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Abstract
Melting and other first-order phase changes usually occur in phase change materials (PCMs) within a noticeable temperature 
range rather than at a unique phase change temperature ( T

pc
 ). Then the enthalpy and heat capacity have rather wide jumps and 

peaks, respectively, spread over such ranges of temperatures. Surprisingly, wide jumps and peaks are observed even in plain 
and simple cases when PCMs are pure substances with negligible hysteresis and/or supercooling and the measurements are 
quasi-equilibrium using very slow heating/cooling rates, as in adiabatic scanning calorimetry (ASC). We show that in such 
cases a unique T

pc
 can be identified and calculated from the measured heat capacity peaks. It suffices to take into account 

that PCM samples do not have an ideal microstructure but are rather composed of many micro- to nano-sized domains. The 
heat capacity peak is then an average of individual peaks that (a) come from all domains and (b) have different shifts from 
T
pc

 for different domain sizes. Interpreting a heat capacity peak measured by ASC in this way, we present a procedure from 
which T

pc
 can be evaluated. We apply the procedure to three examples of materials using available ASC data and point out 

the importance of the size distribution of domains.

Keywords Heat capacity peak · First-order phase change · Domain size distribution · Averaging

Introduction

Phase change materials (PCMs) have been widely used 
for thermal energy storage in various applications, such 
as energy conservation in buildings with thermal comfort 
[1], smoothing of temperature fluctuations [2], cold storage 
[3, 4] and passive cooling in building envelopes [5], solar 
energy storing [6] and solar thermal power plants [7, 8], 

thermal management systems [9, 10], or textiles and clothing 
systems [11]. Such applications make use of the ability of 
materials to store or release a large amount of energy during 
a first-order phase change. In PCMs the predominant part of 
this energy is due to the latent heat, while the sensible heat 
is much smaller (by an order or two in the magnitude). Thus, 
the primary characteristics needed for a proper design and 
correct performance of PCM systems include the specific 
latent heat, � , and the temperature of a phase change, Tpc , at 
which � is released (or absorbed).

From the viewpoint of thermodynamics, a first-order 
phase change is associated with a jump in the enthalpy. 
The jump is considered to be infinitely sharp, so that (a) 
it occurs at a unique temperature ( Tpc ) and (b) its size ( � ) 
is well defined. In real PCMs the jumps are not infinitely 
sharp, however. Instead, they are spread out over a range 
of temperatures to be called ‘a phase change region’ in the 
following. Then the determination of � and Tpc (and other 
thermal properties of PCMs) is a rather challenging task, and 
various approaches and methods have been proposed to deal 
with this problem [12]. In this paper we wish to provide an 
approach from which Tpc of real PCMs can be determined 
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as a theoretical value at which an infinitely sharp enthalpy 
jump would occur.

There may be various reasons why phase change regions 
are present. It could be due to the properties of a given PCM: 
it need not be a pure substance, it could have an advanced 
microstructure, or its behavior near the considered phase 
change can be nontrivial (it may exhibit true thermal hyster-
esis, supercooling, etc.). Or, the applied experimental tech-
niques could operate under conditions that make the inter-
pretation of the measured data difficult. For example, fast 
heating/cooling rates may be used (then the material is not 
close to its equilibrium and kinetic effects could be strong) 
or samples may have large sizes (various parts of samples 
would be in different thermal states).

Therefore, to avoid these complications, in [13] we con-
sidered first-order phase changes in PCMs for simple but 
nontrivial cases and proposed their theoretical description. 
Namely, we assumed that phase changes in PCMs were free 
from additional effects (such as thermal hysteresis or super-
cooling) and that kinetic effects were negligible (i.e., during 
the measurement the material was close to its equilibrium). 
We applied our results to the following three examples of 
materials and their phase changes: 

(a) a pure linear alkane tricosane C23H48 (denoted here as 
C23) in which a change between two rotator phases 
occurs near 45 ◦C;

(b) a pure liquid crystal dimer �,�-bis(4,4′-cyanobiphenyl)
nonane (denoted here as CBC9CB) in which isotropic–
nematic transition takes place near 120 ◦C ; and

(c) a paraffin-based PCM called Rubitherm RT27 in which 
a melting between a solid and liquid phases occurs near 
27 ◦C.

While RT27 has a rather high latent heat and is used as 
a PCM for practical purposes, this is not so for the other 
two materials. They are considered here to demonstrate the 
diversity of the presented results. The enthalpies and heat 
capacities near phase changes (a)–(c) had been measured 
by adiabatic scanning calorimetry [14–16] (see Fig. 1), 
both with a relative standard uncertainty of 2% [17]. In 
this experimental technique extremely low heating/cooling 
scanning rates are used, so that the studied samples remain 
very close to their thermodynamic equilibrium states. In 
the three cases (a)–(c) the applied scanning rates did not 
exceed 0.01 K  min−1 (the relative standard uncertainty being 

10−4 on the rate and 10 μK on the temperature measure-
ment [17]). Moreover, thermal hysteresis and supercooling 
were practically absent. Even then phase change regions 
were still evident: the widths of the corresponding enthalpy 
jumps and heat capacity peaks were 0.06K for C23, 0.24K 
for CBC9CB, and 1.56K for RT27 (see Fig. 1a). Therefore, 
these phase change regions must be of purely equilibrium 
nature, and in [13] we were able to explain them as a result 
of finite-size (i.e., surface) effects [18].

Our explanation of the phase change regions by surface 
effects provided in [13] is somewhat indirect, however. The 
reason is that for common sample sizes these effects would 
not yield any noticeable phase change regions. Instead, 
enthalpy jumps and heat capacity peaks would be extremely 
narrow and sharp. In other words, phase change regions of 
proper widths would occur only for unrealistically small 
samples (of few nanometers) [13]. Nevertheless, these con-
clusions are true only when samples are assumed to have 
perfect microstructure. The microstructure of a real material, 
even when it is in a single phase, is far from being perfect, 
however. That is why in [13] we considered a material to be 
a huge conglomerate of various parts, segments, or domains 
each of which has a perfect, uniform microstructure (see 
Fig. 2) and whose exact meaning depends on a given PCM. 
Then the jumps and peaks are not results of surface effects 
in the material as a whole but in the individual domains. 
Thus, the sample size, or the sizes of grains in powder (or 
similar) materials, are not essential to the determination of 
quantities like the phase change temperature Tpc . Instead, the 
key feature are the sizes of domains and their distribution, 
which are true material properties.

Applying this approach, in [13] we were able to fit experi-
mental jumps and peaks with our theoretical results with 
very good accuracy. It was also possible to separate sen-
sible and latent heats (see Fig. 1b) and to determine the 
phase change temperature Tpc (as the temperature where the 
enthalpy has a discontinuity). Our approach was based on 
general statistical mechanical results on first-order phase 
transitions [19] in which it is not needed to specify the 
details on the phases that change in a material during a tran-
sition. It suffices to characterize the phases via their mac-
roscopic properties: for PCMs these are the enthalpies and 
heat capacities of their phases. Note that all domains are in 
the same phase at a given temperature, T, father away from 
Tpc . However, due to surface effects [19], at T near Tpc some 
domains may be in one phase, while the remaining domains 
may simultaneously be in the other phase.

This approach—when macroscopic properties of a mate-
rial are obtained as a sum of the corresponding microscopic 
properties of its many constituents—could be applied in a 
somewhat broader context. For instance, to crystals that con-
tain domains where not only broad peaks but also ‘saw-like’ 

Fig. 1  a The temperature dependences of the heat capacity and 
enthalpy (the full lines) for three materials and their phase changes 
obtained from ASC measurements (adapted from [14–16]). The heat 
capacities and enthalpies of the two phases (the dashed lines) are 
obtained as approximation by quadratic polynomials [13]. b The sep-
aration of the sensible and latent heats ( cbase and cexc , respectively)

◂
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peaks are observed near polymorphic first-order phase tran-
sitions [20–25]. Or to electrode surfaces made of many crys-
talline domains and the corresponding sharp spikes meas-
ured in the current density during underpotential deposition 
of metals on electrode surfaces [26–30]. In the context of 
PCMs we may have in mind an example of powder mate-
rials made of many crystalline domains. Nevertheless, the 
approach seems to be rather robust and might be used for 
other types of PCMs, even when its applicability is not obvi-
ous but could bring an insight and plausible results not yet 
available by other approaches.

The values of Tpc obtained in [13] for the three materials 
(a)–(c) were not convincing, however, because they were 
too distant from the maximum of the heat capacity peak in 
comparison with the peak’s width. Indeed, this distance rela-
tive to the width was 2.1 for C23, 3.8 for CBC9CB, and 4.2 
for RT27 (see Table 1). Hence, Tpc would lie rather beyond 
the corresponding phase change regions. In this paper we 
wish to improve these results and provide a refined tech-
nique to determine a value of Tpc . It will turn out that the 
domain size distribution is essential for this task, which will 
be demonstrated by considering two simplest choices of the 
distribution. First, in Theoretical background section, we 
give a concise summary of results from [13] and identify 
the oversimplification that caused Tpc to be so much shifted 
beyond the phase change regions in [13]. Then, in Results 
and discussion section, we present an improved procedure 
from which Tpc can be determined, discuss the role of the 
domain size distributions, and apply the procedure to cal-
culate Tpc for the three considered materials. A final section 
contains concluding’ remarks.

Theoretical background

We consider a material that exhibits a first-order change 
between two phases at a certain temperature Tpc (the phase 
change temperature). Hence, at Tpc the enthalpy, h, has a 
jump of size Δh = � (the specific latent heat). The material 
is assumed to be composed of a large number of homogene-
ous parts or segments to be called domains, D. To describe 
macroscopic properties of such a multi-component PCM in 
a simple way, its partition function is supposed to be the 
product of the domain partition functions; i.e., the interac-
tions between the domains are neglected. The influence of 
nearby surroundings on the domains is taken into account 
as surface effects. Then the specific heat capacity, cp , can be 
expressed as a weighted average of heat capacities, cD , due 
to the individual domains [13],

The domain masses are equal to their mass fractions, 
wD = mD∕m , where m =

∑
D mD is the total mass of domains 

(equal to the mass of the PCM).
The domain heat capacities cD can be determined from 

an equilibrium statistical mechanical theory of first-order 
phase transitions [19]. It implies that the dependence of cD 
on different domains is very precisely given only via the 
domain diameter, dD , and domain surface effects. The latter 
is expressed via a domain surface free energy difference, �D . 
Thus, cD is a function cD(dD, �D) of these two parameters, 
and we may rewrite Eq. (1) in a more convenient form when 
we arrange the domains according to their values of dD and 
�D . Namely, let d1,… , dn be all different values of domain 
diameters (in the ascending order). Given the domains of the 
same diameter di , let Ni be their number and let �i,1,… , �i,Mi

 
be all different values of their �D . If Nij is the number of 
domains of diameter di with the value of �D equal to �ij , 
then the average over domains in Eq. (1) may be written as 
a double average over di and �ij [13],

Here the fractions �ij = Nij∕Ni , the masses wi = d3
i
∕Ω with 

Ω =
∑n

i=1
Nid

3
i
 , and the domain heat capacities cij are equal 

to cD(dD, �D) with dD = di and �D = �ij . Since 
∑Mi

j=1
Nij = Ni , 

the fractions �ij are normalized to one; i.e., 
∑Mi

j=1
�ij = 1.

An explicit formula

can be actually obtained from an equilibrium microscopic 
theory [19] whenever the domain shapes are not too oblong 
and the surface effects are not strong. Hence, cij is a sum of 

(1)cp =
∑

D

wDcD.

(2)cp =

n∑

i=1

Ni wi

Mi∑

j=1

�ij cij.

(3)cij = cJ
ij
+ cP

ij
, cJ

ij
≈ c1 + (c2 − c1)Jij, cP

ij
≈ c0wiPij

Fig. 2  A schematic picture of domains, shown as small tetragons, 
in a material (left) and a granular/powder material composed of 
grains (right). In reality, the shapes and orientations of domains and 
grains are more complex. Shading is used here just to distinguish 
the domains. Domains may be equal to grains or could be just parts 
of grains. It is the sizes of these domains, and not of the sample or 
grains, that we use to determine a phase change temperature Tpc
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two parts. One part, cJ
ij
 , exhibits a jump that interpolates 

between the specific heat capacities, c1 and c2 , of the two 
phases involved in the phase change. The other part, cP

ij
 , 

exhibits a sharp peak of area equal to the specific latent heat, 
� , and of height c0wi that is larger than c1 or c2 by one or two 
orders of magnitude. The dimensionless functions 0 < Jij < 1 
and 0 < Pij ≤ 1 that describe this jump and peak, respec-
tively, are

with

and c0 = �∕ΔT  . Here � is the PCM density and kB is the 
Boltzmann constant. The geometric factors s and v are cho-
sen so that the domain’s surface and volume are equal to 
sd2

i
 and vd3

i
 , respectively (for example, s = � and v = �∕6 if 

domains are spherical). Note that Ti(�ij) has the meaning of 
the temperature at which the domain peak is maximal (i.e., 
at which Pij is equal to 1).

Can the heat capacity in a single domain fit 
experimental data?

A single domain of diameter d cannot yield a proper heat 
capacity peak. In fact, if a single cij should describe the peak, 
then c0 , � , and ΔT  would be the peak’s height, area, and 
width, respectively. Taking their typical values from experi-
ment, the last relation in Eq. (5) would yield the diameter 
d = (4kBT

2
pc
∕v � c0ΔT

2)1∕3 of order 1 nm to 10 nm . Only such 
tiny domains would give a heat capacity peak of correct 
experimental proportions, while a peak from a micro domain 
would be several orders of magnitude taller and narrower 
[13].

Separation of sensible and latent heats

Using Eqs. (2) and (3), the heat capacity of the whole PCM 
may be split into two parts [13],

The baseline heat capacity cbase has a jump of size � inter-
polating between c1 and c2 , while the excess heat capacity 
cexc has a peak whose area is � and its height is much larger 
than c1 or c2,

(4)Jij =
1 + tanh[xi(�ij)]

2
, Pij = cosh−2[xi(�ij)] ,

(5)

xi(�) = 2wi

T − Ti(�)

ΔT
, Ti(�) =

(
1 +

s�

v��di

)
Tpc, ΔT =

4kBT
2
pc

vΩ��
,

(6)cp = cbase + cexc.

(7)cbase = c1 + (c2 − c1) J, cexc = c0P.

The jump and peak functions J and P are double averages of 
the domain jumps Jij and peaks Pij [13]: Eqs. (2) and (3) yield 
J =

∑n

i=1
Ni wi

∑Mi

j=1
�ij Jij and

Note that

because ∫ T

−∞
Pij dT = (ΔT∕wtexti) Jij by Eq. (4).

Experimentally, the separation of the baseline and excess 
heat capacities cbase and cexc is rather straightforward. It is 
based on the fact that the enthalpy h interpolates between 
the enthalpies h1 and h2 of the two phases involved in the 
phase change in the same way as cbase , so that the jump in 
h is described again by the function J [13]. Therefore, the 
baseline heat capacity can be determined from an experi-
mental plot of the specific enthalpy h as

Using this result and an experimental plot of the specific 
heat capacity cp , the excess heat capacity is obtained as the 
difference cexc = cp − cbase (see Fig. 1).

The significance of averaging

As already argued, the heat capacity peak cij from a single 
domain is inappropriate to fit experimental data, because 
the peak is too tall and narrow (unless the domain is very 
small). The effect of both averages in Eq.  (8)—over the 
domain diameters and surface effects—is that the resulting, 
averaged peak can have a height and width of magnitudes 
that are measured in experiments. In fact, the domain peaks 
are of various heights c0wi and widths ΔT∕wi and located at 
different temperatures Ti , depending on the domain’s size di 
and surface effects �ij . Hence, for sufficiently broad distri-
butions of values of di and �ij , the averages of the tall and 
narrow domain peaks will be much wider and smaller, as in 
experiments. On the other hand, the peaks’ areas are inde-
pendent of di and �ij and remain unchanged after averaging.

Surface effects

Even though the values �ij and fractions �ij are not available 
from experiments, the average Pi =

∑Mi

j=1
�ijPij of the domain 

peaks Pij over surface effects can be plausibly estimated. 
Namely, it could be well assumed that the surface effects 
between different domains are irregular, so that the values 
�ij should be random. For a given domain diameter di , let the 

(8)P =

n∑

i=1

Ni w
2
i
Pi, Pi =

Mi∑

j=1

�ij Pij.

(9)J(T) =
1

� ∫
T

−∞

cexc(T) dT ,

(10)cbase = c1 + (c2 − c1)
h − h1

h2 − h1
.
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surface free energy differences �i,1,… , �i,M
texti

 have a mean 
value �̄�i and a fluctuation (standard deviation) Δ�texti . Since 
�ij are related to the domain surfaces, the fluctuation should 
be inversely proportional to the domain diameter (i.e., to the 
square root of the surface size), yielding Δ�i = b0∕di with a 
constant b0 > 0 [13].

Since the number Ni is to be large (given that the num-
ber of domains in a PCM sample is huge), an appropriate 
approximation for the fractions �ij is the Gaussian probability 
distribution with mean �̄�i and standard deviation Δ�i . Then 
the summation in Pi can be well estimated by integration 
over �ij , yielding [13]

providing that (𝜂∕di)2 ≪ 1 . The latter condition ensures that 
the distribution of values �ij is broad and the averaged peak 
Pi is much smaller and wider than the individual domain 
peaks Pij.

Excess heat capacity

Contrary to the distribution of values �ij , the distribution of 
domain diameters di for a given PCM may be obtained from 
experiment. Since it might change considerably from case to 
case, it is appropriate to leave the averaging over diameters 
unevaluated and do so only when the domain size distribu-
tion is known (measured). Hence, combining Eqs. (7), (8), 
and (11), the excess heat capacity is given as

Thus, the peak exhibited by cexc is a sum of symmetric, 
Gaussian peaks exp(−y2

i
) whose maxima are at Ti(�̄�i) . These 

temperatures vary with the domain diameter and surface 
effects (represented by �̄�i ), and the shifts between the tem-
peratures are unequal. The sum cexc of so unevenly distrib-
uted symmetric peaks yields a peak that is asymmetric in 
general, as those in experiments. Moreover, the resulting 
peak in cexc may be well expected to be much broader and 
smaller (even by several orders of magnitude) than any of 
the peaks in the sum.

As soon as a theoretical plot of the excess heat capacity 
vs. temperature is obtained from Eq. (12), the addition of 
the baseline part cbase from Eq. (10) gives a theoretical plot 
of the total heat capacity cp.

(11)
Pi ≈

𝜂

di
e−y

2
i , 𝜂 =

�
8

𝜋

kBTpc

s b0
,

yi =

√
𝜋 𝜂

2di
xi(�̄�i),

(12)cexc = c0

n∑

i=1

Ni w
2
i
Pi ≈ c0

�

Ω2

n∑

i=1

Nid
5
i
e−y

2
i .

Oversimplification of surface effects

In [13] we applied Eq.  (12) to fit heat capacity peaks 
obtained from experiments for the three considered materials 
(C23, CBC9CB, and RT27) with great accuracy. Neverthe-
less, the determined values of Tpc for the three materials do 
not seem satisfactory, because they all lie rather outside the 
corresponding phase change regions (as was already pointed 
out in the Introduction). The reason is that in [13] we crudely 
assumed all �̄�i to be the same for all domain diameters, 
�̄�i = const = �̄�0 . Then the domain peaks exp(−ytexti2) , their 
maxima being at the temperatures Ti(�̄�0) , were all shifted 
either above or below Tpc , depending on the sign of �̄�0 . Thus, 
the resulting peak in cexc had its maximum shifted too far 
from Tpc . In this study the oversimplification �̄�i = const is 
eliminated and we let �̄�i be varying with domain diameters.

Results and discussion

Introducing the dimensionless quantities

the excess heat capacity from Eq. (12) becomes

with yi = (� �i − �i)�i . The phase change temperature 
appears in Eq. (14) in the pre-factor as well as in each of 
the summed terms (via � in the exponent yi ). Therefore, 
Tpc cannot be determined in a straightforward way, using 
just a single characteristic of the cexc peak. Instead, several 
peak’s characteristics should be considered simultaneously 
to determine Tpc . Let us now describe in detail how this can 
be achieved.

Procedure for the determination of T
pc

The domain diameters (represented by �i ) and the numbers of 
domains of given diameters (represented by ri ) are assumed 
to be given—from experiment, modeling, or plausible con-
jecture (see Domain sizes and their distribution section). On 
the other hand, the phase change temperature Tpc and latent 
heat � as well as the two parameters b and �i (associated with 
the surface effects) are unknown. They must be determined 
from fitting Eq. (14) to experimental data for cexc , using at 
least four characteristics of the cexc peak: three are needed to 
obtain Tpc , � , and b and one or more to obtain �i.

The simplest case—when all �i are the same 
( �i = const = �0)—was already studied in [13]. Then it was 

(13)

𝛿i =
dtexti

dn
, ri =

d3
n
Ni

Ω
, b =

√
2b0

v�𝜌

s
d2
n

, 𝜆i =
�̄�idn√
2b0

, 𝜏 =
T − Tpc

bTpc
,

(14)cexc ≈
�

Tpc

1
√
� b

n�

i=1

ri �
5
i
e−y

2
i
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sufficient to consider only four characteristics that were cho-
sen as the area (A), maximum temperature ( Tmax ), height 
(H), and an asymmetry factor ( � ) of the cexc peak. The factor 
� is defined as the part of the peak’s area A that lies below 
Tmax . Thus, by fitting experimental values of the four char-
acteristics A, Tmax , H, and � , values of the four quantities Tpc , 
� , b, and �0 could be fully determined.

In this study, however, we let the values �i be varying, 
changing with domain diameters. Then the simplest choice 
is that �i are equidistant, �i+1 − �i = const = Δ� with 
Δ� = (�n − �1)∕(n − 1) . We may write �i = �n − (n − i) Δ� , 
and there are two parameters ( Δ� and �n ) that specify all 
values of �i . Values of the five quantities Tpc , � , b, Δ� , and 
�n must be now determined, so that it will be necessary to 
fit five characteristics of the cexc peak. These will be chosen 
again as A, Tmax , H, and � , plus we shall consider another 
asymmetry factor denoted as � . The latter is introduced as 
the ratio of two areas of the cexc peak: one is the peak’s area 
within the range Tmax − T− ≤ T ≤ Tmax and the other one 
is peak’s area within the range Tmax ≤ T ≤ Tmax + T+ . The 
temperatures T+ and T− can be chosen individually for each 
studied peak.

To carry out the fitting, we need to obtain theoretical 
expressions for these five characteristics of the cexc peak. 
We get the following results. First, the total area coincides 
with the specific latent heat,

This is a consequence of Eq. (9) and the fact that the jump 
function J tends to 1 for large temperatures, J(∞) = 1 . 
Second, the temperature Tmax at which cexc is maximal is 
given from the condition dcexc∕dT = 0 . Using Eq. (14) and 
a parameter � to relate Tmax to Tpc as Tmax = (1 + �b)Tpc , the 
condition may be expressed as

with zi = yi(Tmax) = (��i − �i) �i = [��i − �n + (n − i) Δ�] �i . 
Next, the height

as follows immediately from Eq. (14). Finally, using Eqs. (9) 
and (15), the jump function J(T) may be used to obtain the 
asymmetry factors, namely,

In addition, we may express the jump function as

(15)A = �.

(16)
n∑

i=1

ri �
7
i
zi e

−z2
i = 0

(17)Hth = cexc(Tmax) ≈
A

bTpc
�, � =

1
√
�

n�

i=1

ri�
5
i
e−z

2
i ,

(18)�th = J(Tmax), �th =
�th − J(T−)

J(T+) − �th
.

by Eqs. (9) and (14), where erfc is the complementary to the 
Gauss error function.

Using these theoretical expressions, the determination of 
the phase change temperature Tpc may be carried out in sev-
eral steps as follows. Let a cexc peak be known from experi-
ment and let A, Tmax , H, and � and � be the values of its 
area, maximum temperature, height, and asymmetry factors, 
respectively. 

1. Equation (16) is solved for � , using a set of values of �n 
and Δ� . The dependence �(�n,Δ�) of � on �n and Δ� is 
thus calculated.

2. Using �(�n,Δ�) , the theoretical dependence �th(�n,Δ�) 
of the asymmetry factor on �n and Δ� is calculated from 
Eqs. (18) and (19).

3. Requiring that �th(�n,Δ�) = � , a dependence �n(Δ�) of 
�n on Δ� is obtained.

4. The dependence �(�n(Δ�),Δ�) of � on Δ� is calculated 
from Eq. (17).

5. The theoretical dependence �th(�n(Δ�),Δ�) of the other 
asymmetry factor on Δ� is calculated from Eqs. (18) and 
(19).

6. Requiring that �th(�n(Δ�),Δ�) = � , the value of Δ� is 
obtained. Knowing Δ� , we determine the values of �n , 
� , and � , using the results from steps 2–4.

7. S i n c e  Tmax = (1 + �b)Tpc  a n d  bTpc = A�∕Hth  , 
t h e  p h a s e  c h a n g e  t e m p e r a t u r e  i s 
Tpc = Tmax − �bTpc = Tmax − �A�∕H  ,  w h e r e  we 
required that Hth be equal to H.

Note that all five theoretical parameters � , �n , Δ� , Tpc , and 
b are actually determined during this procedure and not 
just the phase change temperature (the latter parameter is 
b = bTpc∕Tpc = A�∕HTpc).

Domain sizes and their distribution

To apply the above-described procedure, it is necessary 
to know the values of �i (the domain diameters) and rtexti 
(essentially, the numbers of domains of given diameters) 
for a given PCM. These could be obtained from experi-
ment and may be complex. Nevertheless, it is possible to 
use their simple but realistic approximations due to the 
term ri �5i ∝ Ni �

5
i
 in Eq. (14). The reason is as follows. Even 

though the number of domains of a given diameter should 
decrease with the diameter (i.e., Ni drops as i approaches n), 
the growth of �5

i
 with i is expected to be faster (recall that 

0 < 𝛿1 < 𝛿2 < ⋯ < 𝛿n−1 < 𝛿n = 1 ). Altogether ri �5i  should 
be the largest for large domains (i.e., for i close to n) and it 

(19)J ≈
1

2

n∑

i=1

ri �
3
i
erfc (−yi)
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should be practically negligible for small domains. There-
fore, while �i and ri may in general depend on i in a complex 
way for various PCMs, it is plausible to consider their simple 
approximations within a narrow range of i that correspond to 
predominant contributions to cexc and extend these approxi-
mations to all i.

To approximate the values of �i , we use the observation 
that the differences between the diameters of small domains 
should be much smaller than between the diameters of large 
domains; i.e, the differences �i+1 − �i should be increasing. A 
fractal modeling of PCMs with spherical domains suggests a 
hyperbolic increase [31]. For large domains this can be well 
approximated by a linear increase, �i+1 − �i = const ⋅ i . In 
an explicit form,

As for the values of ri , two approximations will be used here.
In one the numbers of domains of given diameters will be 

all equal, Ni = const , implying ri = const as well. Within this 
approximation the effect of the domain size distribution ri is 
ignored and the dominant contributions to cexc (those with 
ri �

5
i
 maximal) are determined by the domain sizes alone: 

they come from the largest domains; i.e., for i = n and few 
i just below n.

In the other approximation Ni ≠ const , so that the effect 
of ri will be taken into account. The number of domains of 
a given diameter should be decreasing with the diameter, 
and we shall assume the simplest case of a linear decrease, 
Ni = Nn + (n − i)ΔN  with ΔN = (N1 − Nn)∕(n − 1) > 0 . 
Estimating that N1 is to Nn as is the largest domain volume 
to the smallest one (i.e., Nn∕N1 = �3

1
 ), we get

where the constant G = Ω∕N1d
3
n
 . Within this approximation, 

ri linearly decreases with i, and the predominant contribu-
tions (those with ri �5i  maximal) are from the domains of 
diameters of about 10∕11 ≈ 0.91 of the largest domain diam-
eter; i.e., for few i around i = 0.91 n.

Determination of T
pc

 for the three materials

We choose the number of different domain sizes to be 
n = 200 and the smallest domain size to be a tenth of the 
largest one, �1 = 0.1 . The dependence �(�n,Δ�) of � on �n 
and Δ� is purely theoretical, following from Eq. (16), and 
thus independent of a specific PCM. It turns out that � can 
be very precisely approximated by a linear function of �n 
and Δ� . Namely, by 1.02�n − 3.30Δ� for the constant ri and 
by 1.23�n − 25.37Δ� for the linear ri , the corresponding 

(20)𝛿i = 𝛿1 +
i(i − 1)

n
Δ𝛿, Δ𝛿 =

1 − 𝛿1

n − 1
> 0 .

(21)

ri =
qi

G
, qi =

Ni

N1

= 𝛿3
1
+ (n − i)Δq, Δq =

1 − 𝛿3
1

n − 1
> 0,

coefficients of determination R2 being 0.9996 and 0.9999, 
respectively.

Knowing �(�n,Δ�) , the dependences of the parameters 
�n , � , and �th on Δ� for the three studied materials can be 
obtained by the above-described procedure. They are plotted 
in Fig. 3. The temperatures T− and T+ needed to calculate 
�th were chosen as T− = T+ = 1K for RT27, T− = 0.9K and 
T+ = 0.3K for CBC9CB, and T− = T+ = 0.05K for C23. The 
equality �th = � yields the values of Δ� that subsequently 
yields the values of all other parameters, including the phase 
change temperature Tpc . The procedure is easy to perceive 
from the plots in Fig. 3. The results for all three materials are 
listed in Table 1. In Fig. 4 we show the peaks in the excess 
heat capacity cexc of all three materials given by Eq. (14) 
with the parameters from Table 1. The agreement with 
experimental data is rather accurate (see Table 2). Moreo-
ver, the difference between the peaks obtained for linear and 
constant ri is practically negligible (see Table 2).

In general, it is expected that Tpc should lie within the 
phase change region; i.e., the difference between Tpc and Tmax 
should be less than about two half-widths of the cexc peak, 
|Tpc − Tmax| ≲ 2W1∕2 . Table 1 shows that for CBC9CB this 
difference is reasonably large, between one and two half-
widths of the cexc peak. Similarly, for C23 the difference is 
also reasonable, around one half-width of the cexc peak. For 
RT27 the difference is less than two half-widths when the 
linear ri is considered, but it is as large as 8.7 of the half-
width for a less realistic, constant ri . This indicates that it 
may be important to use proper values of the domain size 
distribution (proper ri ) for those PCMs whose heat capacity 
peaks are very asymmetric, like RT27.

To understand why Tpc lies above or below Tmax , we may 
recall that the excess heat capacity cexc is a sum of peaks 
ri�

5
i
exp(−y2

i
) (see Eq. (14)). These peaks have heights ri �5i  

and their maxima are at temperatures Ti = (1 + b�i∕�i)Tpc . 
As i changes from 1 to n, both the peak’s height and maxi-
mum temperature change (see Fig. 5). As for the height, 
it (a) increases with i from 1 to n for a constant ri , and (b) 
increases with i up to about 0.9n and then it decreases for 
a linear ri (see the text below Eqs. (20) and (21)). As for 
the maximum temperature Ti , it lies below Tpc when 𝜆i < 0 , 
while it lies above Tpc when 𝜆i > 0 . Now, the maximum 
of cexc at Tmax should be close to the position of the tallest 
peaks. As just argued, the tallest peaks have labels i that are 
near n for a constant ri and near 0.9n for a linear ri . We thus 
conclude that if 𝜆i < 0 (if 𝜆i > 0 ) for these labels i, then the 
tallest peaks as well as Tmax are below Tpc (above Tpc ). For the 
three studied materials the values of �n are given in Table 1 
and the values of �i=0.9n are given in Table 3. For RT27 and 
C23 the values �i are negative both for i near n (when ri is 
constant) and near 0.9n (when ri is linear), and so their phase 
change temperatures lie above Tmax . On the other hand, for 
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CBC9CB the values �i are positive both for i near n (when 
ri is constant) and i near 0.9n (when ri is linear), so that its 
phase change temperature lies below Tmax . These qualitative 
conclusions are confirmed by Table 1 where the calculated 
values of Tpc are given.

We finally verify the criterion (�∕di)2 ≤ 1∕K with K ≫ 1 
required in Eq. (11). The criterion specifies the range of pos-
sible domain sizes, because it may be rewritten as

Using the values of Tpc , b, and � = A from Table 1 and tak-
ing v = �∕6 (spherical domains) and K = 10 , say, the diam-
eter dn of the largest domains should be at least a few tens to 
a few hundreds of nm, which are realistic bounds.

Conclusions

An improvement of our original technique to describe heat 
capacity peaks of PCMs was presented. The improvement 
consists in a more realistic approximation of surface effects 
in the individual domains of which PCMs are composed. 
Our main focus was the determination of the phase change 
temperature Tpc (introduced as the temperature at which the 
enthalpy would have a jump in the thermodynamic limit). 

(22)dn ≥
(√

K

�

4kBTpc

v �� b �1

)1∕3

.

We pointed out that Tpc cannot be obtained directly from one 
or two characteristics of a heat capacity peak. Instead, it was 
necessary to consider five characteristics: peak’s area, maxi-
mum position, height, and two asymmetry factors. Deter-
mining theoretical expressions for these five quantities and 
requiring that their values are equal to those from experi-
ment, a procedure to obtain Tpc (plus four other parameters) 
was presented. The obtained heat capacity peaks very accu-
rately agreed with the experimental ones. Of two considered 
domain size distributions—a constant ri and a linear ri—the 
linear distribution was more appropriate, even for a rather 
asymmetric heat capacity peak of RT27. Then the obtained 
values of Tpc lie within the phase change regions of all three 
considered materials. This indicates that the domain size 
distribution of a given PCM should be actually used in the 
determination of its Tpc (which is a topic to be further stud-
ied). All these results were calculated under the assump-
tion that kinetic effects were negligible and a PCM was free 
from effects like thermal hysteresis and supercooling. Good 
understanding of such plain cases could allow for the analy-
sis of PCMs with a more complicated behavior in the future.
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Table 1  The values of the 
experimental and theoretical 
parameters for the three 
considered materials

Theoretical values of the specific latent heat � are not listed, because they coincide with the values of area 
A (see Eq. (15))

Quantity RT27 CBC9CB C23 Unit

Area A 132.14 1.63 0.73 kJ kg−1

Maximum temp. Tmax 27.16 119.77 44.97 ◦C

From experiment Height H 120.18 7.24 15.34 kJ kg−1K−1

Half-width W1∕2 0.78 0.12 0.03 K,◦ C

Asymmetry � 0.811 0.682 0.395 –
Asymmetry � 2.971 2.064 0.774 –
Δ� −0.220 0.069 −0.037 –

From theory with a constant ri �
n

−42.65 3.08 −1.89 –
� 0.140 0.280 0.333 –
Phase change temp. Tpc 33.90 119.61 45.00 ◦C

b × 105 50.26 16.05 4.98 –
Δ� −0.013 0.066 −0.040 –

From theory with a linear ri �n −22.13 5.48 −3.60 –
� 0.049 0.200 0.222 –
Phase change temp. Tpc 28.63 119.55 45.01 ◦C

b × 105 18.02 11.49 3.32 –
From [13] Phase change temp. Tpc 30.43 120.23 44.91 ◦C

Table 2  The coefficients of determination R2 and ratios of the 
root mean square error RMSE to peak heights H for the theoretical 
vs. experimental excess heat capacities c

exc
 of the three materials

Quantity RT27 CBC9CB C23

A constant ri R
2(−) 0.994 0.951 0.948

RMSE/H (%) 2.1 4.0 5.9
A linear ri R

2(−) 0.991 0.962 0.977
RMSE/H (%) 2.6 3.5 3.9

Between the two 
choices of ri

RMSE/H (%) 2.3 0.9 2.5

Table 3  The theoretical parameters �
1
 and �

0.9n
= 0.9�

n
+ 0.1�

1
 for 

the three considered materials when the linear r
i
 is considered

Quantity RT27 CBC9CB C23 Unit

From theory �1 −19.58 −7.64 4.32 –
With a linear ri �

0.9n
−21.88 4.17 −2.80 –
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