Journal of Thermal Analysis and Calorimetry (2022) 147:7603-7630
https://doi.org/10.1007/510973-021-11088-4

=

Check for
updates

Advancement of nanofluids in automotive applications during the last
few years—a comprehensive review

Lotfi Ben Said"? - Lioua Kolsi'*® - Kaouther Ghachem* - Mohammed Almeshaal® - Chemseddine Maatki’

Received: 1 January 2021 / Accepted: 20 September 2021 / Published online: 18 October 2021
© Akadémiai Kiado, Budapest, Hungary 2021

Abstract

The present paper focuses on a review recalling the main contributions of studies that involve nanofluids on automotive
industry. The novelty of the paper consists on the concise synthesis presented, that highlights new tested nanofluids in several
applications in automotive. The review includes critics on the efficiency, the impact on material and the environmental issues
when nanofluids are used as fuel. Three main sections are presented, which deploy the use of nanofluids as coolant in a car
radiator, addition in the fuel or engine oil and finally the last section reviews the assessment of the wear effects of nanofluids
on materials used in a car coolant system and in the car engine. The current review emphasized some major findings and
critics: (1) The contradictory conclusions denoted about the effect of volume concentration on pumping power loss and the
Nusselt number in a car radiator system. (2) Remarkable discrepancies in the determination of the optimal nanoparticles
volume concentration and the precise heat transfer enhancement. (3) The viscosity of a nanolubricant needs a deep analysis
to determine the optimal value that ensures the best lubricant film between components in a car engine. (4) Some mechanical
problems should be analyzed when using nanofluids in fuel.

Keywords Nanofluids - Coolant - Car radiator - Nanofuel - Wear effects

Introduction

Nanotechnology concerns the use of devices and systems
that exhibit new characteristics and properties related to
matter with dimensions between 1 and 100 nm. Many
fields and endeavor take benefits from the evolution of
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nanotechnologies, including electromechanical engineering,
material science, physics, biology, chemistry, electronics,
and computer science. The use of nanomaterials highlights
several innovated industrial applications belonging to these
fields with very high performance and high resistance to
unpleasant surrounding environments, such as the rise or fall
of temperatures. Looking to the applications in heat transfer
field for example, studies carried out over the last few years
have shown that the addition of nanoparticles in a fluid such
as particles of copper oxide (CuQ), copper (Cu), aluminum
oxide (Al,0O3), or carbon nanotubes in water for example
could improve the heat transfer characteristics. In fact, nan-
oparticles added in fluid significantly modify the thermal
conductivity, which leads to a remarkable improvement in
convective transfers when these nanofluids are used, which
is proved in the work of Choi et al. [1] who found in the
beginning of this field that the effective thermal conductivity
of the water—Al,O; mixture increases by 20% for a volume
concentration between 1 and 5% of Al,O;. In fact, Brownian
agitation, linked to the nanometric size of the particles, min-
imizes the sedimentation problems encountered with larger
particles. Therefore, the suspension of these nanoparticles in
a fluid leads to interesting thermal characteristics compared
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to traditional fluids and undeniable advantages in improv-
ing heat transfer, Eastman et al. [2]. Thermal conductivity
of nanofluids can be significantly higher than that of pure
liquids. This high thermal conductivity indeed designates
nanofluids as potential replacement of conventional fluids
used in heat exchangers for example in order to improve
their performance, Keblinski et al. [3]. Moreover, the addi-
tion of nanoparticles in a liquid increases its viscosity and
therefore the pressure drops, Yang et al. [4]. However, the
lack of stability over time of certain nanofluids can lead to
agglomeration of the nanoparticles and a change in their
thermal conductivity, Daungthongsuk et al. [5]. Remind that
in particle suspension in fluids, different types of interac-
tions between the particles themselves but also between the
particles and the fluid govern the behavior of a suspension.
Note that, these microscopic interactions have a very impor-
tant macroscopic incidences such as the relative motion of
particles compared to the liquid, which not only supports
the diffusion of the particles in a suspension but also causes
the regrouping, the arrangement of particles in aggregates
even sedimentation and phase separation. The particles
are also subjected to the action of gravity and buoyancy.
Indeed, if the density or dimensions of particles increase,
the sedimentation effect became faster. However, decreas-
ing the scale to nano, nanofluids prevent the phenomenon
of sedimentation since the thermal agitation can compensate
the action of gravity. In fact, under a critical size of solid
particles, the Brownian motion compensates the sedimenta-
tion. Conventionally, these nanoparticles have sizes, which
do not exceed 50 nm, and their volume concentration ¢ does
not exceed 10%. However, two families of nanofluids can be
distinguished: those intended for thermal applications, for
which ¢ remains less than 10% and those intended to present
a magneto or electroactive behavior where ¢ can reach up to
30%. Mainly three groups of volume concentrations can be
found in the literature: 0.1 to 1% for highly diluted nanoflu-
ids, up to 10% for diluted ones and > 10% for weakly diluted
nanofluids. The nanoparticles commonly used consist of

Fig. 1 Principal families of
studied nanofluids [6]
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metallic or non-metallic materials and carbon nanotubes.
In Fig. 1, Julien Chevalier [6] plotted the main families of
nanofluids usually studied. Through this figure, the author
emphasized the composition, size and volume concentration
of common nanofluids. The base liquids generally used in
the preparation of nanofluids are those of common use in
heat transfer applications such as water, ethylene glycol and
engine oil. Table 1 groups together a non-exhaustive list of
combinations of nanoparticles and base fluids prepared by
various research groups. Almost, by analyzing the references
[1-114] cited in the present review, one or more combina-
tions were used. Each row of the table gives the types of
base fluids which were used with the nanoparticle cited in
this row.

Several nanoparticles made from metallic/intermetallic
elements such as Cu [7], Ni [8] or ceramic compounds such
as MoS2 [9], Fe203 [10], Fe304 [11], CeO2 [12] and ZnO
[13] are reported in the literature. A deep incite in this lit-
erature, several other base liquids are tested which can be
selected from mixture of water and EG (W/EG), polyeth-
ylene glycol, diethylene glycol (DEG), vegetable oil [14],
paraffin [15], coconut oil [16], engine oil [17], pump oil
[18], gear oil [19] and kerosene [20]. The studied nanoflu-
ids as it is presented in the literature are made through a
suspension using three phases drawn in Fig. 2; solid phase
(nanoparticles), solid/ liquid interface and finally the liquid
phase (base fluid).

To manufacture these nanofluids, a special attention in
nanoparticles production is needed at the aim to obtain
the nanometric sizes and to avoid the agglomeration or to
plug the circuit. Nanoparticle manufacturing processes are
numerous, they can be classified into two categories as listed
in Yu et al. [22]. The first category is related to physical pro-
cesses, such as mechanical grinding or inert-gas condensa-
tion technique. However, the second category concerns the
chemical processes, such as laser pyrolysis, chemical pre-
cipitation, thermal spraying and chemical vapor deposition.
There are two main methods to manufacture a nanofluid:
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Materials ‘

Oxides : Al,O3, CuO, T,0,
Carboon nantube

Concentration ¢ : 0.1 — 1%
1-10%
> 10%




Advancement of nanofluids in automotive applications during the last few years—a comprehensive... 7605

Table 1 Nanoparticle/fluid combination
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Fig.2 Nanofluids suspension phases [21]

Interface

eration due to the attraction forces between the particles,
we use forces of electrostatic repulsion by charging the
surface of the particles through a pH adjustment. We can
also use steric repulsive forces using molecules adsorbed
or grafted on the surface. The main drawback of this tech-
nique is that there are a bad dispersion of the nanopar-
ticles inside the fluid because of the clusters formed by
nanoparticles during the preparation [22]. Despite this
drawback, the two-step method is the most widely used
method for the preparation of nanofluids, especially those
based on nanotube carbon particles [24]. It has economic

The one-step method consists in producing the nanopar-
ticles in the fluid. This procedure is not widely used, but it
helps to prevent agglomeration and oxidation of nanopar-
ticles. An example of process consists on the solidifica-
tion of the nanoparticles, which are initially introduced
into the base fluid as gas phase [23]. The main drawback
of this technique is that it is not appropriate for mass
production [22].

The two-step method consists of first producing the nan-
oparticles and then dispersing them in the base fluid. To
allow good dispersion, strong mechanical action using a
rotary or ultrasonic agitator is often necessary in order to
break up agglomerates. In addition, to avoid the agglom-

advantages and allows nanofluids to be prepared in large
quantities due to the expanded industrial production of
nanoparticles.

Figure 3 presents the annual evolution of the published
papers related to the use of nanofluids in automotive sys-
tems. It is to be mentioned that although the number is still
limited, there has been notable growth over the past five
years.

The mastery of the manufacture of nanofluids reveals
a wide range of applications in different areas. The main
objective of the present paper is to report a literature review
on the main studies that investigated the use of nanofluids in
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Fig.3 Number of research articles published per year in the last
10 years, obtained from a search using the keywords (Nanofluid auto-
mobile) or (Nanofluid automotive) or (Nanofluid radiator) in Article
Title, Abstract, Keywords for Scopus and in Topic for Web of Science

applications related to automotive during the recent years.
The paper contains three main sections; the first deploys the
use of nanofluids in a car radiator. The second reviews the
main contribution on the addition of nanoparticles in the fuel
or engine oil. Finally, the last section reviews the assessment
of the wear effects of nanofluids on materials used in a car
coolant system and in the car engine.

The potential of nanofluids in applications
related to automotive systems

The evolution of technology in automobile industry and
the growth of its customers’ needs, force the auto indus-
try to look for innovative solutions that push up the perfor-
mance of their vehicle in terms of engine reliability and fuel

Fig.4 Car coolant system [37]
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consumption with the main vision to remain competitive.
In fact, to achieve highest performances, vehicle engines
need coolants, lubricants and transmission fluids with high
thermal conductivity. However, using conventional synthetic
high-temperature heat transfer fluids limits the capability of
vehicle’s components such as radiators, engines, gearboxes,
heating, ventilation and air-conditioning systems. For cool-
ant for examples, cars usually use ethylene glycol and water
mixture as engine coolant, which have a poor heat transfer
rates due to their lower thermal conductivity. This is the fact
that gives the opportunity to scientists to test new fluids with
high thermal conductivity such as nanofluids.

The use of nanofluids in car radiator

Car engines are often cooled by circulating a liquid
called engine coolant through the engine block, where it
is heated, then through a radiator where it loses heat to the
atmosphere, and then returned to the engine. It is common
to employ a water pump to force the engine coolant to circu-
late and an axial fan to force air through the radiator like it
is represented in Fig. 4. The use of fluids with high thermal
conductivity in a car radiator, such as nanofluids, allows the
car engine to resist overheating due to friction between the
different components, which increases the engine perfor-
mances especially for sports cars that need more horsepower
also for cars used in places with extreme weather conditions.

Choi et al. [25] have introduced nanocoolant, applied in
automotive since 2001, by dispersing metallic and oxide
nanoparticles in ethylene glycol-based fluids. Authors
claimed through experimental investigations that there is a
remarkable enhancement of the thermal conductivity com-
pared to conventional coolants, which is in total agreement
with the discussions presented in the work of Maranville
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et al. [26] who used the same nanoparticles dispersed in
water and ethylene glycol/water. Goldstein et al. [27] dem-
onstrated that nanofluids enhance the thermal diffusivity
of the radiator coolant. However, using a classic method
of dispersion, a limitation of agglomeration and oxidation
caused by metallic nanoparticles is denoted during these
years. This problem is solved during the recent years by the
evolution of methods used in manufacturing and dispersion
of nanoparticles.

Singh et al. [28] proved that the use of nanofluids with
high thermal conductivity gives the possibility to automo-
tive engineers to reduce 10% the frontal area of the car
radiator which improve the aero-dynamism of the vehicle
by reducing the air resistance which lead to a reduction in
the fuel consumption. Delavari et al. [29] demonstrated that
the use of nanofluids in a car radiator can lead to a gain of
power needed for pumping. In fact, for a given heat trans-
fer rate, the required base fluid flow rate is much higher
than that denoted for nanofluids, which also reduce the
fuel consumption. This is in complete agreement with the
work of Peyghambarzadeh et al. [30] who proved that the
overall heat transfer coefficient of the car radiator could be
enhanced if the concentration of nanoparticles is increased
especially for Fe,Os/water nanofluid, which enhances the
car engine performance and decreases the fuel consumption.
A 45% enhancement in the heat transfer efficiency of the
car radiator was recorded in the work of Peyghambarzadeh
et al. [31, 32] especially for low concentrations of Al,O5/
water, Al,O,/EG in comparison with pure water, which is in
contradiction with the author conclusions in their investiga-
tions on the use of Fe,O4/water nanofluid [30], which mark
a question about the effect of nanoparticles concentrations
and their types. Muhammad Ali et al. [33] proved the same
conclusion with ZnO—-water nanofluid. An enhancement up
to 46% for 0.2% concentration of ZnO nanoparticles was
recorded. A lowest enhancement percentage was recorded
in the work of Naraki et al. [34] proving that the use of CuO/
water nanofluid enhances the overall heat transfer coefficient
up to 8% for a concentration of 0.4 vol%. Similarly in the
work presented by Leong et al. [35], the use of Cu nanopar-
ticles dispersed in EG leads to the enhancement of the heat
transfer by 3.8%. Vajjha et al. [36] proved that the friction
factor and the convective heat transfer coefficient increase
when the particle volumetric concentration of the Al,O5/
EG, CuO/EG nanofluids increases. One can confirm that the
highest concentrations of nanoparticles enhance the thermal
efficiency of the car radiator. However, due to the increase
of friction coefficient, several studies should be performed
to investigate the negative effects of nanoparticles on the
material wear and on the pumping power.

Analyzing the literature during the last few years, several
types of nanoparticles have been dispersed in conventional
coolant such as ethylene glycol, water and glycerol with the

main purpose to test their performance in heat removal from
a car engine. A summary of numerical and experimental
studies on nanocoolant [38-52] is discussed in Table 2. It is
remarked from this table that the thermal efficiency of nano-
fluids in a car radiator almost is the main purpose of inves-
tigations reported in this literature review. The most used
nanoparticles in these investigations are the aluminum oxide
(AL,0O5), dispersed in water or ethylene glycol base fluids or
a mixture between these two fluids with different percent-
ages. The main factor analyzed is the effect of nanoparticles
volume concentration. Some other factors are analyzed such
as Reynolds number, the viscosity and the inlet temperature.
The main common conclusions reveal the increasing effect
on the thermal performance when all these parameters rise.
Some contradictory conclusions about the effect of volume
concentration on pumping power loss and the Nusselt num-
ber are denoted in this literature review, which need a deep
analysis at the aim to found the best nanocoolant that can be
safe used in a car radiator.

Details of experimental studies are reported in Table 3,
which describe the experimental setup, the main setting
parameters of experiments such as the type of nanofluids,
flow rate, temperature range, nanoparticle size and disper-
sion method and concentrations. Analyzing the experimental
setups figured in Table 3, authors usually preferred to study
nanocoolant using prototypes of car radiators plugged to a
water pump (usually not specified if it is a car water pump
working in the same real condition or not) that circulates
nanofluids in a closed circuit equipped with a heater (as
replacement of the heat generated by the car engine). The
use of heaters instead of car engines differs considerably
from actual working conditions, especially under extremely
hot weather conditions. Ahmed et al. [45] and Palaniappan
et al. [56] are the only authors who used a real car coolant
circuit of a FIAT DOBLO 1.3 MJTD and HINO WO6D
model (six-cylinder diesel engine). Analyzing the experi-
mental results, presented in this literature review, it has been
proved that nanoparticles concentrations, Reynolds number,
and inlet temperature have an increasing effect on the ther-
mal performances of the car radiator. The main drawback
in these experimental studies is the absence of standardiza-
tion of the experimental method and instrumentation, which
lead to some lack of transparency in the determination of a
precise enhancement percentage of the radiator performance
under different type of nanofluids. However, the use of a real
car coolant system that integrates a real car engine work-
ing in the real condition certainly leads to better results,
where researchers can analyze with precision the perfor-
mance of nanofluids and their effects on the working life of
all engine components. The main idea is to collaborate with
car manufacturer to test the best nanofluids on car proto-
types used to validate the new car production series. In such
tests, car manufacturers run these prototypes under extreme

@ Springer
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Fig.5 Effect of nanofluid type 90.00% mNG3/W-EG [50]
and concentration on heat trans- & ® -MWCNT/W-EG [40]
fer enhancement S 80.00% A f-MWCNT /W-EG [41]
GE, 70.00% © AIRO3/EG [42]
% C0304/(CH20H)2-H20 [51]
-E 60.00% TiO2/water [45]
o n + Al203/Water-Mono EG [49]
§ 50.00% x X GnP/W-EG [38]
© ® X B SiC/DW-EG [44]
% 40.00%
8 X TIO2/EG-W [47]
o 30.00% + OAI203+SiCM /W-EG [43]
<o o A
2 A AI203/water [52]
& 20.00% T 4.0.3% Ag- TiO2 /EG-W [46]
® < ®Fly ash /EG-W [56]
© y
© 10.00% m
I
0.00%

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00%

conditions to see the performance of each component of
the car.

Effect of the volume concentration

Most of analyzed results summarized in Table 2 showed
that nanocoolant could enhance the thermal perfor-
mances of the car radiator with different degrees of effi-
ciency considering the type of nanoparticles, concentra-
tions, type of base fluid, temperature, etc. Many factors
can affect the heat transfer coefficient, a key parameter
analyzed by many researchers cited in [38-52]. In fact,
Fig. 5 plots the best performance of nanofluids tested in
these studies, the figure indicates the maximum of heat
transfer enhancement measured for the optimal volume
concentration. The best performance is recorded in the
work of Moghaieb et al. [52] about 78.67% achieved at
1% volume concentration of c-Al,O; nanoparticles sus-
pended in pure water at a bulk temperature of 80 °C and
flow velocity of 2 m/s. The main drawback of the use of
Al,O;/Water in a car radiator is the type of materials of
the car engine components, in fact authors precise that
this type of nanofluid should be used to cool engine com-
ponents made of cast iron. Much other type of nanofluids
tested in [38, 40, 41, 44, 45, 47] and [54] can enhance
the heat transfer in a car radiator between 45 and 55%.
Selvam et al. [38] measured 51% enhancement for the
highest volume concentration 0.5 vol % (of graphene
nanoplatelets dispersed in water-ethylene glycol mixture)
and the maximum mass flow rate (100 g/s) at 45 °C inlet
temperature. A maximum pressure drop of 4.88 kPa at
35 °C for the same concentration and flow rate. In Jadar
et al. [40, 41], the heat transfer enhancement reached
45% for 0.1 vol% of f-MWCNT dispersed in Water-EG
mixture at 45 °C. Li et al. [44] recorded 53.81% for
0.5 vol% of silicon carbide (SiC) suspended in water/

Volume concentration %

0.755

—— Experimental setup
o Yu and Choi

07507 —-¥— Maxwell [e]

0.745

o o
N N
] N
g <

0.730-

Thermal conductivity W/m.K

0.725-

0.720

0.20
Volume concentration %

0.10 0.15 0.25 0.30 0.35

Fig.6 Thermal conductivity of TiO2 nanofluid at different volume
fraction [45]

ethylene glycol mixture at 50 °C. TiO,-water nanocool-
ant is tested in the work of Ahmed et al. [45] where the
heat performance enhancement reached 47% for a vol-
ume concentration 0.2%. The thermal conductivity meas-
ured increases remarkably, if the volume concentration
increases from 0 to 0.35 vol% as it is denoted from Fig. 6.
However, 0.5% TiO, dispersed in 40% EG and 60% water
at 45 °C enhances the heat transfer about 45.4% [47].
Awais et al. [54] measured 50% for 5% volume concen-
tration of A1203 dispersed in pure water circulated in a
uniform serpentine tube at SL/min, which makes highest
volume concentration of Al,O; more than 1 vol% dis-
persed in water-based fluids not the optimal choice to
obtain the best thermal performance in a car radiator as it
is confirmed in the result of Moghaieb et al. [52]. Going
back to Fig. 5, lower volume concentrations between 0.4
and 1% are the best choice to enhance the performance
of the car coolant system. However, some discrepancies
in the determination of the optimal nanoparticles volume

@ Springer
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100
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80 A
70 A
60 -
50 A
40 A
30 A

Power reduction %

20 A —o— AI203/Wate

10 + —e— AI203/EG

0 0.2 0.4 0.6 0.8 1
Volume concentration %

Fig.7 Effect of volume concentration on pumping power reduction

[

0.014
0.012
@ 001
£
£ 0.008 4 —o— AI203/Water
= —e— AIRO3/EG
2 0.006
[&]
2
> 0.004
0.002
0 |
T T T T T 1
0 0.2 0.4 0.6 0.8 1
Volume concentration %
Fig. 8 Effect of volume concentration on viscosity

—o— AI203/Water
2 20,000 —e— AI203/EG
g
£ 15,000
3
c
3
10,000
c
>
&
5,000 1
1K
0 — —————
0 0.2 0.4 0.6 0.8 1

Volume concentration %

Fig. 9 Effect of volume concentration on Reynolds number

concentration and the precise heat transfer enhancement
are remarked through this literature review. The range of
volume concentration above 2% is not enough investi-
gated which need more intention in further studies at the

@ Springer

aim to optimize the amount of nanoparticles dispersed
in base coolants.

Figures 7-9 are plotted using experimental data presented
in the work of Delavari et al. [29] who tested the use of
Al,O5 nanoparticles in water and ethylene glycol base fluids.
Figure 7 plots the evolution of pumping power reduction in
function of different volume concentrations. The increase
in Al,O; volume concentration up to 1% reduces the power
needed to circulate the fluid in the coolant system. In fact,
the required nanofluid flow rate is much smaller than that
needed for base fluids, which is explained by the increase
in viscosity when the nanoparticle concentration increases
as it is remarked in Fig. 8. Kole et al. [59] proved through
several experimental results that viscosity is a key factor that
influences both the convective heat transfer and the pump-
ing power. The pressure drop denoted in several experimen-
tal results found in the literature [60-63] trigs the need to
increase the pumping power in a car radiator. In addition,
dispersing nanoparticles in fluids increases the friction fac-
tor with the material of the coolant circuit [64-66], which
limits the radiator performance. Therefore, a deep incite on
the interaction between nanoparticles and materials of the
coolant circuit is needed through more careful numerical and
experimental investigations. The principal aim of these stud-
ies should be the determination of the optimum nanocoolant
and the best pipes’s surface skin. For best results, such stud-
ies need experimental setups that use a real coolant system
with a real car engine.

Figure 9 plots the decreasing effect of nanoparticles vol-
ume concentration on Reynolds number Re, which is a result
of the rise of viscosity when the nanoparticles volume con-
centration rises.

Effect of Reynolds number

It is proved in several research papers such as [67-72] that
the Reynolds number is a key parameter that influences the
heat transfer coefficient of nanofluids. Authors preferred the
turbulent flow regime at the aim to avoid sedimentation and
agglomeration of nanoparticles, which improve the perfor-
mance of a nanocoolant circuit. Chavan et al. [67] proved
that the increase in turbulence improves considerably the
heat transfer of both conventional fluids and nanofluids. Ali
et al. [68] denoted a remarkable increase in the heat transfer
coefficient by increasing the Reynolds number from 20,000
to 40,000, which proves the advantage of turbulence in
enhancement of nanofluids performances. Karimi et al. [69]
used the laminar flow regime (Re: 350-1060) in vertical and
horizontal radiators, they confirmed that Reynolds number
push up the Nusselt number and pressure drop in a nano-
coolant circuit. Akash et al. [70] used also the laminar flow
regime (Re: 300-1300), they linked the increasing effect of
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Fig. 10 a Average of heat transfer coefficient as a function of Reynolds numbers [45], b overall of heat transfer coefficient as a function of Reyn-

olds numbers on fly ash nanofluid [56]
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Fig. 11 Influence of the Reynolds number (fly ash coolant) on pump-
ing power of radiator [56]

Reynolds number with the type of nanoparticiles dispersed
in base fluids. In fact, authors confirmed that the overall heat
transfer coefficient could be slightly increased with Reynolds
number for copper and MWCNT nanofluids. However, the
values of heat transfer coefficient do not change in the case
of aluminum nanofluids, which makes some contradictions
with the results of many other researchers such as Kumar
et al. [71] who tested Al,O,/water nanofluid. In fact, in this
work, authors confirmed that the increase in the flow rate
increases considerably the heat transfer rate, which is in cor-
relation with the Reynolds number. Toh et al. [72] showed
in their work that volumetric concentration and Reynolds
number enhance the Nusselt number. The best enhancement
percentage is calculated for 0.5 vol.% of GnP and a Reynolds
number equal 2000.

145
—e— Base fluid
14.01 ——0.1vol%
1351 —— 0.2 vol%
—— 0.3 vol%
13.01 —+— 0.4 vol%
» 1251 —— 0.5 vol%

5 10 15 20 25 30 35 40 45 50 55
Temperature, °C

Fig. 12 Effect of temperature on viscosity of SiC nanofluid [44]

Figures 10 and 11 plot samples of results found in the
literature [45, 56] that clearly show the positive effect of
Reynolds number on heat transfer coefficient and the pump-
ing power needed in a car radiator.

The main downside denoted in this literature is that the
effect of Reynolds number on the heat transfer enhancement
has different percentages from an investigation to another,
which makes difficult to determine the best choice between
any two nanofluids and to find which one exhibits more heat
transfer characteristics.

Effect of the inlet temperature

The inlet temperature has an influence on the thermal
performance of a car radiator, but it is less important

@ Springer
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Fig. 13 Thermal conductivity of the nanofluid at different tempera-
tures [44]

compared to the effect of nanoparticles volume concentra-
tion and Reynolds number. In fact, if the inlet temperature
increases, the viscosity of nanofluid decreases, which is
clear in Fig. 12 plotted in the work of Li et al. [44] also
proved in the review of Zhao et al. [73]. The decrease in
viscosity helps the Brownian motion and the interaction
between nanoparticles. Several investigations proved that
the rise of temperature enhances the thermal conductivity
of the nanofluid, but at certain limit, the rise of inlet tem-
perature decreases the thermal performance of the radia-
tor. Sharma et al. [74]. proved that the increase in inlet
temperature of Al/water nanofluids enhances the thermal
conductivity of the car radiator. However, the tempera-
ture can affect the friction factor, and at a certain value,
the performance of the radiator will decrease, which is
in complete agreement with the work of Sumanth et al.
[75] who investigated the use of carboxyl graphene nano-
platelets/EG-water nanocoolant. However, in the work
of Muhamed Ali et al. [33] and Ali et al. [68], authors
remarked that the inlet temperature weakly influences the
heat transfer rate in the case of ZnO/water and MgO/water.
Samira et al. [62] noted that the increase in inlet tem-
perature helps to reduce the pressure drop in a CuO/water
coolant circuit which improves the radiator performance.
Using the same nanofluid Naraki et al. [34] proved that
the overall heat transfer coefficient decreases when the
inlet temperature increases from 50 to 80 °C. However,
the results of Li et al. [44] plotted in Fig. 13 in the case of
SiC/EG-water nanocoolant proved that by increasing the
temperature from 10 to 50 °C, the thermal conductivity
increases remarkably. In the work of Tijani et al. [76],
a numerical simulation studying the distribution of heat
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transfer across the surface of a radiator with flat tubes and
louvered fins is presented. In this investigation, authors
plotted the temperature profile, which proved that the heat
is transferred via conduction and convection to the walls
of the flat tube and to the fins.

Analyzing such literature review, it can be noticed that
it is difficult to confirm one conclusion about the effect
of temperature on the thermal conductivity of nanofluids,
which is due to a variable influence of temperature on the
thermophysical properties of nanofluids.

From the cost point of view, almost it can be noted
that the manufacturing and maintenance of the radiator
cost approximately 20 percent from the whole cost of the
car engine. Through the use of nanofluids in the radia-
tor, the performance of this key subsystem is remarka-
bly increased. However, the design of this system can be
improved to be smaller or integrating less components
needed for cooling or circulating the nanocoolant. In fact,
reducing the size or simplifying the design of the radiator
can decrease the manufacturing and also the maintenance
cost of the cooling system equipment. Compared to classic
coolant, it is not costly to adjust the pH and add surfactant
for the nanofluids to increase the heat transfer performance
of the car radiator.

The use of nanofluids in transmission oil and fuel
Nanofluids used in transmission

During the last few years, many researchers have introduced
the suspension of nanoparticles in oil-based fluids. Several
type of nanoparticles and oils have been tested looking for
the best thermal conductivity and dynamic viscosity, which
leads to a high thermal efficiency needed in lubricant appli-
cations such as car engine oil and gearbox oils.

About ten years ago, Mohammadi et al. [77] investigated
the suspension of Al,O; and CuO in engine oil. They con-
cluded that the thermal conductivity increased with the
increase in concentration. The maximum enhancement cal-
culated is 5% for alumina and 8% for copper oxide at 2% vol-
ume concentration. Similar conclusion has been remarked
in the work of Vasheghani et al. [78] who tested the suspen-
sion of alumina and aluminum nitride in engine oil. Authors
denoted that aluminum nitride engine oil nanofluid has the
maximum thermal conductivity (75.23% enhancement at
3%) especially for the smaller size of nanoparticles. The
main downside in this result is the high volume concen-
tration of nanoparticles that can lead to some problems of
performance in the engine components. Ettefaghi et al. [79]
used MWCNTs-engine oil nanofluid, which enhanced the
thermal conductivity about 27% at 0.5 vol%. Adding the
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zinc oxide with MWCNTSs, Dinesh et al. [80] remarked an
enhancement of the friction coefficient, wear resistance
added to the enhancement of the thermophysical proprie-
ties such as the flash point, viscosity and thermal conductiv-
ity. However, it is proved in the work of Rehman et al. [81]
that single carbon nanotubes (SWCNTSs) dispersed in engine
oil gives higher skin friction and Nusselt number compared
to multiwalled carbon nanotubes (MWCNTSs) which is due
to higher thermal conductivity and density. In addition, it
is reported in these researches that nanoparticles enhance
the performance of lubricant, which decreases the friction
between the engine components and leads to a reduction
in wear and material damage that increase the car engine
performance and durability. Recently, many papers [82-95]
have investigated the suspension of MWCNT, Al,O;, Fe, 05,
MgO, ZnO, Cr,AlC, MoS,-WS,, Ni-MoS, in engine and
gearbox oils. The main contributions of these papers are
reported in Table 4. Overall, authors agreed that the ther-
mal conductivity of nanolubricant is enhanced when the
temperature and volume concentration of nanoparticles
increase. Promising results have been remarked in the sus-
pension of alumina and carbon nanotube with lower volume
concentration. Especially in the reduction in friction coeffi-
cient, and the prevention of wear and damage of mechanical
components.

Analyzing this literature review, one can note that it
remains difficult to define until now the optimal value of
nanoparticles volume concentration that should be dispersed
in engine and gearbox oils. In fact, the heat transfer enhance-
ment reached good values under low and high volume con-
centrations, which is related to the type and size of nanopar-
ticles. The major factor that can help in further research is
that nanolubricant should have an optimal value of viscos-
ity that ensure the best lubricant film between components
at the aim to reduce friction, which prevent the material
wear, and damage. Noting that for a best performance of
the car engine in higher temperature and during cold starts,
a reduction in viscosity of lubricant is needed. Certainly, a
deep investigation is needed to determine the best volume
concentration of nanoparticles. In fact, researchers need to
determine the best range of viscosity (which is positively
influenced by the increase in volume concentration as seen
in Fig. 14) for the best engine performances.

Nanofluids used in fuel

Nanofluids are not widely tested in fuel addition compared
to their application in the car radiator or in engine and gear
oils. However, the addition of metal-based nanofluids in
fuel attracted the intention of many researchers. The main
purpose in their investigations is the reduction in fuel con-
sumption and gases’ emissions. The main new researches
[96-101] performed during the last few years are reported

in the last section of Table 4. Some tests on the addition
of nanoparticles in biofuels (mustard oil methyl ester [97],
AC BDD [98], Jatropha biodiesel [99], orange peel oil
biodiesel [100], honge oil methyl ester [101]) have been
reported also in this table. The main conclusions denoted
from these researches and some previous ones such as
[102—-107] are that nano-added particles reduce the engine
outflows generated by biodiesel such as NOx, SO,, CO,
CO, HCs and smoke emissions. Many nanoparticles pro-
mote more oxygen, which help the combustion process in
the engine.

For instance, during the combustion process of diesel
fuel, more hydrogen can be produced by dispersing alu-
minum nanoparticles that help the decomposition of water.
Aluminum nanofluids mixed with diesel fuel could enhance
the combustion heat and reduce smoke and nitrous oxide
from the engine emissions. Related to some type of nano-
particles, some researchers remarked a dramatic drop in
NOx and SO, emissions, and a remarkable increase in CO
emission and smoke opacity such as the work of Sarvestani
et al. [96] who tested Fe;0, nanoparticles. A new detailed
review on the effects of nano-additives on toxicity and
exhaust emissions is presented in the work of Norhafana
et al. [108].

Note that, some mechanical problems should be ana-
lyzed when using nanofluids in fuel. In fact, some mechani-
cal defects can happen in the injection system (injectors,
pump, and pipes) for example which usually have a high
maintenance cost. Corrosion problems should be also ana-
lyzed certainly in the case of use of water-based additives, a
major problem causing a material wear and damage leading
to more mechanical defects with highest maintenance cost.

Furthermore, regarding the nanofluids capability in reduc-
ing the fuel consumption and the combustion efficiency, the
cost will be considerably reduced. Certainly, less emission
rate, less NO, production and less fuel consumption are key
parameters that can be considered in the application of nano-
fuels. Capable fluids have promising attractions regarding
above-mentioned considerations.

Wear effects of nanofluids on materials of the car
coolant system

The present section reports the main contributions of few
researches found in the literature about how nanofluids
react with the radiator material, or with all the other com-
ponents of the cooling system of the car engine such as the
pump, the pipes, the engine block and the cylinder head.
In fact, few studies are related to the eventual reactions
between nanofluids and radiator’s materials. The proce-
dure used on these tests is based on the calculation of the
mass loss under different impact angles and fluid velocity.
Celata et al. [109] investigated the effects of nanofluids
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Fig. 14 Viscosity enhancement in function of nanoparticles volume concentration [89]

Fig. 15 Abrasion of the PTFE
gear: new gear (a), using TiO2
(b) and using Al,05 (¢) [109]

flow on metal (copper, stainless steel, aluminum) surfaces.
The action of several nanoparticles such as Al,O3, SiC,
TiO, and ZrO, has been analyzed. Authors remarked that
stainless steel has the best resistance to nanofluids flow;
however, the aluminum is the weakest material especially
in the case of Al,O; nanoparticles addition. From the
observation of the effects of the nanoparticles on pump
gears, it is denoted that Al,0O; nanoparticles caused the
most serious damage as it is presented in Fig. 15, while
TiO, nanoparticles remain the less effect.

Bubbico et al. [110] proved through experimental inves-
tigations using the same materials and the same nanopar-
ticles that the material damage is caused by chemical cor-
rosion rather than by mechanical erosion, which can be
solved by maintaining the pH of suspension within the
passivation range, at this time aluminum material can
resist to the nanofluid flow reactions. Aktaruzzaman [111]
has taken a measurement of the normalized Ra roughness
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Fig. 16 Effect of Al,Oj/water nanofluid on surface roughness for
3003-T3 aluminum [111]

for 3003-T3 aluminum after a several hours of treatment
with Al,O,/distilled water nanofluid (2 vol% and 10.7 m/s
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Fig.17 Views of impeller for
base coolant (a), (b) and nano- (@)
coolant (c), (d). [114]

(c)

jet speed). The result plotted in Fig. 16 marks a decrease in
the surface state caused by the action of nanofluid flow. In
fact, the normalized roughness is increased by 50% com-
pared to the action of flow without alumina nanoparticles.
A.M Mohammed [112] proved that the suspension of Cu
in a distilled water decreases the cavitation phenomenon.
Properties of nanomaterials and their effects on the ero-
sion—corrosion behavior due to the cavitation phenomenon
cause pipe wall erosion. Gandham et al. [113] conducted
a study of corrosion resistance in automotive coolant sys-
tem, measured in terms of mass loss of materials. Based
on this study, authors recommended the use of oxidized
MWCNTs in automotive systems, while silver and Al,O;
nanoparticles produce a higher wear rate than the base
fluid. Xian et al. [114] studied the erosion—corrosion of an
aluminum impeller of a water pump subjected by nanofluid
(GnP/Water-EG) flow. It was observed that nanocoolant
favors the erosion—corrosion, which increases the wear of
the impeller as denoted in Fig. 17. However, no remark-
able difference in the corrosion effect is found between
base coolant and nanocoolant.

It is very important in these types of investigations to
analyze a wide range of nanocoolant by varying the vol-
ume concentrations, the flow rate, temperature, etc., at
the aim to understand which type of nanocoolant causes
higher wear rate. It is necessary to analyze the wear of
all the coolant system components, certainly those hav-
ing the highest maintenance cost. The initiation of further
researches to assess wear and damage of materials in the

Back (b) Front

Base coolant

Back (d) Front

NG3/W-EG
Ag-TiO2/W-EG
Al203+SiICM/W-EG
TiIO2/W-EG
-MWCNT/W-EG

TIO2/W S —

GNP/W-E G 150000

SiC/VV |

Al203/W e ——

Thermal performance

Fig. 18 Classification of nanocoolant in term of thermal performance

engine bloc and cylinder heads is very important, which is
needed for better mastery of the technology of nanocool-
ant and which type leads to the best thermal performances
without damaging the principal components of a coolant
system such as the pump, the radiator, the engine bloc,
the cylinders.

Discussions

Analyzing the previous sections, it is clear that nanofluids
applied as coolant in a car radiator demonstrated better
efficiency due to their higher thermal conductivity com-
pared to conventional coolants. Nanocoolant pushed up
the performance of the radiator at higher level and opened
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ZnO-MWCNT /O il | —
TiO2-MWCNT/O il |

AROZ-MWCNT/O  m———————————————————————————————
Performance as lubricant

Fig. 19 Classification of nanofluids tested in car engine and transmis-
sion

the possibility in future to improve the design of radiators
to be smaller and lighter by integrating less components
needed for cooling or circulating the nanocoolant, which
will decrease the manufacturing and maintenance costs of
this car subsystem and leading to better fuel consuption
and gase’s emissions. Analyzing carefully the different
studies presented in Sect. 2.1, a classification of nano-
coolant is drawn in Fig. 18 in terms of order of thermal
performance. This classification is based on different com-
parisons presented in [25-76].

In the application of nanofluid in a car radiator, common
findings can be highlighted as follows:

— The thermal performance of the car radiator increases
when the nanoparticle volume concentration, Reynolds
number, the viscosity, and the inlet temperature increase.
Commonly, the overall heat transfer coefficient of the car
radiator is enhanced at higher nanoparticles concentra-
tions.

— The use of nanofluids with high thermal conductivity
gives the possibility to automotive engineers to reduce
the exchange area of the car radiator which leads to the
reduction in the fuel consumption by improving the aero-
dynamic effects of the car. By using nanocoolants, the
design of the radiator can be improved to be smaller,
lighter and integrating less components needed for cool-
ing fluids, which will reduce the manufacturing and
maintenance costs of this car subsystem.

Some limitations noted can be cited as fol-
lows:

— The use of classic method of dispersion can cause a
problem of agglomeration and oxidation induced by
metallic nanoparticles. However, the turbulent flow
regime is preferred to avoid sedimentation and agglom-
eration of nanoparticles and thus enhances the perfor-
mances

@ Springer

— The use of nanofluids as coolant causes more pressure
drop, which is explained by the increase in viscosity
which requires more pumping power and limits the radia-
tor performances.

— Some contradictory conclusions especially about the
effect of nanofluids volume fraction on pumping power
loss and the Nusselt number are encountered, which
requires further investigation at the aim to find the best
nanocoolant that can be safe used in a car radiator.

Figure 19 plots a classification of several nanofluids
tested as lubricant in a car engine or a car transmission Sys-
tem. This classification is based on the different studies pre-
sented in [77-95]. It is remarked that hybrid nanofluid gives
better performance to these system by reducing friction and
improving the heat transfer coefficient. Generally, the vis-
cosity nanolubricants should have an optimal value which
guaranties the best lubricant film between components in
order to reduce friction, which prevents the material wear
and helps the lubricant flow.

The tests of nanoparticles suspension in fuels remain few,
as said previously in Sect. 2.2.2. However, one can note that
TiO2 nanoparticle added in biofuel seems to be the best
in terms of toxic gases emissions and in terms of engine
performance enhancement. Nevertheless, some mechanical
problems should be analyzed when using nanofluids in fuel.
In fact, some mechanical defects can happen in the injection
system (injectors, pump, and pipes) for example, which usu-
ally have a high maintenance cost.

During the last few months, some findings have been
published about new nanofluid fuel. Ao et al. [115] mixed
kerosene and nano-aluminum (n-Al) particles coated with
polydopamine (PDA) at the aim to improve the stability of
combustion. Promising results have been presented proving
that n-Al/kerosene coated with PDA is the better choice in
terms of combustion stability compared to uncoated n-AL/
kerosene and other PDA-coated nanofluids. In similar inves-
tigation, Gao et al. [116] studied the combustion of n-Al/
CuO kerosene fuels coated with PDA. Suozhu et al. [117]
noted an enhancement of combustion in engines operated
with methanol mixed with CeO, nanoparticles. The NOx
and smoke emissions decreased by 70.9% and 90.3%,
respectively, compared with the diesel mode. In fact, the
environmental impact of the combustion of nanoparticles
mixed in fuel is a key parameter that needs further develop-
ment in this field.

Conclusions

The present paper reported a literature review on the use
of nanofluids in applications related to automotive during
the recent years. Applications of several nanofluids in car
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radiator, engine, transmission systems and fuel mixture are
comprehensively reviewed in the different sections. As nov-
elty, the paper highlighted new tested nanofluids with critics
of their efficiency, their wear effects on components of the
car engine, their environmental impact in terms of gases
emissions when nanoparticles are added to fuels. Based on
deep analysis of vast number of available references, a clas-
sification of nanofluids within their efficiency to enhance
the performance of these subystems is drawn. For engine
cooling system, nanofluids can be used (1) as coolant in the
car radiator. Due to the high thermal conductivity of nano-
particles, the heat transfer coefficient in the system can be
enhanced with variable percentage in function of the type
and the volume concentration. The main drawback is that
nanocoolants cause more pressure drop, which is explained
by the increase in viscosity which requires more pumping
power and limits the radiator performance, which pushed the
majority of researchers to use low nanoparticle volume con-
centrations. Some discrepancies in the determination of the
optimal value of volume fraction and the precise heat trans-
fer enhancement is remarked through this literature review.
In addition, the use of classic methods of dispersion causes
a limitation of agglomeration and oxidation impelled by
metallic nanoparticles. (2) Dispersed in engine or gearboxes
oils, several nanoparticles lead to a reduction in friction
coefficient and prevent wear and damage of the mechanical
components. Hybrid nanolubricant such as Al,0;-MWCNT/
oil presented the best performances as coolant. It is to be
noted that, further detailed studies are required to deter-
mine the optimal values of viscosity that guaranties the best
lubricant film between components. Finally, nanoparticles
mixed with fuel such as diesel, biodiesel and kerosene could
enhance the combustion heat, reduce smoke and NOx from
the engine emissions which improve the environmental
impact of fuels. Current research on nanofuels is still at its
initial steps and needs further development.
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