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Abstract
The thin film of nanocomposites was prepared by solution casting methods and characterized by UV–Vis spectra, Raman 
spectra and scanning electron microscopy (SEM). The optical band gap was determined by Tau plots. The band gap of 
PVDF was determined with and without BaZrO3 nanoparticles. It could be seen that the band gap decreases from 4.98 to 
3.32 eV in the presence of BaZrO3 nanoparticles in PVDF matrix. The Raman study identifies the interacting species with 
PVDF due to structural change by the addition of BaZrO3 nanoparticles. This helps to understand the potential of new 
nanocomposites. The structural changes were analyzed by crystallinity, nature of bonds, phase transition from G to B-phase, 
etc. SEM images represent the change in spherulitic morphology of PVDF by incorporation of BaZrO3 nanoparticles. SEM 
images are presented the aggregation of BaZrO3 nanoparticles in PVDF matrix causes the generation of larger particles in 
PVDF chain. DSC supports the crystallization of PVDF nanocomposites upon heating due to the rearrangement of PVDF 
structure in the presence of BaZrO3 nanoparticles. It is observed that BaZrO3 nanoparticles enrich the structural, thermal and 
piezoelectric properties due to the change in spherulitic morphology, which creates a large number of micro- to nano-sized 
pores, increases the β-phase content of the PVDF.
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Introduction

There are potential applications of polyvinylidene fluoride 
(PVDF) nanocomposites in the area of optoelectronics and 
piezoelectric devices [1–3]. PVDF is one of the first flexible 
and efficient electromechanical materials. The polar nature 
is due to the positive charge on hydrogen and the negative 
charge in fluorine atoms. PVDF is an excellent piezoelec-
tric polymer gaining importance amongst various polymers 
[4–8].

The previous studies proved that the PVDF is one of the 
most electroactive polymers mainly due to the presence of β- 
and γ-phases. The role of β- and γ-phases promoted its appli-
cations in the field of sensors, energy storage devices, etc. 
Moreover, its easy processing can improve the structural, 

electrical and mechanical properties [9–16]. The increase of 
β-phase in PVDF is subjected to the processing conditions. 
The solution casting, spin coating, and bland technique are 
the most important processing methods. It has been observed 
that the incorporation of inorganic nanoparticles is one of 
the strategic parts to improve the functional properties of 
polymers. Currently, nanofiller like ceramic nanoparticles 
are popular to improve the β-phase. There are some of the 
important nanofillers (i.e., CuO, NiO, Pt, BaZrO3, BaTiO3, 
etc.) that are considered to enhance β-phase of PVDF 
[17–24].

The combinations of polymers and ceramic nanofillers 
have received significant attention due to their excellent 
properties, which are suitable for flexible electronic devices 
such as embedded capacitors system, multilayer capacitors, 
field-effect transistors, piezo and pyroelectric sensors [25]. 
There are five crystalline phases of PVDF. Out of these, 
only electroactive β-phase is highly demanded because it 
exhibits a high dipole moment. This makes the polymer of 
high dielectric constant, high piezo and pyroelectric coef-
ficients [26].
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Barium zirconate is a ferroelectric ceramic material that 
possesses outstanding electroactive properties [27, 28]. Its 
crystalline structure is fcc type. Its structure consists of 
tetravalent ions at the centre of the cube and divalent ions at 
the top corner. However, O2− ions are placed at the centre 
of each face.

The -OH groups of BaZrO3 nanoparticles, as mixed with 
PVDF, provide strong hydrogen bonding sites and increase 
the electroactive β-phase. There are several questions regard-
ing piezoelectric, dielectric, thermal properties, etc., of these 
nanocomposites that are unanswered. Understanding of the 
microscopic mechanisms of polarization reversal in PVDF 
nanocomposites is a critical issue amongst researchers.

The wide variety of PVDF nanocomposites have been 
developed with improved thermal, mechanical, and excellent 
barrier properties [29–31]. However, developing the PVDF 
nanocomposites for prolonged service at high temperatures 
is still a challenge.

The melting temperature of PVDF of different phases is 
in the range of 167–172 °C. The DSC is used to determine 
several parameters of material such as glass transition tem-
perature, melting temperature, percentage crystallinity, and 
other thermal properties; however, it is unable to distinguish 
different phases of PVDF clearly. For this purpose FTIR, 
X-ray and Raman spectra are used [32–37].

Currently, nanocomposites play a very important role in 
the field of flexible electronic industries due to the simple 
architecting of nanofiller in the polymer matrix and their 
uncommon properties. The less number of publications of 
PVDF-BaZrO3 nanocomposites have been found in litera-
ture. Therefore, in this work, the possibility of preparing 
BaZrO3 embedded PVDF with different concentrations is 
demonstrated. In the present work, the optical, structural, 
electroactive and thermal properties of PVDF-BaZrO3 nano-
composites were studied by UV–Vis spectroscopy, Raman 
spectroscopy and SEM–EDX spectra, P-E loop and DSC 
techniques. This research would help us better understand 
the effect of BaZrO3 on the structure and properties of PVDF 
nanocomposites.

Experimental

Materials

PVDF was procured from Redox (India). The 64.03 and 
1.78 g cm−3 are molecular weight and molecular density of 
PVDF. The N, N, dimethylformamide (DMF) was procured 
from Merck India Ltd. The barium zirconate (BaZrO3) nano-
particles of size less than 100 nm were procured from Sigma 
Aldrich. All materials are used as obtained without any fur-
ther processing for the preparation of nanocomposites. The 
material properties are presented in Table 1.

Method

In this method, the PVDF is dissolved in N, N, dimethyl-
formamide (DMF). The BaZrO3 nanoparticles have higher 
chemical compatibility with PVDF due to the existence of 
hydroxyl groups onto the surface of BaZrO3 nanoparticles. 
The BaZrO3 solution in DMF was undergone a thorough 
stirring process followed by sonication of 5 min. BaZrO3 
solution was added drop by drop in PVDF solution. More 
details of sample preparation is reported in our earlier work 
[38, 39]. Figure 1 shows the different steps followed for the 
preparation of nanocomposites thin film.

Characterization

The UV–Vis spectra were recorded by Hitachi—4150 spec-
trophotometer. Aluminium electrodes on thin-film for piezo-
electric measurement were prepared by using a vacuum coat-
ing unit (Model no, VEQCO Delhi, India). The morphology 
and phase images were recorded by using SEM–EDX 
(Model no, MIRA II LMH from TESCAN). The polari-
zation–electric field (P-E) loops were recorded at 100 Hz 
using the ferroelectric test system (Marine India). Raman 
spectroscopy was recorded using Renishaw Invia Mirco 
Raman setup. Differential Scanning Calorimetry (DSC) was 
recorded using Differential Scanning Calorimetry (DSC); 
model Q20; (TA Instruments, USA). The d33 coefficient of 
the poled thin film was measured by piezo test (PM100).

Results and discussion

UV–Vis spectra

UV–Vis spectroscopy is an important tool to provide the 
information on bond structure and optical band gap of mate-
rials. The molecular band theory of material describes the 
promotion of an electron from the ground state (i.e. π, σ, and 
n- orbits) to higher energy states by absorption of ultraviolet 
and visible radiation [40].

Figure 2 shows the absorbance of PVDF and PVDF-
BaZrO3 nanocomposites with different wavelengths. It 

Table 1   Properties of PVDF and BaZrO3 nanoparticles

Material Density/g 
cm−3

Particle size/
nm

Specific 
surface area/
m2g−1

Purity/%

PVDF 1.78 100 3.76–6.61 99
BaZrO3 5.96 25–50 3.5–11.2 98
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has been observed that the absorbance of PVDF increases 
with the increasing concentration of BaZrO3 nanoparti-
cles. This may be due to the many defects formed in the 
chemical structure of PVDF by the addition of BaZrO3. 
In general, the physical properties of nanoparticles such 
as particle size, roughness, dispersion, nano-interfaces in 
polymer affect the absorbance of polymer nanocomposites. 
The very high absorbance of PVDF nanocomposites in the 
UV region indicates its interest in UV shielding applica-
tions [41].

The absorption edge of PVDF at around 219 nm was 
shifted to 273, 307 and 366 nm for 2, 4 and 6mass% of 
BaZrO3 nanoparticles. Generally, in polymer matrix attrib-
uted the change in molecular configuration as discussed 
in literature [42].

Optical band gap Eg was calculated by Tauc,s expres-
sion [43, 44]:

where λ represents the maximum wavelength (nm), h is a 
plank constant, c is the speed of light, α is the absorption 
coefficient, hν is the photon energy, B is a constant, Eg is 
the band gap of the material, and the exponent m depends 
on the type of the transition. The m may be equal to ½ and 
2 corresponding to the allowed indirect, allowed direct, for-
bidden direct, and forbidden indirect transition, respectively 
[45]. Figure 3a, b shows the variation of (αhν)1/2 with hν. 
The band energy gap was calculated by using the method as 
reported in literature [46, 47].

The direct and indirect optical band gap of PVDF and 
PVDF nanocomposites are shown in Fig. 3a, b. The direct 
and indirect optical band gaps of the PVDF- 6mass% 
BaZrO3 are calculated to be 3.40 and 3.33 eV, respectively. It 
is comparatively higher than other combinations of BaZrO3 
in PVDF. This behavior of PVDF is agreed with our earlier 
work [48].

PVDF- 6mass% BaZrO3 nanoparticles filled nanocom-
posites show the highest intensity of UV absorption with 
maximum width for the absorption window. This can be 
related to the formation of an interpenetrating network 
(IPN). This type of network cannot be separated unless 
chemical bonds are broken. The formation of IPN offers 
better possibilities for getting extended regions of π* conju-
gation, which influences the optical properties significantly.

Raman spectroscopy

Raman spectroscopy is used to sense atomic and molecular 
motions of organic and inorganic materials at any wave-
length except the wavelength of the incident electromag-
netic radiation. In polymer nanocomposites, the shift of the 
Raman line is subjected to the concentration of nanofiller 
[49, 50].

(1)E = h� =
hc

�

(2)(�h�)m = B
(

h� − Eg

)

Fig. 1   Preparation of nanocom-
posites thin film by solution 
casting method Added nanoparticles
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Raman spectra confirm the stretching of the polymer 
matrix in the presence of nanofiller by means of Raman 
shift. The Raman shift is related to changes in various vibra-
tions and molecular motions of the polymer-based nanocom-
posites. The Raman band located at 838 cm−1 originates 
from combined CF2 bending and CCC skeletal out- of-phase 
vibrations. It is expected that this band would be sensitive to 
the loading with BaZrO3 due to skeletal vibrations. Figure 4 
shows the Raman spectra in the range of 500 to 3000 cm−1 
at room temperature with the 532 nm laser line for PVDF 
and PVDF nanocomposites. In contrast, the PVDF vibra-
tion bands exhibited β-phase peaks located at 512, 838, and 
1277 cm−1 caused by CF2 vibration. The bands at 512 cm−1 
attributed to CF2 bending vibration and higher intensity band 

at 834 cm−1 due to out-of-phase combination of CH2 rocking 
and CF2 stretching mode. The intensity of peak increases 
with increase in nanoparticles concentration. The shift of 
Raman spectra of PVDF and nanocomposites with BaZrO3 
(i.e. 2, 4 and 6mass%) are shown in Fig. 4b–d. The spectra 
present from 1542 to 1756 cm−1 for G band assigned to 
the in-plane vibration, from 1334 to 1428 cm−1 for D band 
is activated by the presence of disorder in carbon systems 
and some Raman bands are located at 2126 to 2971 cm−1 
called the G′ band [51–53]. The assignment of bands in 
Raman spectra of PVDF and nanocomposites are presented 
in Table 2. The change in position of Raman band of poly-
mer nanocomposites indicates two domains. First domain 
is compressive strain and second is the expansion domain. 
It has been observed that by increasing the concentration of 
BaZrO3, the position of band shifted downwards, suggest-
ing a positive strain resulted in the crowding of nanofill-
ers above the elastic capabilities of the matrix. The band 
located at 2980 cm−1 is shifted downward for PVDF nano-
composites. This band is connected to crystalline domains 
of PVDF. This means that the contribution of elongational 
strain becomes visible. This experimental result suggests 
that the band recorded at 2988 cm−1 is corresponding to 
the crystalline domain of PVDF. The amorphous phase of 
PVDF accommodates the nanoparticles. The possible elec-
trostatic interaction of oxygen contents of BaZrO3 and par-
tially charged CH2 group of PVDF nucleates and form high 
electroactive β-phase induces polymeric chain to orient in 
all-trans (TTTT) conformation structure [54–56]. 

Scanning electron microscopy (SEM)

The SEM micrograph (Fig. 5) of PVDF and PVDF-BaZrO3 
nanocomposites provides the information of spherulites and 
dispersion of BaZrO3 nanoparticles in the polymer matrix. 
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The SEM image of PVDF shows the well-defined structure 
of spherulites for which the polymer chains are self-con-
nected into a continuous network along with some scattered 
pores. The SEM image of nanocomposites reflects that the 

spherulites are merging with each other and pores are disap-
pearing with increasing concentration of BaZrO3. We could 
understand from these results that BaZrO3 nanoparticles 
acted as a nucleation agent leading to close interaction or 

Table 2   Analysis of different peaks/bands in Raman spectra of PVDF and PVDF-BaZrO3 nanocomposites samples

Samples Peaks/bands

CF2 modes β-phase 
in500-950/cm−1

CF2 Symmetric/ Asymmetric 
stretch in1000-1300/cm−1

CH2, D-Band
in1300-1500/cm−1

G-Band in1500-
1900/cm−1

G′-Band 
in2000-3000/
cm−1

PVDF 512
659
836
915

1004
1107
1191
1277

1339
1430

1642
1740

2545
2969

PVDF-2mass%
BaZrO3

728
834

1108
1190

1334
1438
1641

1542, 1743
1862

2116
2969

PVDF-4mass%
BaZrO3

834
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Fig. 5   SEM images of a PVDF, b PVDF-2mass% BaZrO3, c PVDF-4mass% BaZrO3, and d PVDF -6mass% BaZrO3 nanocomposites
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growth of spherulites in PVDF matrix. The bright spots in 
PVDF-BaZrO3 nanocomposites show the aggregated region 
of nanoparticles and the faded part reflects the homogeneous 
distribution of nanoparticles. The dispersion of nanoparti-
cles is supported by the interaction of oxygen contents of 
BaZrO3 with the hydrogen bond of PVDF. Also, the surface 
charge of BaZrO3 nanoparticles helps to smooth the orien-
tation of molecular chain due to the formation of induced 
dipoles [57, 58]. The formation of nano-crystalline regions 
of BaZrO3 in PVDF matrix led to a significant improvement 
in piezoelectric and thermal properties of PVDF.

The EDX spectra (i.e. Figure 6b) are showing the pres-
ence of barium, zirconium, oxygen, gold, carbon, and fluo-
rine. The elements Ba, Zr, O, C, and F were originating 
from the PVDF structure due to the presence of BaZrO3. 
The presence of gold is due to the coating material of sam-
ples was ignored. Each component in nanocomposites sam-
ples shows the characteristics peak and peak height is the 
measurement of percentage concentration of components in 
PVDF matrix. These results clearly indicate the successful 
formation of nanocomposites.

Hysteresis P‑E loops

The charge generation capability of PVDF-BaZrO3 nano-
composites was studied by using polarization–electric field 
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(P-E) loop. The P-E loops were recorded for PVDF and 
PVDF-BaZrO3 nanocomposites with polarization electric 
field of 200 kV cm−1 at room temperature under a frequency 
of 100 Hz (i.e. Figure 7).

The polarization parameter (i.e. remnant polarization, 
coercive field, etc.) of PVDF nanocomposites attain a higher 
value as compared to pure PVDF. For example, the Pr value 
of PVDF is 1.13 μC cm−2, and Pr value PVDF nanocompos-
ites with 6mass% of BaZrO3 is 3.25 μC cm−2. This change 
itself demonstrates the enhancement of energy density and 
dielectric permittivity of PVDF nanocomposites [59]. This 
is due to the fact that the β-phase is dominated in the struc-
ture of PVDF by the addition of BaZrO3. The area of the 
curve represents the charge storage ability of the material. 
It could be observed that area of the P-E loop for PVDF 
nanocomposites is higher than pure PVDF. The Pr value 
of PVDF nanocomposites attributed charge accumulation 
at the interface, which facilitates the heterogeneous polari-
zation. The BaZrO3 in PVDF matrix enhances the remnant 
polarization and coercive field. Therefore, it is reasonable 
to understand that BaZrO3 nanoparticles are responsible for 
increasing polarization response as well as charge generation 
capability of PVDF.

Piezoelectric properties

It is found that d33 coefficient of PVDF nanocomposites with 
6mass% of BaZrO3 is less than 4mass% of BaZrO3 (Fig. 8). 
This is due to the fact that the higher concentrations of nano-
fillers have tendency of agglomeration in polymer matrix 
leading to poor electrochemical coupling. The modifica-
tions of piezoelectric properties are completely caused by 
the improvement of β-phase in PVDF, which is verified from 

Raman spectra [38, 59, 60]. The poling field and surface 
of PVDF are perpendicular to each other during polariza-
tion. This arrangement orients the molecular dipoles along 
the direction of field. This perturbation will dynamically 
change the position of nuclei and the electrons, which will 
favor the formation of more and more dipoles. As a result, 
the opposite facing poles inside the PVDF cancel each other 
and fixed charges appear on the surface. If V is the applied 
voltage and d is the thickness of the film. If the thin film is 
assumed to be behave like a parallel plate capacitor, then d33 
coefficient will be [61];

where α is a calibration factor associated with the speci-
men to be tested. If α is determined a priori via a finite 
element analysis, C is the capacitance and F is the finite 
applied force. The capacitance of PVDF nanocomposites 
enhances many times by the addition of BaZrO3 nanoparti-
cles as reported in our earlier work [38]. This is the origin 
of increasing piezoelectric coefficients of PVDF.

Differential scanning calorimetry (DSC)

The melting behavior of the polymeric samples and the 
degree of crystallinity were investigated by differential 
scanning calorimetry (DSC). Figure 9 shows the DSC of 
PVDF, PVDF- 2mass% BaZrO3, PVDF- 4mass% BaZrO3, 
and PVDF- 6mass% BaZrO3 in endothermic mode with the 
heating rate of 10 °C min−1 under the nitrogen medium. 
Figure 9a–d shows the DSC of β-phase PVDF and nano-
composites with different mass% of BaZrO3. It has been 
observed that melting temperature (Tm) at 143.04, 140.40, 
139.81, and 138.32 °C for PVDF and PVDF nanocomposites 
samples of different BaZrO3 concentrations.

Figure 9 shows an endothermic peak followed by enthalpy 
relaxation upon heating. The broad relaxation peak is owing 
to heating-dependent crystallization. It is noted that the melt-
ing peak gives the crystalline and noncrystalline behavior of 
the material in terms of sharp and broad shape. The enthalpy 
(∆Hc) value for nanocomposites is larger as compared to 
pure samples. That means crystallinity of samples increases 
in presence of nanofiller. These results are supported by lit-
erature [62, 63] and summarized in Table 3. Apart from this, 
the rearrangement of the molecular chain took place during 
heating resulting in the shifting of glass transition tempera-
ture from amorphous region to crystalline region [64].

The effect of BaZrO3 on glass transition temperature 
(Tg) can be explained by the enthalpy interaction between 
the polymer and nanoparticles. The enthalpy of crystal-
lization (∆Hc) of PVDF increases with increasing con-
centration of BaZrO3 nanoparticles. Either an increase or 
decrease in (Tg) can be induced depending on the specific 
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capacitance (Cp) interaction [65, 66]. The percentage 
crystallinity of polymeric samples is based on the mass 
fraction crystallinity (X%), crystallization enthalpy/heat 
release of crystallization (ΔHc) under DSC scans, which 
is obtained from the following relations [67–70]:

(4)ΔHc = kA∕M

(5)X(%) =
ΔHm

MΔH100%,crystalline
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Fig. 9   DSC of a PVDF, b PVDF-2mass% BaZrO3, c PVDF-4mass% BaZrO3, and d PVDF-6mass% BaZrO3 nanocomposites

Table 3   DSC parameters of 
PVDF and PVDF-BaZrO3 
nanocomposites samples

Tm, melting temperature, ∆Hm heat of fusion, ΔHC enthalpy of crystallization, Cp specific capacitance and 
X, mass fraction crystallinity

Samples Tm /oC ΔHm /J g−1 ΔHC /J g−1 Cp/J kg−1 K−1 X/%

PVDF 143.04 16.59 38.24 1244.55 40.21
PVDF-2mass%BaZrO3 140.40 15.16 40.58 1256.69 45.92
PVDF-4mass%BaZrO3 139.81 12.58 45.71 1332.12 46.58
PVDF-6mass%BaZrO3 138.32 10.44 67.36 1419.56 47.09
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where k is the instrument constant, which is found to be 
1.12; A is the area under the crystallization peak and M 
is the mass of the sample and ∆H100%, crystalline is the heat-
ing enthalpy of fusion of pure crystalline PVDF, which is 
reported to be 104.6 J g−1 [71, 72] and ΔHm melting peak 
temperature of the polymeric samples. The results are pre-
sented in Table 3.

BaZrO3 nanoparticles in PVDF matrix modified the 
crystalline structure due to the formation of more and more 
β phases. This means the polymer chain interweaves with 
nanofillers and forms nucleolus. The polymer nucleation 
may become a multi-stage process due to the involvement of 
a wide range of relaxation processes. The BaZrO3 in PVDF 
matrix modified the crystallization and polarization behavior 
of PVDF by means of nucleation effect and crystal growth. 
The possibility of molecular stacking of PVDF molecules 
cannot ignore. The molecular stacking increases the crystal-
lization rate, and finally, crystallinity. Since the crystalliza-
tion process is time-dependent, lower cooling rates give the 
macromolecular chains enough time-to-change conforma-
tion. This led to the less energetic arrangement and forma-
tion of crystallites at higher temperatures. This mechanism 
is consistent with the work reported in literature [73, 74].

Conclusions

In addition of BaZrO3 nanoparticles in the PVDF matrix 
enhances the β-phase by nucleation process. We conclude 
that electrochemical interaction and nucleation effect in 
PVDF nanocomposites is the driving force of electroactive 
and thermal properties. The formation of nanocomposites 
enhances the charge generation capability and d33 coeffi-
cient. As a result, the area of the P-E loop increases with 
the increasing concentration of BaZrO3 nanoparticles. It 
showed the improvement of piezoelectric properties explores 
the possible applications in the field of biomedical, robot-
ics, membrane, and sensor. The results of the DSC showed 
the notable improvements in glass transition temperature, 
enthalpy, melting point, crystallinity, etc., by incorporation 
of BaTiO3 nanoparticles in PVDF matrix. The main reason 
of improvement is the interaction between nanoparticles sur-
faces and PVDF chains may reform the crystalline structure 
of PVDF. The enthalpy is considered to support the crystal-
lization and nucleation effect.
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