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Abstract
The primary function of fire detection is to detect fires and raise the alarm early. A detection algorithm is a key element of 
image fire detection (IFD) technology because it directly determines the IFD’s performance. In this study, an IFD algorithm 
based on the YOLOv3 network was developed to detect smoke and flame simultaneously. Subsequently, six improvements 
were applied to promote the algorithm’s ability to detect fire early. The results demonstrated that the modified YOLOv3 
network achieved an average accuracy of 95%, which is 14.1% higher than that of the same model without modifications. 
The detection speed reached 22 Frames Per Second (FPS), which satisfies the requirements of real-time detection.
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Abbreviations
IFD  Image fire detection
FPS  Frames per second
DL  Deep learning
CNN  Convolutional neural network
NMS  Nonmaximum suppression
SGD  Stochastic gradient descent
IOU  Intersection-over-union
CBL  Conv + Bn + Leaky_relu
Avg IOU  Average intersection-over-union
AP  Average precision

Introduction

Fire prevention is becoming increasingly challenging 
because of accelerating urbanization and the continuous 
growth in building size. The quick and accurate detection 

of fire can effectively reduce fire losses. Most traditional 
detection algorithms use simple models, such as shallow 
convolutional neural network and Support Vector Machine; 
in addition, the complex environments in fire images could 
affect the performance of algorithm on detection. Therefore, 
it is difficult for traditional detection algorithms to detect 
small object proportions on images. However, the new image 
fire detection (IFD) technology can be used to automati-
cally distinguish the characteristics of fire or smoke in a fire 
image by using a digital image processing method. IFD is 
not limited by space, height, air velocity, or dust, and it is 
a noncontact technology, thus avoiding some of the restric-
tions in traditional fire detection.

Currently, the development of detection algorithms is a 
research focus. As early as 1966, Foo [1] mentioned the 
application of brightness information in IFD. Subsequently, 
studies of and developments in detection algorithms have 
focused on fire image features [2–5]. However, the traditional 
detection algorithm artificially extracted fire image features, 
which exhibited weak generalization, a high false-positive 
rate, and low practicability. Therefore, deep learning (DL) 
algorithms, such as an advanced image classification con-
volutional neural network (CNN), were introduced to solve 
these problems. The common CNNs [6] included AlexNet 
[7], VGG [8], Inception [9], ResNet [10], a smoke detection 
algorithm, and a flame detection algorithm. Mao et al. [11] 
introduced time-series information to improve the accuracy 
of algorithms in IFD, and Namozov [12] used a modified 
VGG-Net to detect smoke and flame simultaneously. Dung 
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et al. [13] used mixture-of-Gaussians background modeling 
to cluster and discriminate the background and foreground 
and then applied cascade classification to determine the 
candidate region. Zhong et al. [14] used a color model to 
determine the candidate region and then AlexNet to improve 
the flame detection in the candidate region, and Li et al. [15] 
studied object detection CNN in IFD. The results revealed 
that YOLOv3 provided the most suitable method for IFD.

An IFD algorithm based on DL experiences two prob-
lems: first, image classification is the focus of the detec-
tion algorithm, and it therefore lacks the ability to extract 
candidate regions, limiting its early fire detection ability. 
Second the part of algorithms uses the objective detection 
methods for fire detection. This only applies transfer learn-
ing to develop an algorithm, and the fire detection perfor-
mance of the algorithm is not optimized, which is lacking 
practicability [16–27].

This study aimed to develop an IFD with a stronger 
early fire detection capability. To achieve this, a modified 
YOLOv3 algorithm was developed with six improvements: 
(1) Addition of images containing small object proportions; 
(2) data enhancement; (3) addition of a backend object 
detection network feature map; (4) improvements to the 
backend object detection network structure; (5) improve-
ments to the anchorpoint setup; (6) improvements to the 
nonmaximum suppression (NMS).

Algorithm development and optimization

Development of the algorithm

The computer used in the study was an Intel Core I7-7700 
CPU @ 3.6 GHZ, 16 GB DDR4 RAM 2400 MHz with a 
NVIDIA Titan X Pascal GPU with 3840 CUDA. The oper-
ating system was Ubuntu 16.0.4. The data set consisted 
of 29,180 images (13,400 fire images and 15,780 nonfire 
images) with various scenarios obtained from Li et al. [15] 
The fire image data set has been divided into development 
subsets and test subsets by using the min-Hash approximate 
image replacement method.

YOLOv3 network

YOLOv3 was used to design and generate a fire detection 
network. YOLOv3 is a network of object detection CNNs 
that can develop the image fire detection algorithm. It was 
trained using Microsoft’s COCO data set (a large-scale 
detection, segmentation, and captioning data set) and then 
retrained using transfer learning [28, 29]. The YOLOv3 net-
work consisted of a frontend feature extraction network and 
a backend classification network. The frontend was frozen in 
transfer learning, and the backend was trained and optimized 

through the training and verification of the fire image data 
set obtained from Li et al.

Stochastic gradient descent (SGD) was used to update the 
parameters. The batch size was set to 64, the SGD momen-
tum to 0.9, and the intersection-over-union (IOU) threshold 
to 0.6. The NMS method was used to determine the number 
of candidate boxes as 300, the initial learning rate as 0.001, 
and the total number of iterations as 200 K. The learning rate 
was reduced by 10 when the number of iterations reached 
120 K and 160 K. The other parameters remained set to the 
original network.

Improvement of the algorithm

The test set in Li et al.’s fire image data set was used to 
evaluate the reliability of the trained YOLOv3 algorithm. 
According to the results, the average accuracy was 84.5% 
and the detection speed reached 28 Frames Per Second 
(FPS), which represents a high detection level. However, 
in the early stages of fire development, the proportion of 
flame and smoke in an image is less than 20%; in a large 
building, the proportion is less than 1%. Therefore, an object 
proportion of less than 20% was used to evaluate the average 
accuracy of YOLOv3, which was only 80.95%.

An error analysis was conducted to achieve an object 
proportion of less than 20%. When the confidence thresh-
old reached 0.5, 100 missed detection samples from the test 
set were randomly selected to evaluate YOLOv3’s missed 
detection rate. The missed detection samples with the dif-
ferent object proportions are shown in Table 1, which dem-
onstrates that lower object proportions are associated with 
higher missed detection rates. Therefore, improved detection 
ability for lower object proportions is required. 

Six improvements for YOLOv3

Addition of images containing small object proportions

The performance of algorithms depends on the design of the 
network architecture and the selection of suitable data sets. 
If the development data set differs considerably from the 
actual scenario in real-time detection, the network architec-
ture is not able to achieve its desired effect. Therefore, the 

Table 1  The missed detection 
samples with the different 
object proportions

Object propor-
tions/%

Missed 
detection 
samples

(0, 5) 55
[5, 10] 23
[10, 15) 10
[15, 20) 12
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development data set should be consistent with real-life sce-
narios. 1,231 fire images containing small object proportions 
were added to the original development set to achieve this. 
Here, small object means that the object is proportion small 
in an image and difficult to be detected by algorithm (Fig. 1).

Data enhancement

Data enhancement is an effective method to expand data 
samples and improve an algorithm’s generalization ability 
and robustness. The shooting angle, pixel size, brightness, 
and other factors can cause differences between images of 
the same scene. Therefore, in this study, data enhancement 
was used to transform the original training data. Subse-
quently, the transformed data were used to train the neural 
network to improve the detection ability of the algorithm for 
different scenes (Fig. 2).

Addition of the backend object detection network feature 
map

The YOLOv3 through 8 times downsampled feature map to 
detect small objectives. But, when the size of objectives is 
less than 8 × 8 pixels, the algorithm has difficult to detect it. 
Therefore, addition the object detection network feature map 
of backend to improve the ability on detecting small objec-
tives. The improvements in the YOLOv3 network structure 
achieved by the 4 × downsampled feature map (Fig. 3).

Improvements to the backend object detection network 
structure

A previous study [30] used a residual unit to improve fea-
ture learning efficiency and reduce gradient dispersion. In 
the present study, a similar improvement was achieved by 
changing the original five CBL units in the convolutional 
block unit of the YOLOv3 network structure to two residual 
block units and one CBL unit (Fig. 4).

Improvements to the anchorpoint setup

The K-means clustering method was used to obtain a new 
proposal for the region size of the box for the fire image data 
set, thereby reducing the complexity of box regression in the 
next step. The average intersection-over-union (Avg IOU) 
Eq. (1) serves as the cluster analysis metrics for determining 
the optimal value of K:

where B denotes the cluster sample box, C denotes the center 
of the cluster, k denotes the number of cluster centers, nk 
denotes the number of samples in the kth cluster center, n 
is the total number of samples, and IOU (B, C) denotes the 
intersection ratio of the central box and the sample box in 
the cluster (Fig. 5).

(1)I = avgmax

∑k

i=1

∑nk

j=1
IOU(B,C)

n

Fig. 1  The 1,231 fire images containing small object proportions were added to the original development set

(a) 
Original image

(b)
Contrast enhancement

(c) 
Gaussian noise

(d)
Brightness transform

(e)
Motion blur

Fig. 2  The examples of images transformed using different methods of data enhancement. These images were produced with the addition of 
object proportions of less than 20% from the original development set
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A cluster analysis of the object box in the fire image 
data set was conducted using K = 1–12. The Avg IOU 
before and after improvement is displayed in Table 2, and 
the improved region proposal is listed in Table 3. The 
region proposal IOU increased to 9.2%, indicating that, 
as a result of these improvements, the detection of small 
object proportions in large-scale feature maps can acquire 
more region proposals.

Improvements to the NMS

The early stages of intensive image sampling may generate 
multiple region proposals for each image position, and there-
fore, the same objects can be predicted by multiple overlapping 

Input image
(Output: 416, 416, 32)
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CBL 64×3×3_s2  

(Output: 208, 208, 64)

Residual block 1×64  
(Output: 208, 208, 64)
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(Output: 104, 104, 128)

Residual block 2×128  
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Conv N×1×1
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Fig. 3  An 8 downsampled feature map was produced through the YOLOv3 network. Subsequently, 2 upsampling was conducted combined with 
the second group of residual blocks in the frontend Darknet-53 feature extraction network to obtain a 4 downsampled feature map
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Fig. 5  The Avg IOU against different K values using a cluster anal-
ysis. When k ≥ 10, the Avg IOU was stable. The central box could 
therefore be generated using a cluster analysis at k = 10, which indi-
cated an improvement in the region proposal scheme
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boxes. Equation (2) uses the NMS method to solve this prob-
lem, enabling the YOLOv3 algorithm to filtrate the output of 
prediction boxes:

where Sconfidence refers to the confidence of the prediction 
box, M refers to the prediction box with the maximum con-
fidence in the box list, b refers to the prediction box that 
compares with M, IOU (M, b) refers to the intersection ratio 
of two boxes, and I refers to the IOU threshold.

However, if the IOU value of a box is greater than the 
threshold value, this box might be deleted. Therefore, when 
flame and smoke overlap in the images, the NMS can decrease 
the average detection accuracy. Bodla et al. [30] noted an 
improvement in the YOLOv3 algorithm using a soft-NMS 
method, as displayed in Eq. (3):

(2)sconfidence =

{

Sconfidence, IOU(M, b) < I

0, IOU(M, b) > I

(3)sconfidence =

{

Sconfidence, IOU(M, b) < I

Sconfidence(1−IOU(M,b)), IOU(M, b) > I

Thus, when the IOU is larger, the confidence is lower. 
This method also decreased the probability of a box being 
removed, thereby improving the detection ability when flame 
and smoke overlap.

Evaluation of the algorithm’s performance

To evaluate the algorithm’s performance, the six improve-
ments were used to develop different models separately, and 
a combination of all the improvements was used to obtain 
the modified YOLOv3. These seven models were compara-
ble in terms of their algorithm performance. Table 4 presents 
the various models with their corresponding improvements.

Average precision (AP) was used to evaluate the detection 
ability of the different models. Table 5 lists the AP (fire and 
smoke individually), mAP (average AP of fire and smoke 
together), and detection speed calculated using the differ-
ent models. According to the results, the AP increased in 
all the improved models and the detection speed decreased 
in the modified model, which satisfied the requirement of 
a detection speed of ≥ 20 FPS. Because the flame features 

Table 2  Avg IOU before and 
after improvement

Region pro-
posal schemes

Original schemes Improvement schemes

Size 373 × 326, 156 × 198, 116 × 90, 59 × 119, 
62 × 45, 30 × 61, 33 × 23, 6 × 30, 10 × 13

316 × 195, 206 × 257, 126 × 92, 106 × 122, 
63 × 58, 34 × 78, 37 × 55, 45 × 23, 22 × 25, 
10 × 16

Number 9 10

Table 3  The improved region 
proposal

Feature map 13 × 13 26 × 26 52 × 52 104 × 104

Receptive field Big Medium Smaller Small
Detection the object Big Medium Smaller Small
Region proposal 316 × 195, 

206 × 257
126 × 92, 106 × 122 63 × 58, 34 × 78, 

37 × 55
45 × 23, 

22 × 25, 
10 × 16

Table 4  Model design scheme

Optimization strategy Model

Original No improvement YOLOv3
Improvement of development data Addition of images containing small object proportions YOLOv3_a

Data enhancement YOLOv3_b
Improvement of algorithm design Addition of a backend object detection network feature map YOLOv3_c

Improvements to the backend object detection network structure YOLOv3_d
Improvements to the anchorpoint setup YOLOv3_e
Improvements to the NMS YOLOv3_f

Combination of all improvement methods modified YOLOv3
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were clearer than the smoke features, the AP for detecting 
smoke was lower than that for detecting flame.

Furthermore, although the YOLOv3_b model was only 
optimized using data, its AP was still higher than that 
of original YOLOv3, indicating that improvements in 
development data are important for promoting algorithm 
performance.

An evaluation of the model’s performance was con-
ducted after the improvements to the algorithm design 
had been completed. The results revealed that the addition 
of the backend object detection network feature map and 
improvements to the anchorpoint setup increased the AP 
to 11.9% and 10.7%, respectively. The AP of the modified 
YOLOv3 model reached 95%, which was 14.1% higher than 
that of the original model. The detection speed of the modi-
fied YOLOv3 reached 22 FPS, which satisfied the real-time 
detection requirements.

Conclusions

This study provides an effective and reliable method for 
detecting smoke and flame in the early stages of a fire 
using images. The procedure for developing the model 
has been clearly described as well as the six improvements 
for promoting YOLOv3’s detection ability and speed and 
decreasing the missed detection rate. The AP of the modi-
fied YOLOv3 reached 95%, which was 14.1% higher than 
that of original model, and the detection speed satisfied 
the requirements of real-time detection. This model can be 
used to develop IFD technology for real-life situations and 
decrease the risk of fire losses.

The purpose of this study was to develop and optimize 
an image fire detection algorithm on deep learning. Six 
improvements were applied to promote the algorithm’s abil-
ity to detect fire early. These results were confirmed through 
the performance of algorithm. In the future study, we can 

consider the complex situations on real environment, thereby 
enhancing the detection ability of IFD.
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