peak 
equal to 12 J g−1 [26].

Figures 2b and 3b demonstrate the results of TG analysis 
of the samples, when the magnets were attached immedi-
ately after the sample heating mode in accordance with the 
scheme proposed in [68]. The TG curves measured using 
a magnetic field show an abrupt increase in mass near the 
Curie temperature (Tc), which can be determined from the 
DTG curves. The Tc for samples S1 and S2 attains 629.2 
and 629.7 °C, respectively, and these values are close to the 
temperature of the magnetic transition in ordered lithium 
ferrite with Tc = 632 °C [26, 68]. As reported in [72], a slight 
decrease in the Curie temperature of the samples can be 
associated with an increase in the degree of the order viola-
tion in the ferrite structure. In this case, this is apparently 
due to the addition of Sm2O3.

Thus, the obtained results indicate the formation of a sig-
nificant amount of unsubstituted lithium ferrite Li0.5Fe2.5O4 
during solid-phase interaction in the unmilled Sm2O3/
Fe2O3/Li2CO3 mixture. Based on the results obtained, it is 
possible to estimate the content of lithium ferrite formed 
in the samples during thermal analysis. According to the 
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Fig. 3   TG/DTG/DSC curves at heating mode (a, c) and cooling mode 
in magnetic field (b, d) for S2 sample unmilled (a, b) and milled for 
300 rpm (c, d)
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thermomagnetometric methodology of ferrites presented in 
[68], the mass jump at the Curie temperature was observed 
to be 0.41% for pure lithium ferrite. As mentioned above, 
the enthalpy of α − Li0.5Fe2.5O4 to β − Li0.5Fe2.5O4 transi-
tion according to the DSC analysis for pure lithium ferrite 
is 12 J g−1 [26]. Thus, the 0.33 and 0.37% in mass on TG 
curves as well as 8.9 and 8.2 J g−1 on DSC curves for sam-
ples S1 and S2, respectively, indicated that the ferrite con-
tent exceeds 70 mass% at the stage of cooling the mixture 
in a thermal analyzer.

The results of thermal analysis under non-isothermal 
heating of powders mechanically activated at 300  rpm 
are presented in Figs. 2c and 3c for samples S1 and S2, 
respectively. In such samples, a slight decrease in mass can 
also be observed at 280–450 °C, which is associated with 
mass changes in Sm2O3. The higher values of mass change 
observed in this temperature range for both samples (0.46 
and 0.99%), compared with the calculated values for the 
Sm2O3 content in the total mixture, are associated with 
the overlap of the temperature intervals of the processes 
occurring in Sm2O3 and the interaction between Fe2O3 and 
Li2CO3.

The reaction of interaction between the milled Sm2O3/
Fe2O3/Li2CO3 precursors with the release of CO2 starts at a 
temperature of ca. 450 °C. The final temperature of the reac-
tion is 700 °C. The total mass loss in this temperature range 
is 4.90% and 4.59% for samples S1 and S2, respectively. 
According to Eqs. (1) and (2), these values within experi-
mental error are close to the calculated ones for the release 
of CO2. The behavior of the TG and DSC curves indicates 
that the synthesis reaction proceeds in two-stage with an 
enthalpy slightly lower than that of the reaction from non-
activated powders. In this case, the main mass loss occurs in 
the first stage of the reaction up to 600 °C, which is 100 °C 
lower as compared to non-activated powders.

The enthalpies of α − Li0.5Fe2.5O4 to β − Li0.5Fe2.5O4 
phase transition, which are equal to 0.99 J g−1 and 0.8 J g−1 
for samples S1 and S2, respectively, are higher than the val-
ues shown in Figs. 2a and 3a. This indicates the formation of 
a higher concentration of lithium ferrite in the milled sam-
ples during heating in thermal analyzer. Thus, mechanical 
activation of the reagent mixture accelerates the synthesis 
reaction between Sm2O3/Fe2O3/Li2CO3 precursors.

The results of TG analysis in a magnetic field presented in 
Figs. 2d and 3d reveal a high content of Li0.5Fe2.5O4 lithium 
ferrite in both samples during solid-phase interaction in the 
mechanically activated Sm2O3/Fe2O3/Li2CO3 mixtures.

For milled sample S1, higher DSC peak of 9.7 J/g and 
the mass change of 0.4% indicate an increase in the lithium 
ferrite concentration during sample cooling in the thermal 
analyzer. However, the lower DSC peak of 6.6 J/g and the 

mass change of 0.36% for milled sample S2 are apparently 
associated with a decrease in the amount of lithium fer-
rite due to the formation of other phase products such as 
SmFeO3, as shown below.

Figure 4 presents the results of thermal analysis obtained 
at the cooling stage for samples synthesized at 900 °C for 
240 min from mechanically activated powders. According 
to the results of DSC analysis that show high values of the 
enthalpy of the β − Li0.5Fe2.5O4 to α − Li0.5Fe2.5O4 phase 
transition, the synthesized samples contain mainly lithium 
ferrite Li0.5Fe2.5O4. The content of this ferrite is higher in 
samples S1 compared to samples S2. No Curie tempera-
tures connected to Li0.5Sm0.06Fe2.44O4 and Li0.5Sm0.2Fe2.3O4 
phases were found.

X‑ray diffraction analysis of synthesized ferrites

For a more comprehensive understanding of the processes 
that occur during the synthesis of ferrite, we performed 
XRD analysis of the samples synthesized at 900 °C for 
240 min. Figure 5 shows XRD patterns for samples with 
different levels of doping with Sm3+ ions. It was found that 
some of the obtained peaks correspond to the cubic space 
group (Fd-3 m). This indicates the formation of a spinel 
ferrite structure, namely, an ordered phase α − Li0.5Fe2.5O4 
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(PDF No. 04–015-5965). Yet, along with ferrite, a small 
amount of a crystalline secondary phase identified as 
SmFeO3 is formed (PDF No. 00–039-1490) [65, 73]. It 
should be noted that SmFeO3 is a non-magnetic material 
that exhibits an orthorhombic space group (Pnma). This 
phase can be formed as a result of the following reaction: 
5Fe2O3 + 5Sm2O3 = 10SmFeO3.

Thus, the results of XRD analysis indicate the formation 
of a two-phase product based on Li0.5Fe2.5O4 and SmFeO3 
in the process of solid-phase interaction. The quantitative 
content of phases is given in Table 2. At the same time, 
an increase in the Sm2O3 content from 4.7 to 14.7 mass% 
in the Sm2O3/Fe2O3/Li2CO3 mixture leads to an increase 
in the amount of the secondary phase SmFeO3 from 4.9 to 
17.5 mass% in synthesized samples. As shown in Table 2, 
the changed Sm2O3 content causes changes in the lattice 
constant.

Thus, for the synthesized samples, XRD and thermal 
analyses did not reveal the substituted phases of lithium fer-
rite, such as Li0.5Sm0.06Fe2.44O4 and Li0.5Sm0.2Fe2.3O4.

SEM analysis of synthesized samples

Figure 6 shows SEM images of the samples synthesized 
at 900 °C for 240 min. They demonstrate two distinct 
contrasts that presumably correspond to the ferrite phase 
(gray tint) and SmFeO3 phase (white tint). Thus, the 
results obtained using SEM analysis confirm the conclu-
sion drawn earlier on the formation of a two-phase prod-
uct during the synthesis from the Sm2O3/Fe2O3/Li2CO3 
powder mixture.
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Fig. 5   X-ray diffraction of samples synthesized at 900 °C for 240 min

Table 2   X-ray diffraction data 
of ferrites synthesized at 900 °C 
for 240 min

Sample Phase composition Lattice parameter Crystallite sizes Phase 
concen-
tration

/Ǻ nm mass%

S1 Li0.5Fe2.5O4
SmFeO3

a = b = c = 8.3297
a = 5.5921; b = 7.7062; c = 5.3999

135
137

95.1
4.9

S2 Li0.5Fe2.5O4
SmFeO3

a = b = c = 8.3279
a = 5.5936; b = 7.7046; c = 5.3995

170
45

82.5
17.5

Fig. 6   SEM micrographs of 
samples synthesized at 900 °C 
for 240 min
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Conclusions

In this study, we examined the synthesis of lithium-sub-
stituted ferrite from mechanically activated Sm2O3/Fe2O3/
Li2CO3 precursors using XRD, TG, DSC, and SEM analyses.

It was shown by thermal analysis that mechanical activa-
tion of the Sm2O3/Fe2O3/Li2CO3 mixture in a planetary mill 
increases the powder reactivity, so that the main reaction of 
reactants interaction occurs at lower temperatures. It was 
also found that the heating of the Sm2O3/Fe2O3/Li2CO3 mix-
ture leads to the formation of a two-phase product that con-
sists mainly of lithium ferrite Li0.5Fe2.5O4 and the SmFeO3 
phase, the amount of which depends on the Sm2O3 content 
in the initial mixture. The synthesis of pure lithium ferrite 
was confirmed by XRD analysis data, the Curie tempera-
ture point, and by the presence of an endothermic peak on 
the DSC curve corresponding to the order–disorder transi-
tion in the Li0.5Fe2.5O4 phase. The amount of lithium ferrite 
formed depends on the degree of powder milling. However, 
regardless of the mechanical activation of the powders, no 
substituted lithium ferrites such as Li0.5Sm0.06Fe2.44O4 and 
Li0.5Sm0.2Fe2.3O4 were formed.

It is known that unsubstituted lithium ferrite with the 
chemical composition of Li0.5Fe2.5O4 is not used in micro-
wave technology due to high dielectric losses. However, 
this ferrite has the high values of saturation magnetization 
and Curie temperature. It can be assumed that the formation 
of Li0.5Fe2.5O4/SmFeO3 composite structure can primarily 
affect the electrical properties of ferrites. In this regard, this 
work needs to be continued in terms of studying the electri-
cal and magnetic properties of synthesized ferrites.
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