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Abstract
The possibility of using machine learning to predict the heat transfer coefficient is becoming more evident. In fact, artificial 
neural networks (ANN) are widely used in heat transfer coefficient research. In this study, an ANN was used in the dataset 
training and testing of the boiling heat transfer coefficient of R32 inside a horizontal multiport mini-channel tube with a 
hydraulic diameter of 0.969 mm and an aspect ratio of 0.6. A mass flux range of 50–500 kg  m−2  s−1, heat flux of 3–6 kW  m−2, 
saturation temperature of 6 °C, and vapor quality up to 1 were applied as experimental conditions. The superposition, asymp-
totic, and flow pattern models were used to assess the experimental data. The ANN model with hidden layers (96,72,48,24) 
and 16 input parameters  (Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Frv,  Rel,  Wel,  Prv,  Xtt, Co,  Prl, and Bo) was included in 
the prediction of the boiling heat transfer coefficient of R32 inside a horizontal multiport mini-channel tube and achieved 
better results than the empirical correlation models with a mean deviation of 6.35%. Results indicate that ANN models can be 
applied to improve the prediction accuracy of the boiling heat transfer coefficient, especially in multiport mini-channel tubes.
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Introduction

Boiling heat transfer coefficient correlation

The heat transfer coefficient is an important factor in the 
design of heat exchangers for refrigeration and air-condition-
ing systems. There have been many studies on the predic-
tion of the boiling heat transfer coefficient. The well-known 
correlation to predict the boiling heat transfer coefficient 
by Chen [1] in 1966 introduced the suppression factor S on 
the nucleate boiling term and enhancement factor F on the 
convective boiling term. Since then, the Chen correlation has 
been used as a basis for the calculation of the superposition 
model, asymptotic model, and flow pattern model.

Gungor and Winterton [2], Jung et al. [3], Li et al. [5], 
and Mahmoud and Karayiannis [4] proposed superposition 
models by modifying the suppression factor and enhance-
ment factor according to their experimental data to improve 
the prediction accuracy.

Gungor and Winterton [2] modified the enhancement fac-
tor and suppression factor with the Froude number Fr < 0.5, 
particularly for a horizontal tube with a hydraulic diameter 
of 2.95–32 mm. The proposed correlation for saturated boil-
ing resulted in a mean deviation of 21.4%. Jung et al. [3] 
proposed a boiling heat transfer coefficient for refrigerant 
mixtures in a stainless steel tube with an inner diameter 
of approximately 9 mm and achieved a mean deviation of 
approximately 7.2% for pure refrigerant and 9.6% for mixed 
refrigerants. However, both correlations by Gungor and 
Winterton [2] and Jung et al. [3] did not include alternative 
refrigerants and the mini-channel tube was not within their 
tube ranges. In 2013, Li et al. [5] and Mahmoud and Karay-
iannis [4] also proposed a modified version of Chen’s corre-
lation with mean deviations of 14.3% and 20%, respectively. 
However, the mean deviation of these correlations is still not 
sufficiently low, indicating that a good prediction will not be 
achieved in different experimental conditions.

In 1961, Kutateladze [6] introduced a “power type” addi-
tion in the modification to the nucleate boiling and convec-
tive boiling terms to predict the heat transfer coefficient. Liu 
and Winterton [7] proposed a boiling heat transfer coefficient 
correlation in which the enhancement factor for the convec-
tive boiling and suppression factor for the nucleate boiling 
included the Prandtl number and that resulted in a 20.5% 
mean deviation for approximately 10 working fluids in total. 
Steiner and Taborek [8] also applied an asymptotic model 
to the boiling heat transfer correlation with a “power type” 
addition of 3 (n = 3). However, the suppression factor for the 
nucleate boiling term is not included in this correlation and 
only the enhancement factor for the convective boiling term 
is considered, which is a function of vapor quality and den-
sity ratio. Their proposed asymptotic model could predict 
the boiling heat transfer coefficient in a vertical tube with 
a 20% to 30% mean deviation. Wattelet et al. [9] proposed 
the heat transfer coefficient correlation with “power type” 
addition of 2.5 (n = 2.5) which developed using wavy-strati-
fied flow annular flow data from R134a and R12 with mean 
deviations lower than 10%. A Froude number was included 
to the convective boiling side represented the wavy-stratified 
flow. Tapia and Ribatski [10] proposed an asymptotic cor-
relation by taken the same “power type” addition as Liu and 
Winterton [7] and produced low mean deviation by modi-
fied Kanizawa et al. (2016) correlation. Again, a lower mean 
deviation would produce a higher accuracy for the prediction 
of the boiling heat transfer coefficient, a result of which the 
abovementioned asymptotic models could not give an accu-
rate prediction to other experimental data due to uncertain 
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“power type” value of each correlation. Particularly, each 
experimental data needs its own prediction model.

With the combination of asymptotic models and flow 
pattern analysis to predict a heat transfer coefficient, Kat-
tan–Thome–Favrat [11] proposed a flow pattern model in 
1998. This model is based on the flow regime in a horizontal 
tube and includes partial tube wall wetting and partial tube 
dryout in an annular flow, producing results with mean a 
deviation of 13.3%. A similar method was applied to the heat 
transfer coefficient correlation proposed by Thome and El 
Hajal [12] with  CO2 (carbon dioxide) as the working fluid. 
With 404 data points for hydraulic diameters between 0.79 
and 10.06 mm, an accurate prediction of the heat transfer 
coefficient was achieved. Yoon et al. [13] also developed a 
correlation for the boiling heat transfer coefficient for  CO2 
(carbon dioxide). Their experimental study was conducted 
in a stainless-steel tube with an inner diameter of 7.53 mm, 
which can be categorized as a conventional channel. The 
authors reported that the heat transfer coefficient of  CO2 
(carbon dioxide) could be predicted with a mean deviation 
of 15.3%. Jige et al. [14] considered each flow pattern and 
its transitions in the prediction of the heat transfer coeffi-
cient, achieving a mean deviation of 10.7%. Of the existing 
flow pattern models, each model has its own strength repre-
sented by the flow pattern regime analysis, which can only 
be achieved with experimental measurements. Therefore, 
a correlation was introduced as an alternative method or 
as an assessment method for the prediction of heat transfer 
coefficients.

However, the prediction accuracy can be improved by 
modifying the existing correlation to fit the heat transfer 
coefficient of R32 inside a multiport mini-channel tube. In 
addition, a computational method such as machine learn-
ing can be applied as an alternative method to improve the 
prediction accuracy.

Machine learning for the prediction of the boiling 
heat transfer coefficient

An alternative method such as a computational method, par-
ticularly machine learning, can be used to predict the boiling 
heat transfer coefficient. Machine learning algorithms work 
by searching through a set of possible prediction models 
for the model that best captures the relationship between 
the descriptive features and the target in a dataset [15]. An 
artificial neural network, as a subset of machine learning 
algorithms, is applied in this study.

The operation of a neural network originates from its neu-
rons that carry information-processing units [16]. The struc-
ture of an artificial neural network consists of an input layer 
(x1, x2, …, xn), hidden layer, and output layer (y), which have 
interconnections in between. To make an artificial neural 
network understand the prediction object, the weighted (w1, 

w2, …, wn) sum of neurons and bias that carry the information 
of inputs pass through an activation function to produce the 
output (Eq. 1). A hidden layer is added to the ANN model 
to process only the neurons that have internal connections 
to the neural network [16]. The illustration of an artificial 
neural network is presented in Fig. 1.

The application of neural networks to the prediction of 
heat transfer was first proposed in 1991 by Thibault and 
Grandjean [17]. They reported that a neural network can be 
used to reduce the work required to find a suitable model that 
fits the experimental data or to find an applicable regression 
model. Since then, studies on ANN models for predicting the 
heat transfer coefficient have improved [18–22]. Qiu et al. 
[18] predicted the boiling heat transfer coefficient using a 
machine learning method with 16,953 data points with a 
mean deviation of 14.3%. Hughes et al. [19] and Zhou et al. 
[20] predicted the condensation heat transfer coefficient by 
applying an ANN prediction model with mean deviations of 
14.1% and 6.8%, respectively.

Although Hughes et al. [18] reported that the RFR (Ran-
dom Forest Regression) model performed better than other 
models in the prediction of the condensation heat transfer 
coefficient, the ANN model is still reliable in providing 
accurate predictions and can be a promising approach in 
the prediction of heat transfer coefficients. In fact, there are 
studies reporting the use of ANN models that provided good 
prediction performance even with a small dataset. Zhu et al. 

(1)y =

n∑

i=1

wixi

input layer hidden layer

output

x2

x1

y

x
w

1w

η

η

Fig. 1  Structure of an artificial neural network (ANN)
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[21] and Kuang et al. [22] demonstrated that machine learn-
ing was a good method for predicting the boiling heat trans-
fer coefficient using databases with under 1,000 data points 
and produced results with mean deviations of 11.41% and 
4.54%, respectively.

The purpose of a neural network is to obtain a model that 
performs well on predicted data. Usually, even small models 
are guaranteed to be able to fit a sufficiently small dataset 
[23]. Comprehensively, a dimensionless number as a factor 
for enhancing the heat transfer coefficient is used as an input 
parameter. The selected hidden layer and parameter settings 
should be considered, and training and testing should be 
conducted to ensure that the selected parameter settings fit 
the data.

The application of machine learning to the prediction of 
heat transfer coefficients, especially for flow boiling heat 
transfer, requires further study because the available litera-
ture is limited. Therefore, the objective of this study is to 
develop an ANN model to predict the boiling heat transfer 
coefficient of R32 inside a horizontal multiport mini-channel 
tube. An experimental study was conducted to analyze the 
effects of the mass flux, heat flux, and vapor quality on the 
boiling heat transfer coefficient. The experimental data were 
compared with three types of correlation models to predict 
the boiling heat transfer coefficient. A new correlation for 
the boiling heat transfer coefficient is proposed to correct the 
accuracy of the correlation models. An improvement in pre-
diction accuracy was achieved by applying an ANN model to 
the prediction of the boiling heat transfer coefficient with the 
combination of input parameters. Therefore, ANN studies 
on heat transfer coefficients were conducted to analyze the 
prediction accuracy achieved using the ANN model.

Experimental setup

Experimental apparatus

To gather boiling heat transfer coefficient data, an experi-
mental study was conducted inside a horizontal multiport 
mini-channel tube. A schematic of the experimental appa-
ratus and test section is shown in Figs. 2 and 3, respectively. 
As shown in Fig. 2, the experimental apparatus comprised 
two main loops: a refrigerant loop and a water loop [24–26]. 
A refrigerant is supplied to the test section by controlling 
the refrigerant pump. The refrigerant passes through the 
Coriolis mass flow meter where the mass flux is varied from 
50–500 kg  m−2  s−1 by controlling the pump speed. Subse-
quently, the refrigerant enters the subcooler where the heat 
is rejected. The power supply in the preheater is used to 
adjust the vapor quality at the inlet of the test section. The 
vapor phase in the outlet of the test section is condensed in 

Fig. 2  Schematic of the experi-
mental apparatus
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the condenser and then gathered at the liquid receiver for 
use in the next cycle. 

The temperature is maintained similarly to how the stabil-
ity of the systems is maintained. The testing system’s sta-
bility is achieved through heat balancing across the entire 
testing system. This implies that the applied heat at the test 
section, heating power at the pre-heater, and heat infiltra-
tion from the outer environment must equal the refrigeration 
effect at the condenser and subcooler. To achieve this, all of 
the components are controlled together. The heat flux was 
controlled by controlling the temperature of the bath, and the 
preheater section heating power was set using the pre-testing 
calculation with continuous adjustments during operation. 
The cooling load was controlled by controlling the set tem-
perature of the brine from the separated chiller systems. The 
control was activated until a relative stability was achieved, 
implying that the temperature and pressure displayed on the 
monitor showed only slight fluctuations.

The test section is shown in detail in Fig. 3. The test sec-
tion is an aluminum multiport mini-channel tube with a 
hydraulic diameter of 0.969 mm, length of 0.2 m, an aspect 
ratio of 0.6, and nine channels. Twelve thermocouples were 
installed on both sides of the wall tube to measure the wall 
temperature and calculate the heat transfer coefficient.

The location of the thermocouples was distributed at a 
distance of 50 mm along the test section with two thermo-
couples attached to each side of every point. All of thermo-
couples were calibrated to obtain an uncertainty under 0.1 K 
before being mounted. After mounting, the thermocouples 
were not removed during the testing of one tube on purpose 
to maintain the effectiveness of the experiment.

Data reduction and uncertainty

In the experiment, the physical properties of the refriger-
ants were determined using REFPROP 8. The experimental 
uncertainties were determined according to ISO guidelines 
(1995) and are presented in Table 1. Data acquisition by an 
MX100 Yokogawa was used to convert the experimental 
results into data.

The heat loss was approximately 3%, which was consid-
ered in the calibration process. When the calculation of the 
heat flux was conducted from the heat transfer rate of the 
test section, which was defined as the mass flow rate and 
temperature difference between the inlet and outlet of the 
test section (Eq. 2), the average value of the heat flux was 
determined by dividing the heat flow rate against the exter-
nal area of the tube:

To calculate the heat transfer coefficient, the difference 
between the saturated temperature (Tsat) and the inlet wall 
temperature (Tw,in) was considered. The inlet wall tempera-
ture of the tube was calculated as

Finally, the heat transfer coefficient was determined using

The vapor quality (x) distribution along the test section 
was then calculated using the enthalpy ratio divided by the 
latent heat ( ifg ) in the test section, as per Eq. (5):

In addition, the inlet quality ( xin ) and outlet quality ( xout ) 
of the test section were determined by Eqs. (6) and (7), 
respectively:

According to the ISO guidelines [27], the uncertainties 
are expressed as listed in Table 1. There were two types of 
evaluation standard uncertainties that covered the modeling 
of the measurements. Type A is an evaluation method of 
uncertainty that is analyzed statistically and is given by the 
following equation:

For an input quantity Xi determined from n independent 
repeated observations Xi,k , the standard uncertainty u

(
xi
)
 

is taken from the estimated s
(
Xi

)
 , which is calculated 

based on Eq. (8), where n is the number of observations. 

(2)q =
mcp

(
Tinlet − Toutlet

)

Aexternal

(3)Twall,in = Tw,out +
q�

k

(4)h =
q

Tw,in − Tsat

(5)x =
i − if

ifg

(6)xin =
1

hhf

[
Q

mref

− Cp,ref

(
Tsat − Tpreheater

)
]

(7)xout = xin + mwCp,w

(
Tw,in − Tw,out

)

(8)u2
(
xi
)
= s2

(
Xi

)
=

s2
(
Xk

)

n

Table 1  Summary of the parameter uncertainties

Parameter Uncertainty

Tw,in ± 0.15
x ± 5%
h ± 10%
q ± 3%
Tube wall thickness/mm ± 0.15
Tube inner diameter/mm ± 0.287
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Type B is used to estimate the input that has not been 
obtained from repeated observations and is evaluated by 
scientific judgment based on the available information. 
Available information may include previous measurement 
data, manufacturer specifications, or calibration data. The 
uncertainties in the vapor quality, heat flux, and heat trans-
fer coefficient are determined by modeling the measured 
parameters that cannot be measured directly. Then, the 
uncertainties in the vapor quality, heat flux, and heat trans-
fer coefficient can be determined through the functional 
relationship f (Eq. 9). A summary of the uncertainties is 
presented in Table 1.

Therefore, the accuracy of the thermocouples was tested 
without applying a heat flux to the test section. Because the 
acrylic cover of the test section and the space between the 
tube and the outer environment act as insulation, the thermo-
couples mounted at the same point showed a similar value 
under the same conditions, suggesting that the accuracy 
of the thermocouple was reliable. This test was performed 
daily. The saturated temperature of the refrigerant was meas-
ured at the inlet of the test section using a resistance tem-
perature detector (RTD). An RTD was installed on the water 
section (inlet and outlet) to measure the water temperature 
used for heating the test section. Absolute pressure sensors 
were installed at the inlet and outlet of the test section to 
measure the saturation pressure. A differential pressure sen-
sor was installed to measure the pressure drop. The record-
ing of experimental data by the MX100 data acquisition 

(9)Y = f
(
x1, x2,… , xN

)

system began when the system maintained the desired mass 
flux and heat flux for approximately two hours.

Results and discussion

After conducting the experimental study, the effects of the 
mass flux, heat flux, and vapor quality on the heat transfer 
coefficient were analyzed. The experimental data were then 
compared with the superposition, asymptotic, and flow pat-
tern models. This analysis was used to prove the results of 
the experimental study.

Effect of mass flux and heat flux on heat transfer 
coefficient

The contribution of convective boiling to the heat transfer 
coefficient can be monitored by analyzing the effect of the 
mass flux. Convective boiling was prominent at a higher 
mass flux, and with an increase in the vapor quality, the heat 
transfer coefficient was enhanced. When the flow pattern 
at the high mass flux and in the high vapor quality region 
exhibited annular flow, the heat transfer coefficient began to 
decrease owing to the occurrence of dryout. According to 
Zhu et al. [28], when dryout occurs, the heat transfer coef-
ficient decreases due to the change in the contact area of the 
vapor at the inner surface of the tube. Therefore, the begin-
ning of dryout was monitored when the heat transfer coeffi-
cient decreased at a vapor quality of 0.7. A graph of the heat 
transfer coefficient versus the vapor quality under various 
mass flux and fixed heat flux conditions is shown in Fig. 4. 
The contribution of nucleate boiling to the heat transfer 
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coefficient can be observed by increasing the heat flux, as 
shown in Fig. 5. According to Cooper’s pool boiling correla-
tion, which includes the emphatic heat flux, the heat transfer 
coefficient increased owing to the activation of nucleation, 
which accelerated the growth of bubbles. According to He 
et al. [29], due to the strong effect of vapor quality on the 
mechanisms of heat transfer, convective boiling, and nucle-
ate boiling, the dominancy of convective boiling was more 
pronounced in low superheat conditions rather than nucleate 
boiling conditions in the low heat flux region, and especially 
in the low vapor quality region. Therefore, at a low heat flux, 
the heat transfer coefficients were relatively similar because 
the effect of nucleate boiling was less or not fully developed 
when the mass flux was low. As reported by Jige et al. [30], 
the dryout conditions affected the decrease in the heat trans-
fer coefficient when the vapor quality was increased in the 
multiport mini-channel tube. Similar to the effect of mass 
flux on the heat transfer coefficient, the occurrence of dryout 
was monitored at a high vapor quality of approximately 0.7.

where htp =
1

n

n∑

i=1

htpexp.

Assessment of the boiling heat transfer coefficient

The experimental data were compared with the superposi-
tion model [2–5], asymptotic model [7–10], and flow pattern 
model [11–14]. The assessment of the existing correlations 

(10)Mean deviation =
1

n

n∑

i=0

|
||||

htp_pred − htp_exp

htp_exp

|
||||
× 100%

(11)

Average deviation =
1

n

n∑

i=0

(
htp_pred − htp_exp

htp_exp

)

× 100%

(12)R2 = 1 −

∑n

i=1

�
htpexp − htppred

�2

∑n

i=1

�
htpexp − htp

�2

5

6

4

2

3

1

0
0

R32
Tsat = 6 °C
G = 50 kg m–2 s–1

G = 300 kg m–2 s–1 G = 500 kg m–2 s–1

G = 100 kg m–2 s–1

0.2 0.4

(a)
Vapor quality 

0.6 0.8

q = 3 q = 6

q = 3 q = 6 q = 3 q = 6

1

5

6

4

2

3

1

0
0

R32
Tsat = 6 °C

0.2 0.4

(b)
Vapor quality 

0.6 0.8

q = 3 q = 6

q (kW m–2)

q (kW m–2)q (kW m–2)

q (kW m–2)

1

10

8

6

H
ea

t t
ra

ns
fe

r 
co

ef
fic

ie
nt

/k
W

 m
–2

 K
–1

H
ea

t t
ra

ns
fe

r 
co

ef
fic

ie
nt

/k
W

 m
–2

 K
–1

H
ea

t t
ra

ns
fe

r 
co

ef
fic

ie
nt

/k
W

 m
–2

 K
–1

H
ea

t t
ra

ns
fe

r 
co

ef
fic

ie
nt

/k
W

 m
–2

 K
–1

4

2

0
0

R32
Tsat = 6 °C

0.2 0.4

(c)
Vapor quality 

0.6 0.8 1

10

8

6

4

2

0
0

R32
Tsat = 6 °C

0.2 0.4

(d)
Vapor quality 

0.6 0.8 1

Fig. 5  Effect of heat flux on the heat transfer coefficient at a: a mass flux of 50 kg   m−2   s−1, b mass flux of 100 kg   m−2   s−1, c mass flux of 
300 kg  m−2  s−1, and d mass flux of 500 kg  m−2  s−1



3144 N. Agustiarini et al.

1 3

compared with the experimental data in this study was con-
ducted through an error analysis expressed as Eqs. (10) and 
(11). In addition, the coefficient of determination (R2) was 
calculated using Eq. (12) to determine the reliability of the 
fitting indicator to the models.

A summary of the existing boiling correlations is pre-
sented in Appendix A, and the error analysis for each model 
against the experimental data is presented in Table 2. Fig-
ure 6 shows a comparison of the empirical correlation with 
the experimental data for R32 inside a horizontal multiport 
mini-channel tube.

A best fit empirical correlation for the prediction of the 
heat transfer coefficient can be observed from the data trend 
in Fig. 6. Moreover, the error analysis helped to indicate 
which empirical correlation predicted the heat transfer coef-
ficient of R32 inside a multiport mini-channel tube with a 
small error percentage. Therefore, from Table 2 and Fig. 6, 
it can be observed that the correlation by Liu and Winterton 

Table 2  Error analysis of the compared correlations

Correlation Error analysis

Mean 
devia-
tion/%

Average 
deviation/%

R2

Gungor and Winterton (1986) 73.53 − 73.53 0.38
Jung et al. (1989) 64.87 − 64.87 0.06
Li et al. (2013) 74.08 − 74.08 0.53
Mahmoud and Karayiannis (2013) 80.04 − 80.04 0.07
Liu and Winterton (1991) 36.01 − 18.50 0.72
Steiner and Taborek (1992) 45.85 18.57 0.65
Wattelet et al. (1994) 40.63 − 2.57 0.66
Tapia and Ribatski (2017) 66.32 − 65.63 0.48
Kattan–Thome–Favrat (1998) 57.76 − 55.82 0.01
Thome and El Hajal (2004) 38.97 7.69 0.47
Yoon et al. (2004) 42.10 − 17.39 0.39
Jige et al. (2019) 81.69 − 81.69 0.72
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[7] accomplishes the best fit prediction of the heat transfer 
coefficient of R32 inside a multiport mini-channel tube with 
a mean deviation of 36.01%. However, an overall analysis 
shows that the comparison of the superposition, asymptotic, 
and flow pattern models is limited to the prediction of the 
heat transfer coefficient of R32 inside a multiport mini-chan-
nel tube. This may be due to the differences in the amount 
of data, channel geometry, or refrigerants that were applied 
while developing the correlation. Therefore, an empirical 
correlation for R32 inside a multiport mini-channel tube 
was developed by modifying the convective boiling term 
by Bertsch et al. [31] with the sum of the liquid and vapor 
phase Dittus–Boelter correlations and applying a two-phase 
Nusselt number with the correction factors Bd,  Frlo,  Wev, 
and Bo. The new empirical correlation is as follows:

This new empirical correlation produced a mean devia-
tion of 10.33% and an average deviation of 4.64% against 
the experimental data, demonstrating that this correlation 
improved the prediction accuracy for the boiling heat trans-
fer coefficient of R32 inside a multiport mini-channel tube.

Proposed ANN model

The high uncertainty of the prediction when applying an 
empirical correlation to the heat transfer coefficient is the 
main reason to build a new data-based configuration. An 
ANN model offers an improvement in prediction accuracy to 
the boiling heat transfer coefficient of R32 inside a multiport 
mini-channel tube.

ANN model parameter

As mentioned in Fig. 1, the structure of the ANN model 
in this study consists of an input layer, hidden layer, and 
output layer; thus, this type of network is also called a mul-
tilayer perceptron neural network. A multilayer perceptron 
(MLP) connects the neurons in one layer to the previous 
layer through masses [16]. Before an ANN produces an out-
put through the input data, the ANN model must learn how 
to read the pattern of data. To make the ANN model achieve 
a good prediction of the heat transfer coefficient, the model 

(13)hcb =
[
hl(1 − x) + hvx

]

(14)hl = 0.023
kl

D
Re0.8

lo
Pr0.4

l

(15)hv = 0.023
kl

D
Re0.8

vo
Pr0.4

v

(16)Nutp = Bd−2.329Bo0.2Fr0.7
lo
We0.1354

v
h1.342
cb

should be trained with a modification of the setting param-
eters based on the structure of the data (Table 3).

The experimental data were modified for use as predic-
tion data. A total of 467 data points were collected from the 
modified calculation of the raw experimental data, which 
were divided into training data (70%), validation data (10%), 
and testing data (20%) by applying a repeated k-fold cross-
validation. Repeated k-fold cross-validation with fivefold or 
splits is used to divide data into different repetitions. The 
Panda, Keras, and Scikit-Learn libraries were used to create 
the model in Python. The pre-processing data were obtained 
with a min–max scaler function with a range of − 1 to 1 
before applying the hidden layer and activation function. 
The ANN model setting parameters used in this study are 
listed in Table 3.

A rectified linear unit (ReLU) is a nonlinear activation 
function that is usually used for deep learning neural net-
works owing to its capability to produce a strong gradient 
to achieve better performance. Adam, an algorithm for first-
order gradient-based optimization of stochastic objective 
functions that is based on adaptive estimates of lower-order 
moments, was selected as the optimization function [32]. A 
gradient-based optimization could also be used to change the 
output error due to the changes in the masses to minimize 
the error [16]. Moreover, Adam works as an optimizer by 
updating the masses in the training data, which can affect 
the decision of the output value. The masses of each neuron 
carry the information to be multiplied by the input and bias. 
To update the masses, a mean absolute error is selected as 
the loss function, where the difference between the input 
and predicted value is considered to minimize the loss on 
the next prediction. In addition, to further minimize the loss, 

Table 3  ANN model setting parameters

Parameter Value

Activation function ReLU
Optimizer Adam
Split function Repeated 

k-fold 
cross-
valida-
tion

Loss function Mean 
absolute 
error

Batch size 20
Epoch 1500
Learning rate 0.001
Exponential decay rate for estimates of first-moment 

vector, �1
0.9

Exponential decay rate for estimates of second-moment 
vector, �2

0.999

Dropout 0.5
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the batch size was set to 20, implying that the ANN model 
trained and tested the data with 19 iterations. An increase in 
the number of epochs can also reduce model loss, consider-
ing more masses changes. The learning rate was set to 0.001 
to obtain an optimum step size that could update the masses 
for the next iteration. The batch, epochs, and learning rate 
also affected the training time of the ANN model, which 
underwent the forward and backward propagation. Finally, 
to avoid overfitting the prediction, the dropout/tolerance was 
set to 0.5.

Because the ANN model was set with the previously 
mentioned parameters, the input parameters were deter-
mined using the Pearson correlation coefficient based on the 
analysis method by Zhou et al. [20]. The Pearson correlation 
coefficient was positive, indicating that if the input param-
eter increased, the output parameter of the heat transfer coef-
ficient also increased, whereas if the value was negative, 
the heat transfer coefficient decreased if the input parameter 
increased [33]. Based on the Pearson correlation coefficients 
(Fig. 7), the 24 dimensionless parameters can be arranged as 
follows from the highest positive rank to the highest negative 

Fig. 7  Pearson correlation 
coefficient of input parameters 
in relation to the heat transfer 
coefficient

1
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Ga, Xtt, Co, Prl ,Fa, Bo, and Ja.

Revo, Relo, Bd, Frvo, Wevo,Frlo,Welo, Rev,Wev,

Table 4  Parameter settings of other ANN models

Parameter Value

Qiu et al. [18] Hughes et al. [19] Zhou et al. [20]

Hidden layer (75,70,60,50,30,20,10) (20,16,14,10) (150,140,130,120,110,100,90,80,70,60,50,4
0,30,20,10)

Activation function ReLu ReLu ReLu
Optimizer Adam Adam Adam
Batch size 200 200 200
Epoch 1500 1500 1500
Learning rate 0.001 0.001 0.001
Exponential decay 

rate for estimates of 
first-moment vec-
tor, �1

0.9 0.9 0.9

Exponential decay 
rate for estimates 
of second-moment 
vector, �2

0.999 0.999 0.999

Dropout/tolerance 0.001 0.001 0.001
Input parameter Co, Bd, Bo,  Frl,  Frlo,  Frv,  Frvo,  Prl,  Prv,  Rel, 

 Relo,  Rev,  Revo,  Sul,  Suv,  Wel,  Welo,  Wev, 
 Wevo

x,  Rev,  Rel,  Frv,  Frl, Bo, 
We, aspect ratio,  Prv, 
 Prl, Ja

Bd, Co,  Frl,  Frlo,  Frv,  Frvo, Ga, Ka,  Prv,  Prl, 
 Rel,  Relo,  Rev,  Revo,  Sul,  Suv,  Suvo,  Suvo, 
 Wel,  Welo,  Wev,  Wevo
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rank:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv, 
 Rel,  Frl,  Wel,  Sul, Ka,  Prv,  Suv, Ga,  Xtt, Co,  Prl, Fa, Bo, and 
Ja. In addition, the heat transfer coefficient was set to be an 
output parameter.

Assessment of the ANN model parameters

To evaluate whether the chosen parameter settings could 
be applied well to the proposed ANN model, the parameter 
settings proposed by Qiu et al. [18], Hughes et al. [19], and 
Zhou et al. [20] were used to train and test the ANN models 

using the experimental data of R32 inside a multiport mini-
channel tube (Table 4). The models with the parameter set-
tings used by Qiu et al. [18], Hughes et al. [19], and Zhou 
et al. [20] exhibited similar patterns with mean deviations of 
9.15%, 8.29%, and 9.89%, respectively. Although the models 
with the settings used by Hughes et al. [19] and Zhou et al. 
[20] were used to predict the condensation heat transfer coef-
ficient, they provided accurate predictions of the boiling heat 
transfer coefficient of R32 inside a multiport mini-channel 
tube, as shown in Fig. 8.

Regardless of the good result on this assessment of ANN 
model parameters, the ANN model setting parameters in 
Table 4 were not represented the actual model due to ANN’s 
characteristic as a “black box” model as mentioned by Prieto 
et al. [34] in their previous study. In addition, Thibault and 
Grandjean [17] reported that the purpose of neural networks 
is to simplify the determination of an appropriate model to 
fit experimental data to the heat transfer coefficient. There-
fore, beside the insufficiency of ANN model on showing its 
true value inside the hidden layer or the prediction model, 
ANN model was able to improve the prediction accuracy 
by modifying an existed setting parameters to a new model.

ANN model prediction

The input parameters selected using the Pearson correla-
tion coefficient were used to train and test the ANN model. 
The performances of the ANN models with the same hidden 
layer of (96,72,48,24), but different numbers of input param-
eters were compared (Table 5). The test began with 24 input 
parameters; then, two parameters were eliminated for the 
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Fig. 8  Comparison of the ANN predictions with those of other ANN 
models proposed by Qiu et  al. [18], Hughes et  al. [19], and Zhou 
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Table 5  ANN model selection of R32 with different numbers of input parameters

*Final selected input parameter

Test number Hidden layer Input parameter Average 
devia-
tion/%

Mean 
devia-
tion/%

R2

1 (96,72,48,24) 24 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv,  Rel,  Frl,  Wel,  Sul, Ka, 
 Prv,  Suv, Ga,  Xtt, Co,  Prl, Fa, Bo, and Ja

− 3.04 9.24 0.90

2 22 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv,  Rel,  Frl,  Wel,  Sul,  Prv, 
 Suv, Ga,  Xtt, Co,  Prl, Fa, Bo

− 1.17 8.22 0.85

3 20 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv,  Rel,  Frl,  Wel,  Prv,  Suv, 
Ga,  Xtt, Co,  Prl, and Bo

0.00 8.46 0.86

4 18 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Frv,  Rel,  Frl,  Wel,  Prv,  Suv,  Xtt, 
Co,  Prl, and Bo

− 0.72 9.97 0.81

5 16 inputs: Revo, Relo, Bd, Frvo, Wevo, Frlo, Welo, Rev, Frv, Rel, Wel, Prv, Xtt, Co, 
Prl, Bo*

1.35 6.35 0.91

6 14 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv,  Rel,  Wel,  Prl, Bo 0.54 8.14 0.84
7 12 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Wev,  Frv,  Prl, Bo 4.27 9.90 0.84
8 10 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo,  Rev,  Prl, Bo 4.20 8.35 0.90
9 8 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Prl, and Bo − 1.9 12.0 0.79
10 6 inputs:  Revo,  Relo, Bd,  Wevo,  Prl, and Bo − 1.89 11.03 0.75
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next cases. There were 10 cases in total that were randomly 
arranged based on the positive rank and negative rank of the 
Pearson correlation coefficient. .

The best fit prediction result was achieved with an ANN 
model with 16 input parameters, of which the mean devia-
tion was lower than that using the other combinations of 
input parameters as shown in Fig. 9. Figure 9a presents 
the mean deviation and average deviation of the prediction 
results, where the lowest mean deviation (MD) was taken as 
the best fit ANN model in the prediction of the heat trans-
fer coefficient of R32 inside a multiport mini-channel tube; 
Fig. 9b shows the coefficient of determination for each test.

Then, the chosen input parameters, or more specifi-
cally, 16 dimensionless numbers were evaluated through 
10 prediction cases with different hidden layers (Table 6). 

The results show that the ANN model with 4 hidden lay-
ers (96,72,48,24) demonstrated the lowest mean deviation 
and highest coefficient of determination, indicating that the 
prediction was well aligned with the experimental data as 
presented in Fig. 10. Figure 11 shows the number of epochs 
used to reduce the model loss. One epoch implies that the 
dataset was passed forward and backward through the neural 
network. As previously mentioned, to complete the process 
of 1 epoch, the ANN model proceeds through 19 iterations. 
Figure 12 shows a comparison of the experimental data ver-
sus the predictions of the heat transfer coefficient obtained 
with the ANN using the selected hidden layer and input 
parameters. The predicted heat transfer coefficient tends to 
be along the middle line, indicating good accuracy.
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Table 6  ANN model selection for R32 with different hidden layers

*Final selected hidden layer

Number of 
tests

Input parameters Hidden layer Average devia-
tion/%

Mean devia-
tion/%

R2

1 16 inputs:  Revo,  Relo, Bd,  Frvo,  Wevo,  Frlo,  Welo, 
 Rev,  Frv,  Rel,  Wel,  Prv,  Xtt, Co,  Prl, and Bo

100 90 80 70 60 50 40 30 20 10 − 6.06 12.34 0.86

2 100 90 80 70 60 50 40 30 20 − 9.08 13.67 0.86
3 100 90 80 70 60 50 40 30 18.40 23.71 0.64
4 100 90 80 70 60 50 40 − 9.10 13.05 0.87
5 100 90 80 70 60 50 − 8.23 10.96 0.84
6 100 90 80 70 60 − 6.36 10.32 0.87
7 100 90 80 70 − 4.88 9.55 0.83
8 120 96 72 48 24 0.75 8.71 0.89
9 120 96 72 48 1.35 10.02 0.88
10 96 72 48 24* 1.35 6.35 0.91
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This high accuracy in the prediction of the boiling heat 
transfer coefficient of R32 compared with the superposition 
model, asymptotic model, and flow pattern model is a result 
of the proposed prediction model achieved by the ANN due 
to the model’s capability of recognizing data trends.

Conclusions

An experimental study of the boiling heat transfer coefficient 
of R32 inside a horizontal multiport mini-channel tube with 
a hydraulic diameter of 0.969 mm, nine channels, and an 
aspect ratio of 0.6 was conducted. The heat transfer coef-
ficient increased with increasing mass and heat flux. Dryout 
occurred at an approximate vapor quality of 0.7. The experi-
mental data were divided into training data (70%), validation 
data (10%), and testing data (20%) and used by a machine 
learning algorithm to predict the boiling heat transfer coef-
ficient. There were 16 input parameters, consisting of dimen-
sionless numbers. The ANN model with 4 hidden layers of 
(96,72,48,24) achieved a good prediction of the boiling heat 
transfer coefficient of R32 inside a multiport mini-channel 
tube with a mean deviation of 6.35%. A comparison of the 
experimental data with the existing correlations from the 
superposition model, asymptotic model, and flow pattern 
model and the proposed correlation resulted in a higher 
mean deviation compared with the ANN prediction model. 
Although each model has its advantages, the ANN model, 
as a data-based model method, can serve as an alternative 
method to improve the prediction of the heat transfer coef-
ficient, especially for multiport mini-channel tubes.
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Appendix A

Author Correlation Details

Gungor and Winterton [2]
(1986)

htp = Ehl + Shpool

hl = 0.023Re0.8
L
Pr0.4

L

(
kl

d

)

E = 1 + 24000Bo1.16 + 1.37
(
1∕Xtt

)0.86

hpool = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

S =
1

1+1.15×10−6E2Re1.17
l

For horizontal tube and Fr < 0.05:
E = Fr(0.1−2Fr), S =

√
Fr

4300 data points
Working fluid: water, R11, R12, R22, 

R113, R114, Ethylene glycol
Dh from 2.95 to 32 mm

Jung et al. [3]
(1989)

htp = Shnb + Fhlo

hnb = 207Pr0.533
l

(
kl

d

)(
qDb

klTsat

)0.745(
�v

�l

)0.581

Db = 0.51
[

2�

g(�l−�v)

]0.5

hlo = 0.023Re0.8
L
Pr0.4

L

(
kl

d

)

S =

{
4048X1.22

tt
Bo1.13 if Xtt < 1

2 − 0.1Xtt−0.28Bo0.33 if 1 < Xtt < 5

F = 2.37
(
0.29 + 1∕Xtt

)0.85

2000 data points
Working fluid: R12/R152a mixture, R22/

R114 mixture
Inner diameter: 9 mm

Mahmoud and Karayiannis [4] (2013) htp = hcooper ⋅ S + hL ⋅ F

hcooper = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

hL =

{
4.36

kl

d
ReL < 2000

0.023Re0.8
L
Pr0.4

L

(
kl

d

)
ReL > 3000

F =

(
1 +

2.812Co−0.408

Xtt

)0.64

S =
1

1+2.56×10−6(ReLF1.25)
1.17

5152 data points
Working fluid: R134a,
Dh from 0.52 to 4.26 mm

Li et al. [5] (2013) htp = Shnb + Fhcb

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

hnb = 0.023Re0.8
L
Pr0.4

L

(
kl

d

)

F =
1+1.8(0.3+1∕Xtt)

0.88

1+We−0.4
v

S =
1

0.5+0.5
(Retp×10

−3 )0.3

(Bo×103)
0.23

Retp = ReLF
1.25

Working fluid: R1234yf, R32, R32/
R1234yf mixture

Dh from 2.95 to 32 mm

Liu and Winterton [7]
(1991)

h2
tp
=
(
FhL

)2
+ (Shpool)

2

F =

[
1 + xPrl

(
�l

�v
− 1

)]0.35

S =
(
1 + 0.055F0.1Re0.16

l

)−1

hL = 0.023
(

kl

d

)
Re0.8

L
Pr0.4

L

hpool = 55p0.12
r

q2∕3(− log10 pr)
−0.55M−0.5

476 data points
Working fluid: R32, R1234yf, mixture 

refrigerant (R32 and R1234yf)
Dh: 2 mm
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Steiner and Taborek [8] (1992)
htp =

[(
hnb

)3
+
(
hcb

)3]
1

3

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

hcb = hlFtp

hl = 0.023
kl

D
Re0.8

lo
Pr0.4

l

Relo =
GD

�l

Ftp =

⎛
⎜
⎜
⎜
⎜
⎝

�

(1 − x)1.5 + 1.9(x)0.6(1 − x)0.01
�

�l

�v

�0.35
�−2.2

+

��
hv

hl

�
(x)0.01

�
1 + 8(1 − x)0.7

�� �l

�v

�0.67
�−2

⎞
⎟
⎟
⎟
⎟
⎠

−0.5

13,000 data points
Working fluid: inorganic and organic 

fluids, water, seven hydrocarbons, four 
refrigerants, He,  N2, H-para, and  NH3

Wattelet et al. [9]
(1994) htp =

[(
hnb

)2.5
+
(
hcb

)2.5]
1

2.5

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

hcb = FhlR

hl = 0.023
kl

D
Re0.8

lo
Pr0.4

l

F = 1 + 1.925X−0.83
tt

Xtt =

(
1−x

x

)0.9

0.551p0.492
r

R =

{
1.32Fr0.2

l
if Frl < 0.25

1 if Frl ≥ 0.25

Working fluid: R12, R134a, and refriger-
ant mixture

Inner diameter of 7.04 mm

Tapia and Ribatski. [10] (2017)
htp =

[(
Fhl

)2
+ (Shnb)

2
]0.5

F = 1 +

(
2.55X−1.04

tx

1+We−0.194
uv

)

Xtx =

⎧
⎪
⎨
⎪
⎩

Xtt =

�
1−x

x

�0.9� 𝜌v
𝜌l

�0.5� 𝜇l
𝜇v

�0.1
for Rev > 1000

Xtt =
1

18.7
Re

0.4
v

�
1−x

x

�0.9� 𝜌v
𝜌l

�0.5� 𝜇l
𝜇v

�0.1
for Rev ≤ 1000

Weuv =
�vu

2
v
d

�
, uv =

Gx

�v�

� =

[

1 + 1.021Fr
−0.092
m

(
�
l

�
v

)−0.368(
�
l

�
v

)1∕3(
1−x

x

)2∕3
]−1

S =
1.427Bd0.032

1+0.1086(10−4ReloF1.25)
0.981

hl = 0.023
kl

D
Re0.8

lo
Pr0.4

l

h
nb

= 207Pr
0.533

l

(
k
l

d

)(
qd

k
l
T
sat

)0.745(
�
v

�
l

)0.581(
�
l

�
l

�
l
cp

l

k
l

)0.533

3409 data points
Inner diameter: 1.1 mm
Working fluid: R134a, R1234ze(E), 

R1234yf, R600a

Kattan-Thome-Favrat [11] (1998)
htp =

�dryhv+(2�−�dry)hwet
2�

hwet =
(
h3
cb
+ h3

nb

)1∕3

hv = 0.023Re0.8
v
Pr0.4

v

kv

D

hcb = 0.0133Re0.69
l

Pr0.4
l

kl

�

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

�dry = �strat
Ghigh−G

Ghigh−Glow

�strat = 2� − 2

⎧
⎪
⎨
⎪
⎩

�(1 − �) +

�
3�

2

� 1

3

�

1 − 2(1 − �) + (1 − �)
1

3 − �
1

3

�

−
1

200
(1 − �)�[1 − 2(1 − �)]

�
1 + 4((1 − �)2 + �2

�

⎫
⎪
⎬
⎪
⎭

702 data points
Working fluid: R134a, R123, R402A, 

R404A, R502
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Thome and El Hajal [12] (2004)
htp =

�dryhv+(2�−�dry)hwet
2�

hwet =
(
h3
cb
+ h3

nb

)1∕3

hv = 0.023Re0.8
v
Pr0.4

v

kv

D

hcb = 0.0133Re0.69
δ

Pr0.4
l

kl

�

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

Reδ = [4G(1 − x)�]∕
[
�l(1 − �)

]

� =
x

�v

⎧
⎪
⎨
⎪
⎩

[1 + 0.12(1 − x)]

�
x

�v
+

1−x

�l

�
+

1.18(1−x)

G

�
g�(�l−�v)

�2
l

�0.25⎫
⎪
⎬
⎪
⎭

−1

� = [�D(1 − �)]
/[
2(2� − �dry

]

404 Data points
Working fluid:  CO2
Dh from 0.79 to 10.06 mm

Yoon et al. [13]
(2004) htp =

[
Shnb)

2 +
(
Ehl

)2]1∕2
if x < xcrit

hnb = 55p0.12
r

(− log10 pr)
−0.55M−0.5q0.67

S =
1

1+1.62×10−6Re1.11
l

E =

[
1 + 9.36 × 103xPrl +

(
�l

�v
− 1

)]0.86

hl = 0.023
kl

D
Re0.8

lo
Pr0.4

l

hv = 0.023Re0.8
v
Pr0.4

v

kv

D

hwet = 1 + 3000Bo0.86 + 1.12
(

x

1−x

)0.75(
�l

�v

)0.41

htp =
�dryhv+(2�−�dry)hwet

2�
if x ≥ xcrit

�dry = 36.23Re3.47Bo4.84Bd−0.27
(
1∕X

)2.6

Working fluid:  CO2
Dh from 7.53 mm

Jige et al. [14]
(2019)

htp =
(
h5
cb
+ h5

nb

)1∕5

hcb = max
(
hfc, hlf

)

h
nb

= 10
kl

Db

(
qDb

klTs

)C(
Ps

Pcrit

)0.1(
1 −

Ts

Tcrit

)−1.4(
�lcpl

kl

)−0.25

D
b
= 0.511

√
2�

g(�l−�v)
, C = 0.855

(
�
v

�
l

)0.309(
P
s

P
crit

)−0.437

hfc =
(
1 + 1.3X−1

tt

)
hl

hl = 0.023
(

kl

d

)
Re0.8

l
Pr0.4

l

hlf = �
kl

�e

� =
x

x+(1−x)�v∕�l

Ca =
�lG

�

(
x

�v
+

1−x

�l

)

�e

Dh

= 0.014 Ca0.1 for annular and churn flow

hlf = Fdp

(
�

kl

�e

)

�e

Dh

= 0.005 Ca0.05
(
�v∕�l

)0.2

Fdp = min

[

7.8Co−0.1
(

q

GΔhLV
× 104

)−0.3(
�v

�l

)0.2(
GDh

�l

)−0.16

, 1

]

Dh = 0.82 mm
Working fluid: R32 and R1234ze(E)
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