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Abstract

Nanofluids are considered the top candidates to replace surface cooling systems, making it essential to study the effect of
nanoparticles on thermophysical properties of the base fluid when it is added. Viscosity is a crucial factor in heat transfer,
especially convection heat transfer. In most of the studies published, the correlations obtained from experiments were
performed without examining statistical tests, and the effect of different parameters, including temperature, volume (mass)
fraction, etc., on the viscosity of nanofluid in the proposed correlations was not specified. Moreover, some correlations it
was shown that the elimination of one of the parameters had no effect on the response of that correlation. For statistical
analysis, analysis of variance and sensitivity analysis were used to determine the relationship of the correlation with its
variable parameters. The results showed that approximately 27.2% of the correlations presented for the ethylene glycol-
based nanofluid and 27.7% of the correlations presented for the water-based nanofluid are reliable. Finally, as until now, no
accurate correlation has been provided for the viscosity in a wide temperature and volume fraction range. According to the
R-square statistical index, viscosity models were obtained in this study with an accuracy of 97.01% and 96.08% for water- and
ethylene glycol-based nanofluids, regardless of the nanoparticle type. Also, the RMSE value was improved by 35.82% and
49.84% compared to the best correlation presented by the researchers for estimating the viscosity of water-based nanofluid
and ethylene glycol-based nanofluid, respectively.
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Nomenclature P Particles
T Temperature (°C or K) max Maximum
17 Concentration (%) min  Minimum
U Dynamic viscosity (mPa.s) 0 Reference value
d Diameter (nm) exp Experimental data
y Shear rate (s™1) pre  Predicted data
N Number of data w Mass concentration
0 Dimensionless temperature
a,b  Constant values
. Introduction
Subscripts

bf Base fluid

. One of the perspectives for solving conservation equations
nf Nanofluid persp & d

for nanofluids is the single-phase method. In this method,
the thermophysical properties of the nanofluid replace the

>4 R. Ghasemias] _ thermophysical properties of the base fluid [1-3]. The sin-
ghasemiasl @yahoo.co.in gle-phase model is used by some investigations [4—7]. This
D4 T. Armaghani shows the impact of thermophysical properties of the nano-

armaghani.taher @yahoo.com fluid, especially its viscosity, on heat transfer. [8—10]
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In industrial equipment and scientific research, where
heat transfer is in the forms of forced convection and natural
convection, the viscosity of nanofluids plays a crucial role in
determining the flow regime, pumping power, pressure drop,
and workability of systems [14—17].

The first viscosity model for suspensions containing metal
particles was introduced by Einstein in 1906 [18]. Later on,
viscosity models proposed by Brinkman [19], Batchelor
[20], and other equations started to be used to model the heat
transfer of nanofluids. However, these correlations each have
weaknesses, including the inability to estimate the viscosity
of nanofluids in a wide range of temperatures and concentra-
tions used in heat transfer.

In the experiments conducted by Duangthongsuk and
Wongwises [21] on the behavior of TiO, and water nano-
fluid, they presented a correlation by applying the effects
of base fluid viscosity and volume fraction variables on the
viscosity model. In their model, nanofluid’s temperatures
and volume fraction ranged between 15 to 35 °C and 0.2 to
2%, respectively.

In an experimental test performed by Esfe and Saedodin
[22] on the viscosity of ZnO nanofluid with ethylene glycol-
based fluid at a temperature between 25 and 50 °C and a
volume fraction of 0.25 to 5%, the viscosity model with the
variables of temperature and volume fraction and the viscos-
ity of the base fluid presented that the ratio of mean variation
of the model data compared to other the experimental values
was less than 2%.

Sharifpur et al. [23] also introduced a viscosity model
based on the data derived from experiments using Al,O4
and glycerin nanofluid with an accuracy of 0.9495. In their
viscosity model, in addition to the variables of temperature
and volume fraction and the viscosity of the base fluid, the
effect of the thickness of the nanoparticles is also taken into
account. It is used for nanofluids in the temperature range
of 20 to 70 °C and volume fraction of 0 to 5%, and diameter
of nanoparticles about 19 to 160 nm. But Aberoumand et al.
[24] presented a viscosity model for oil-silver nanofluid that
depends only on the variables of volume fraction and viscos-
ity of the base fluid and is valid for nanofluids at tempera-
tures between 25 and 60 °C and volume fraction of 0 to 2%.

In an experimental study performed by Akbari et al. [25]
on Si O, and ethylene glycol nanofluids in the temperature
range of 30 to 50 °C and volume fraction of 0.5 to 3%, using
temperature and volume fraction components and the vis-
cosity of the base fluid proposed a viscosity model for the
nanofluid. Li and Zuo [26] had proposed a viscosity model
for a nanofluid including TiO, nanoparticles and a mixture
of water-based fluid and ethylene glycol at a temperature
between 20 to 50 °C and a volume fraction of 0.25 to 1%.

Yu et al. [27] also proposed a new viscosity model based
on the data derived from experiments using multi-walled
carbon nanotubes [MWCNT] and water nanofluids. In their
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model, in addition to the role of temperature, mass fraction,
and base fluid viscosity, the effect of shear rate on viscosity
variations is also considered. This model is valid in a tem-
perature range of 275 to 283 Kelvin, and mass fraction range
of 0.1 to 0.6 percent, and a shear rate of 10 to 1000 s7L
According to the experiment performed by Yan et al. [28]
on a hybrid nanofluid with multi-walled carbon nanotube
[MWCNT] nanoparticles and TiO, with a base fluid of eth-
ylene glycol at 25 to 55 °C and a volume fraction of 0.05
to 1%, the viscosity model with volume fraction and non-
dimensional temperature components has been presented
with an accuracy of 0.995.

Figure 1 is plotted to know the year of publication of
the evaluated correlations in the present study. Therefore, it
can be concluded that researchers have considered the study
and presentation of models for the viscosity of nanofluids
in recent years.

Figure 2 is plotted to indicate the temperature range
at which the viscosity models are valid. The correlations
separated according to the temperature range they cover in
different temperature ranges that differ by 10 degrees. (Tem-
perature difference of less than five °C in the classification
has been neglected.)

According to Fig. 2, 21.4 and 23.2% of the temperature
range cover 30 and 40°, respectively, and only 23.2% of the
correlations in the 50° temperature range can estimate the
viscosity of the nanofluid.

Similar to the temperature diagram, the viscosity models
were separated into 1% by volume (mass) fraction intervals

Year 2014

until 2020

8.9%
Year 2009
1.8%
Year 2019
28.6%
Year 2017
7.1%
Year 2018
21.4%

Fig.1 Year of publication of evaluated correlations in articles



Statistical study and a complete overview of nanofluid viscosity correlations: a new look 7101

Fig.2 The temperature ranges
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relative to the concentration range in which they are valid,
and Fig. 3 shows that only 19.6% of the correlations can
cover the concentration range of 2 percent.

As the authors worked on the thermal conductivity of
nanofluid based on present studies and introduced a new
general model named MAG. [29] So this study must be done
about nanofluid viscosity.

In this study, the correlations presented for the viscosity
of nanofluids were wholly reviewed and investigated thor-
oughly in terms of compliance with the physics and viscos-
ity of nanofluids. In the following, the relationship between
viscosity and variables of temperature and volume (mass)
fraction of nanofluids was evaluated according to the statisti-
cal test of variance. Moreover, all the correlations presented
for nanofluid viscosity were investigated with the sensitivity
analysis test to identify the variable with the most significant
effect on the viscosity model. Finally, two general models for
water-based nanofluids and ethylene glycol were presented
to predict the viscosity behavior of nanofluids.

50 degree 40 degree  30degree 20 degree Other
range range range range temperature
ranges
Strategy
Analysis of variance

Statistics is a broad field of mathematics that studies how
data collection, summary, and conclusion are studied. Here,
the status of variables related to the viscosity of nanofluid
investigated using statistical science based on probability
theory and mathematics.

ANOVA test or analysis of variance is a subset of statis-
tical science, which analyzes and compares the means of
different statistical groups and determines the effect of inde-
pendent variables on the dependent variable. This method
has been introduced by the famous statistician and geneticist
"R. Fisher."[30]

This method tries to estimate the differences between sev-
eral statistical populations. In other words, using the mean
index in statistical populations, we will be able to express
the characteristics of the population; thus, if the mean of one
group is different from other groups in society, we conclude
that the statistical populations are not the same. In the one-
way analysis of variance, the null hypothesis indicates that

Fig.3 The concentration ranges
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the mean of the experimental groups is equal to each other.
The opposite assumption is that at least one of the means is
different from the others; if the null hypothesis is confirmed,
it will be accepted that there is no difference between the
means of the groups, and the variable has no role in the cor-
relation. Therefore, to better understand the correspondence
of variables on nanofluid viscosity, it is necessary to perform
variance analysis. [31]

Thus, by groups that will be created in terms of tempera-
ture and concentration variables for each equation and with
the help of a one-way ANOVA test, the results presented in
Table 1 are obtained.

In some of the correlations proposed by researchers due
to the lack of attention to the response power of the cor-
relation in the temperature range affecting the viscosity of
nanofluids and also because the appropriate relationship is
not used in correlations to express the relationship between
temperature and viscosity of nanofluid and the correlation
are not able to predict the nanofluid viscosity at sensitive
temperature and do not express the role and importance of
temperature variables in nanofluid viscosity models.

One of the issues that researchers had not been consid-
ered in presenting correlations is the effect of terms on the
viscosity model. For example, Dalkilica et al. [32] presented
Eq. (1) for nanofluid viscosity by experimental investigation
of the viscosity of a hybrid nanofluid containing graphene
and SiO, nanoparticles in a water-based nanofluid in the
temperature range of 15 to 60 °C and a volume fraction of
0.001 to 0.02%.

models cannot respond commensurately with the expected
concentration range in heat transfer.

By conducting experimental tests on nanofluids of Al,O;
and ethylene glycol, Li et al. [33] presented the new vis-
cosity model in compliance with the trend of temperature
variation from 25 to 60 °C and a mass fraction of 0 to 2%
in Eq. (2).

1

10.03
pop = —334.9(,;‘;044(?) n 296.8(

0.7795
1) ~6.841 (2)

T
10.03

Concentration variable in term —334.9¢% 04 ( % ) less
than 0.01% affects the nanofluid viscosity. Therefore, the
viscosity model of Li et al. does not have the expected
dependence on the concentration variable.

By evaluating the correlations presented for nanofluid
viscosity, the situation of temperature and volume (mass)
fraction variables in the correlations is determined. The
results showed if there is a significant relationship between
variables and nanofluid viscosity.

Therefore, it is necessary to consider the effects of vari-
ables on the viscosity models of nanofluids in the tempera-
ture range and volume (mass) fraction of heat transfer.

Physical analysis of correlations
Viscosity models at different dimensions in this part of the

research are studied. First, the structure of the proposed
correlations to calculate the viscosity has been examined

—0.028935

P
g = [ 100527 x (TO0003) 5 (1 4 ¢9)*3026% ¢ | 28

Py, sio,

Myt (D

In the case, where ¢ =1 and other components are a con-
stant value, if the lower and upper-temperature limits are set
in Eq. (1), the range of viscosity changes will be less than
0.04%. Therefore, Eq. (1) is not dependent on temperature,
but the researcher had given in the equation, and this is not
considered significant by the researcher.

In addition to the temperature variable, the concentration
variable also has an undeniable role in the viscosity models
of nanofluids. So that with increasing the concentration of
nanofluid, the viscosity of nanofluid increases significantly;
therefore, in most viscosity models, the prominent role of the
concentration variable was considered by researchers. How-
ever, in some correlations recently published by researchers,
the correlations have been measured in the range of inappro-
priate volume (mass) fractions and only at low concentra-
tions. On the other hands, due to the use of irrational rela-
tionships to express the relationship between the viscosity of
nanofluid and the concentration of nanoparticles, viscosity

@ Springer

and then evaluated for analyzing complex, heterogeneous,
or ambiguous components. Meanwhile, in another section,
based on the experimental studies of researchers in the tem-
perature range and volume (mass) fraction, the data extracted
from the correlations are evaluated. Also, the accuracy of the
experimental model for the case where the concentration
of nanofluid is considered zero with the viscosity of base
fluid has been investigated. Finally, the correlations have
been measured in terms of the laws governing the physics
of nanofluids and the changes due to an increase or decrease
in temperature and concentration of nanofluids.

According to Table 1 of the Term section, in most of the
experimental relations studied for calculating viscosity, it is
observed that mathematical expressions and terms do not
interfere with the calculation of the viscosity of nanofluids.
Thus, these expressions have only caused the complexity and
inefficiency of empirical relations, which increases the pos-
sibility of errors in the viscosity calculations of nanofluids.
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Given the above, Alarifi et al. [34] studied the viscosity
of hybrid nanofluids, which are composed of a mixture of
MWCNT and TiO, nanoparticles in oil, and they presented
a new model by Eq. (3) for the viscosity of the nanofluid by
examining the effects of temperature and concentration on
the viscosity of the nanofluid. According to the equation, a
trigonometric ratio has been used to express the relationship
between concentration and viscosity. Therefore, a dispro-
portionate function in relationships is not necessary and can
only cause problems in calculations.

2e*

=2036T+ — 26
Hnt 168+ T—(1.680)

— 448.8 — tan((1.68¢) — 1.68)
3

Based on an experimental test on the viscosity behav-
ior of SiO, nanoparticles dispersed in a mixture of water
and ethylene glycol, Ruhani et al.[35] proposed a viscosity
model in Eq. (4), valid in the temperature range of 25 to
50 °C and a volume fraction of 0.1 to 1.5%. The temperature
variable in the viscosity model is both in the position of the
power function and is powered by the exponential function
in terms of position. Therefore, using such functions one
after the other is not justified and causes the calculations to
be complex.

60

® Experimental data [28]
— =3 — Proposed model [Eq. 6] /

—— Yan[28]

(o)) (6]
o o

N
o

@ W
o a1

N
(6]

N
o
I RN EE R RS REEE EEEE EEEEE RS EEEEE EEEN

Dynamic viscosity/m~'Pa.s™

10 a1 TR T T N 1
0 0.2 0.4 0.6 0.8 1

Volume fraction/%

Fig.4 Comparison of the results of Yan et al.'s correlation [28] and
the currently proposed correlation with experimental data

Hog = [2.030 — (931.616 x "% x 5.4597 x T345*) —exp (—0.0028 x ¢>'*?! x T1'°133)2] Hig 4

Yan et al. [28] have presented Eq. (5) for the hybrid nano-
fluid of MWCNT and TiO, in ethylene glycol in the tempera-
ture range of 25 to 55 °C and at the volume fraction between
0.05 and 1%;

tye = [0.90463 + 280.20104¢ + 0.257346 + 368.052390¢
—28643.68399¢> — 0.0120516° — 1968.73612¢%6

—235.047296% ¢ + 2.09629 x 10°¢p* — 0.0996946°] ¢
&)
Equation (5) has many terms that entering the equation
for subsequent heat transfer calculations may be associated
with many errors. On the other hands, by reducing the terms
of the equation with increasing the accuracy, the equation
becomes easier to use. Therefore, Eq. (5) can be presented
more simply as Eq. (6).

Hye = (0.0029741 + ' 0782) 5 (T712573) x 311157 (6)

Equation (6) has been obtained by the nonlinear regres-
sion method from experimental data of Yan et al. [28] for
hybrid nanofluid viscosity.

According to Fig. 4, the proposed model in Eq. (6), while
having higher accuracy than Eq. (5), has a simpler form
compared to Eq. (5). Figure (4) plotted at a volume fraction
of 0 to 1% and a temperature of 30 °C for nanofluids.

Hop = ay +ayT +az0 + a4T2 +asTo+ a6¢2 + a7T3 + agTqu + agT(p2

3 3 2 2 3 4
+ape’ +anT @ +apT ¢ +aTe” +ayue

@)

Huminic et al. [36] proposed Eq. (7) for La,0; and water
nanofluids in the temperature range of 293 to 323 K and a
volume fraction between 0 and 0.03%.

According to Eq. (7), there are many components in the
correlation that are similar to Eq. (5), and the experimental
data provided by Huminic et al. are used, and Eq. (8) is
presented as follows.

x 1.5773

®)

According to Fig. 5, Eq. (8), simplicity has accuracy more
than 2% more than Eq. (7).

A closer look reveals similar cases in which researchers
try to present complex correlations; however, using the same
experimental data, simple and sometimes linear equations
can be given with much higher accuracy than the desired
equations, so Eqgs. (6) and (8) can replace Egs. (5) and (7).

While the models proposed for nanofluid viscosity by
Esfe et al. [37, 38] presented in Eq. (9) and (10), there are
several terms in the viscosity model; therefore, the presence

T )—0.636006

— (0.458474 + ¢ 10104 (_
Mg (O 58474 + ¢ )X 73
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Fig.5 Comparison of the results of Huminic et al.'s [36] correlation
and the proposed correlation with experimental data

of multiple terms in the equations is not necessary and
makes the equations more complex, and these multiple
components in viscosity calculation will lead to increased
computational error.

concentration independently and directly affect the nanofluid
viscosity, so that with increasing temperature, the viscosity
of nanofluid decreases, and by adding nanoparticles to the
base fluid, the viscosity of nanofluid increases. Therefore,
at this stage, the variation trend of viscosity values at differ-
ent temperatures and concentrations according to the physi-
cal laws governing nanofluid viscosity is investigated. The
results of this analysis are presented in Table 1 of the Trend
section.

According to the presented issue, in the viscosity model
proposed by Esfe and Esfandeh [39] for the viscosity of
nanofluids, including oil and hybrid particles, the variation
trend of viscosity values with increasing concentration is
contrary to the physical laws governing nanofluid viscosity.

Table 1 exhibits the correlations presented for nanofluid
viscosity by various researchers from 2009 to 2020, along
with statistical analysis and physical analysis. Statistical
analysis of ANOVA test was performed, and terms related
to physical examination [Data, Term, Trend] entirely have
been presented for each experimental equation.

In addition, the validity range of the equations and the
overall conclusion have been presented by the correlation
evaluation.

po = 679.7806 + 259.62463¢ — 33.64131T — 0.0453937 — 6.0695 X T
—0.00031841¢y + 0.00129007Tj — 236.23287¢* + 0.65796T* + 2.31776E — 065
+1.55167¢*T + 0.049085¢T? — 9.63258E — 8T7% + 94.57115¢°

—0.00515867° + 0.00000000017>

C))

Hy = 688.46 + 347.09¢ — 33.12T — 0.047 — 7.36¢T — 0.0087¢7 + 0.0014Ty
—305.24¢° + 0.61T7 + 1.49 x 107°7% + 0.0001 9Ty + 0.46¢°T + 0.0014¢*y
+0.065¢T* + 1.87 x 107 7% — 7.25 x 10772y — 7.33 x 1078T% + 169.62¢°

—0.004373 + 0.0000000001 17>

(10)

In the continuation of reviewing the results and data
extracted from viscosity models, it has been observed that
sometimes the equations at zero concentration and in a cer-
tain range of temperature and concentration have an unusual
response. The results of this analysis are presented in Table 1
of the Data section.

For example, Huminic et al. [36] presented the viscosity
model for La,O; and water nanofluids in the temperature
range of 293-323 K and at a volume fraction between 0 and
0.03 contrary to the researcher claims, the correlation is not
able to respond at zero concentration.

Finally, according to studies by researchers on the vis-
cous behavior of nanofluids, variables of temperature and

@ Springer

Sensitivity analysis with Monte Carlo test

The sensitivity analysis method has been used to continue
the statistical study process of relationships and know the
position of variables in correlations. According to the gen-
eral definition in statistics, sensitivity analysis is the study of
the effectiveness of output variables from a set of assumed
input variables in a statistical model.

As a result, the researcher can determine how changes
in a component affect the model's output. Therefore, in the
continuation of the statistical study article, the sensitivity
analysis will give a deeper look at viscosity models with the
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Fig.6 Result of sensitivity
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variables of base fluid viscosity, temperature, and concen-
tration. [80]

Therefore, to obtain a complete conclusion about the per-
formance of viscosity models and the effectiveness of vari-
ables, only the correlations in which the variables have the
expected dependence on the viscosity equations in terms of
variance test are examined.

In the present study, to analyze viscosity models, also a
method known as the Monte Carlo test is used.

Variables with little effect and little change on the equa-
tions are displayed as flat lines in the graph. So the more
curved lines show the more dependence of the variable on
the equation.

Li and Zou [26] introduced the viscosity model of
Eq. (11) for nanofluids consisting of Al,O; nanoparticles
and water-based nanofluid, and Saeedi et al. [55] proposed
the viscosity model of Eq. (12) for Ce O, nanoparticles dis-
persed in ethylene glycol.

0.05776
T-0.7819 5 (9=0.04009

g = 781.4 X T—2.ll7 X (p0.2722 +

—20%

+0.511 x ¢* — 0.1779 x ¢°

-10% 5% 0% 5% 10% 20% 30% 50%
% Change of Input Standard Deviation

Uyt = 0.838(p0'188 T0.089ﬂll).fl (12)

The test results in Figs. 6 and 7 show that the curvature
of the green line is greater than that of the blue and purple
lines, and the presence of the variable of the viscosity of the
base fluid in correlation is more important than other vari-
ables. In addition, concentration and temperature, respec-
tively, have an influential role in the equations.

Equation (13) presents Nabil et al. [62] viscosity model
for the hybrid nanofluid of TiO, and SiO, in a mixture of
water and ethylene glycol.

Q@ 1.59 T 0.31
Hop = [37<0'1+ﬁ) (0.1+%) ]ﬂbf (13)

In Fig. 8, the green line has higher curvature than the
blue and purple lines. Therefore, the sensitivity analysis
results showed that the variables of base fluid viscosity,

Hot an
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Fig.8 Result of sensitivity 0.25
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Fig. 9 Result of sensitivity
analysis on the correlation
proposed by Esfe et al. [48]. 0.6
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concentration, and temperature significantly affect Eq. (13),
respectively.

The variables of base fluid viscosity, temperature, and
concentration are available in the above viscosity equations.
The variable of base fluid viscosity applies the value of the
base fluid viscosity in proportion to the reference tempera-
ture in the viscosity model. Therefore, the dependence of the
viscosity equations on the viscosity variable of the base fluid
expresses the relationship of the equations on temperature.
On the other hands, the sensitivity analysis results show that
the variable of the base fluid viscosity has a more contri-
bution in estimating the viscosity of nanofluid than other

-20%

0.175 M

-5% 0% 5% 20% 30% 50%

% Change of Input Standard Deviation

-10% 10%

-10% -5% 0% 5% 10% 20% 30% 50%

% Change of Input Standard Deviation

variables. Therefore, considering the mentioned conditions,
it is concluded that the temperature factor indirectly has a
more significant effect on viscosity equations than other
variables.

Esfe et al. [48] have presented Eq. (14) for the viscosity
of hybrid nanoparticles of MWCNT and Ti O, in a mixture
of water-based nanofluid and ethylene glycol;

o = 6.35 4 2.56¢ — 0.24T — 0.068¢T + 0.905¢> + 0.00277°

(14)

According to the sensitivity analysis results presented in

Fig. 9, the effect of the temperature is greater than the con-

centration in the equation because the curvature of the green
line is more significant.

pi = 688.46 + 347.09¢ — 33.12T — 0.047 — 7.369T — 0.0087 ¢y + 0.0014Ty

—305.24¢% + 0.617% + 1.49 x 107%7% 4+ 0.0001 Ty + 0.469*T + 0.0014¢*7

as)

+0.065¢T* 4+ 1.87 x 107 7% = 7.25 x 10772y — 7.33 x 1078T7% + 169.62¢°

—0.004373 + 0.000000000117°
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Esfe et al. [38] presented the nanofluid viscosity model
for the MWCNT and Al,O; hybrid nanoparticles dispersed
in oil in Eq. (15).

The sensitivity analysis results in Fig. 10 showed that
the green line has higher curvature than the purple and blue
lines, so the effect of the temperature is greater than the
concentration in the equation.

According to the results and the role of temperature and
concentration in Eq. (15), the shear rate of nanofluid is also
effective in calculating the viscosity of nanofluid.

The results of sensitivity analysis of the previous two
equations show that when the variable of base fluid viscosity
is not present in the viscosity equations, conditions are cre-
ated that the effect of temperature factor is directly applied
in the viscosity equations, and thus, the temperature variable
has a more influential role than other variables.

Equation (16) presents Li et al. [79] model for the viscos-
ity of SiC and water nanofluids.

-20%

-10% 5% 0% 5% 10% 20% 30% 50%
% Change of Input Standard Deviation

Hop = [1.07879 +0.45546¢ + 0.4051¢* — 0.2871(p3] Hyg
(16)

Based on the sensitivity test results in Fig. 11 and given
the curvature of the green line, the viscosity of base fluid
has a higher contribution to the concentration variable in
calculating the viscosity of the nanofluid.

There is a base fluid viscosity variable 4, . in most of
the correlations reviewed here and in the known nanofluid
viscosity models, and this factor determines the viscosity
value of the base fluid relative to the reference temperature
in the viscosity models, so the effects of temperature through
the base fluid viscosity variable are considered in viscos-
ity models. Therefore, the high dependence of the viscosity
models on the variable of base fluid viscosity is due to the
dependence of the viscosity models on temperature.

It is concluded that the effects of temperature are not
directly considered in the correlations, and the Hpp COM-
ponent is not an independent variable, which can cause
problems.
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Table 2 Status of statistical and physical analysis of all equations of
Table 1

Table 3 Status of evaluation of viscosity equations based on water-
based nanofluid

Viscosity correlations of ~ Acceptable (reliable)/% Rejected
nanofluids (unreliable)/%

Viscosity correlations of ~ Acceptable (reliable)/% Rejected
water-based nanofluid (unreliable)/%

Statistically status 53.6 46.4
Physical examination 73.2 26.8
Total status 35.7 64.3

Statistically status 38.9 61.1
Physical examination 83.3 16.7
Total status 27.7 72.3

According to the issues mentioned above and based on
the sensitivity analysis results performed on viscosity mod-
els, the temperature factor plays a decisive role in viscosity
models. Therefore, the results show the inherent dependence
of nanofluid viscosity on temperature.

Overall analysis of empirical correlations

Table 1 is statistically and physically examined the predic-
tion correlations of nanofluid viscosity. In the statistical
study, variance analysis for temperature and volume (mass)
fraction of nanofluid has been performed, and the results
have been presented in the column related to the statisti-
cal study. In addition, in physical examination, three factors
of Data, Term, and Trend have been considered. The Data
column in Table 1 examines the experimental correlations'
ability to respond at zero concentration to reach the value
of the base fluid viscosity. In the Term column of Table 1,
the results have been mentioned regarding the existence of
numerous and irrational terms for estimating the viscosity
of the mentioned experimental correlations. The compliance
and the role of the variables introduced in the empirical cor-
relations presented in Table 1 relative to the physics govern-
ing the viscosity of the nanofluid are evaluated in the Trend
column of Table 1.

In evaluating viscosity relationships, it was observed
that there are relationships that have good conditions in the
physical examination but are not statistically similar. Also,
reverse conditions for equations are possible. Therefore, it
was decided to report the relationships with good status in
two physical and statistical states in the total section.

By examining all the correlations in Table 1 and their
statistical analysis and examining the physical performance
of the correlations and the validity of each equation, it can be
concluded that 53.6% of the equations are statistically valid.
Also, 73.2% of the equations have accuracy and simplicity
in terms of performance; in total, 35.7% of the equations in
both physical and statistical states have an acceptable condi-
tion (Table 2).

The results of the evaluation of the experimental corre-
lations presented in Table 1 for nanofluids based on water
and ethylene glycol, which are widely used in the field of

@ Springer

Table 4 Status of evaluation of viscosity equations based on ethylene
glycol-based nanofluid

Viscosity correlations of ~ Acceptable (reliable)/% Rejected

EG-based nanofluid (unreliable)/%
Statistically status 54.5 45.5
Physical examination 54.5 45.5
Total status 27.2 72.8

research, have been developed. Accordingly, in a compre-
hensive study on the correlations of Table 1 for water-based
nanofluids, it is statistically and physically determined that
statistically, 38.9% of the correlations are acceptable, 83.3%
are physically reliable correlations, and a total of 27.7% of
the correlations are acceptable. The results of this study are
presented in Table 3.

Suppose the examination for water-based nanofluid is
performed again for ethylene glycol-based nanofluids, as
shown in Table 4. In that case, 54.5% of the correlations are
statistically acceptable, 54.5% are physically reliable, and a
total of 27.2% of the ethylene glycol-based nanofluid equa-
tions in both physical and statistical states had an acceptable
condition.

Thus, the statistically and physically acceptable correla-
tions for the water- and ethylene glycol-based nanofluid are
presented in Tables 5 and 6.

Proposing a viscosity model and its
validation

Preliminary analysis

By studying the correlations proposed by the researchers, the
relationship of variables with the viscosity of nanofluid was
determined. Therefore, it was confirmed by the analysis of
variance that temperature and concentration variables play
a decisive role in the relationship between the viscosity of
nanofluids. In addition, the results of the statistical tools of
sensitivity analysis showed that the viscosity of nanofluid is
directly dependent on the temperature factor.
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Table 5 Acceptable correlations for the viscosity of water-based nanofluid

No  Author Correlation

Material Nanoparticle (Base fluid)

1 Duangthongsuk and Wong-
wises [21]
2 Moldoveanu et al. [53]

Hyp = [(“1 tap+ 03<P2)]Hbf

ALO; e = [4135¢ — 91.72¢ + 2.06] p

TiO, (water)

Al,03, SiO, Hybrid Separately (Water)

Si0, : pye = [—769(p2 +42¢ + l.l]ybf

3 Moldoveanu et al. [54]

ALO; e = [0.6152¢° — 1.5449¢ + 2.3792]

Al, O3, TiO, Hybrid Separately (Water)

TiO, © py = [0.2302¢% — 0.3202¢ + 1.5056] st

Toghraie et al. [68]
5 Dalkilic et al. 2016

My = [1.01 + (0.007165T117191:39) x exp(—0.00719T )]
o = 1.16864,5 + 1.3764 x 1074 — 1.8027 x 1074

Fe;0, (water)
Graphite (Water)

Table 6 Acceptable correlations for the viscosity of ethylene glycol-based nanofluid

No author Correlation Material Nanoparti-
cle (Base Fluid)
1 Saeedi etal. [55] e = [781.4 X T-2117 5 02722 4 T’0-7g£>5<’;7’?)-“4009 +0.511 X @ —0.1779 x @3]ﬂbf CeO; g,
2 Adioetal. [73] T d, T 4\ \? ) \2 MgO (EG)
o= |1+ ot an(E Jora(Jorar( Jora((3)e) +as((F)o) fi

3 Lietal [79] Hyr = [1.07879 + 0.45546¢ + 0.4051¢? — 0.2871¢°| g SiC (EG)
Fig. 12 Three-dimensional
representation of the viscosity
dispersion of nanofluids with
water-based nanofluid. [21, 43,
64,78, 81-84] Dynamic viscosity/mPa.s 60 °C
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Given that the volume fraction variable of nanoparticles
affects nanofluid's viscosity, and the rate of viscosity changes
relative to the volume fraction of nanoparticles depends on
the type of the base fluid.

On the other hands, it is crucial for the viscosity of the
nanofluid with water-based nanofluid and ethylene glycol,
which does not have limited use in terms of temperature,
volume fraction, and especially particle material. Therefore,

in the present study, two models with very high accuracy
for nanofluids with water-based nanofluid in a wide range
of volume fractions and temperature have been presented,
and this important has been done for ethylene glycol-based
nanofluid.

Evaluating the experimental studies on the viscosity of
nanofluids in proportion to temperature and concentration,
approximately the physical conditions of more than 1200
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Fig. 13 Three-dimensional
representation of the viscosity
dispersion of nanofluids with

ethylene glycol-based nanofluid. Dynarmic viscosity/mPas
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experimental data were examined, and dispersed viscosity
values were observed for the experimental data under the
same physical conditions. Therefore, to increase the accu-
racy of the proposed correlation, a group of articles has
been removed, and articles with appropriate and central-
ized experimental data have been selected to provide the
correlation.

Figure 12 is plotted in terms of temperature and volume
fraction of the water-based nanofluid to know the physical
condition of the experimental data used. [21, 43, 64, 78,
81-84]

Figure 12 shows that the congestion of experimental data
for the viscosity of water-based nanofluid at concentrations
less than 1%, and the temperature range of 30 to 40 °C is
higher.

Also, the dispersion of experimental data to present the
viscosity model is shown in Fig. 13 in terms of temperature
and volume fraction of ethylene glycol-based nanofluid. [55,
85-88]

Also, according to Fig. 13, at low concentrations and the
temperature range of 30 to 50 °C, the viscosity of ethylene
glycol-based nanofluid has higher congestion.

Proposed correlation

Experimental viscosity correlations proposed by previous
researchers cover a limited temperature range and volume
fraction. Most experimental correlations proposed for nano-
fluid viscosity are unable to estimate the base fluid viscosity.
On the other hands, in the analysis of variance, it was found
that most of the mentioned correlations do not depend on the
independent variables of those correlations. The sensitivity
analysis results also showed that the factor of temperature
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directly affects the viscosity of nanofluid, and the variable of
temperature has a more significant contribution in estimat-
ing the viscosity of nanofluid than other variables. In such
conditions, to eliminate these shortcomings, a model has
been presented for estimating the viscosity of water- and
ethylene glycol-based nanofluid entitled BAG, Barkhordar-
Armaghani-Ghasemiasl. The summary of the statistical
and physical study of the BAG model is given in Table 7.
According to the variance analysis, the temperature variable
and the volume fraction have the appropriate P Values for
the BAG model.

The results of estimating the viscosity of water- and eth-
ylene glycol-based nanofluid based on the BAG model in
Table 7 compared to the experimental data in Figs. 12 and
13 based on R? of water-based nanofluid are 97.01% and for
ethylene glycol-based nanofluid are 96.08%.

Evaluation of BAG viscosity model

For assessing the validity of the accuracy of the presented
correlations, it is necessary to compare the obtained results
with the conventional and selected correlations. For this
purpose, some conventional correlations in articles are
introduced as follows. Einstein [1] was the first to introduce
a microfluidic viscosity model for suspensions containing
metal particles in 1906. This correlation applies to the vis-
cosity of microfluid with spherical particles at a volume
fraction of less than 5%. This model is given in Eq. (17).

Hoe = (1 + 2.5¢0) s a7

Brinkman [19] proposed a new model in 1952 accord-
ing to Einstein’s model. This correlation is suitable for
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Table 7 BAG models for nanofluids viscosity

No. Sym- Base  Correlation Range of temperature concentration  Analysis Atatus
bol  fluid
ANOVA [Variances] Data  Statisti- Physical
cal
P Value P Value  Term
For T For ¢
Trend
1  BAG Water _ @ \33616 T \ 0701322\ 0.000 0.000 v Accept- Reliable
: g = 1.89841+<m> x —0.27265~(@> ey
T\ 0213772 @ \165192
L 248161 - (=2-)
+(a0) +0.2481601 - (553
v
v
2  BAG Ethyl- _ 0.81593 T \ 110622 0.000 0.000 v Accept- Reliable
I ene = (085614 + (25 x (6.30106 - () o
gl)l" ~0.23249 @ 024584
co. -
& (&)
v
v

suspensions with a volume fraction of less than 4%. This
correlation is given in Eq. (18), used in most studies by
researchers.

1
Hnr = <m>ﬂbf

In 1977, Batchelor [20] proposed a viscosity model for
single-phase suspensions based on the Brownian motion of
particles. Moreover, Eq. (19) is derived according to the
Einstein equation and the existence of spherical particles.

18)

tor = (14250 +6.20%) (19)

In recent studies, Wang et al. [89] performed experiments
on Al,O; nanofluids separately for water and ethylene gly-
col-based nanofluid. Equations (20) and (21) are obtained
for water-based Al,O; nanofluid and ethylene glycol-based
Al,05 nanofluid.

tor = (14730 + 12307 ) (20)

por = (1 +4.60 + 6.70%) iy 21)

In another study, Chen et al. [90] presented Eq. (22) for
nanofluid viscosity. This correlation has been used in numer-
ous previous articles.
fog = (14 10.6¢ + (10.690)%) pay (22)

Ho et al. [91] then performed an experimental experiment
based on convection heat transfer and examined the variation

trend of viscosity with increasing nanofluid concentration
and presented Eq. (23).

por = (1 +4.93¢ +222.40° ) pyy (23)

Then, the results of estimating the viscosity of water-
based nanofluid based on the BAG I model in row 1 of
Table 7 have been evaluated with the conventional and
selected correlations in Eqs. (17) to (23) according to the
experimental data in Fig. 12.

In Fig. 14, parts a and b, the results for the nanofluid vis-
cosity have been plotted at the temperature of 20 and 50 °C
and a variable volume fractions of 0 to 3%, respectively. In
the results, where scattered data are available, the values
estimated by the BAG I model are more accurate than the
points where the data are most concentrated.

Given that the present study uses a variety of experimen-
tal data, the experimental data used in this study have been
extracted from several sources; also, the existence of data
scatter in constant physical conditions seems reasonable.
Therefore, in such cases, it is expected that BAG models
can predict the values in which the data are more focused.

According to Fig. 14, parts c and d, the results for the
nanofluid viscosity have been plotted at volume fractions of
0.1 and 1% and a variable temperature of 20-60 °C, respec-
tively. The results indicated the BAG I model accurately
predicts nanofluid viscosity according to the trend of tem-
perature changes.

In another analysis, the BAG I model with the accept-
able correlations in Table 1 for water-based nanofluid has
been examined based on the experimental data in Fig. 12.
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Fig. 14 Comparison of BAG I model with conventional correlations in Egs. (17) to (23)

However, the accuracy range of the acceptable correlations
in Table 1 is not the same as the range of experimental data
in Fig. 12, but to quantitatively express the estimation of the
considered correlations relative to the BAG I model, which
can estimate over a wide range of temperature 5-60 °C and
volume fraction 0-3%. The results in the same physical con-
ditions in Fig. 14 is also shown in Fig. 15; as can be seen,
the results obtained from the BAG I model relative to the
acceptable correlations in Table 1 are in good agreement
with the experimental data.

RMSE measures the error rate of two datasets. This
parameter compares the predicted values and the experi-
ment's values with each other, and the lower value leads to

@ Springer

the lower error of the model. Thus, RMSE is an appropriate
tool to compare correlations.

Based on Eqs. 24 and 25, to determine the error of the
equations in predicting the experimental viscosity values,
the "root mean square error,”" or RMSE index, has been used.
Also, the accuracy of the equations in estimating the experi-
mental viscosity values is expressed by the R-squared index.

Table 8 shows the RMSE values obtained for the conven-
tional correlations and acceptable correlations in Table 1 and
the BAG I model on the experimental points for estimating
the viscosity of the water-based nanofluid.
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Fig. 15 A comparison of the BAG I model with acceptable correlations appeared in Table 1

Table 8 The RMSE value of the BAG I model compared to other cor-

relations for water-based nanofluids

Equations RMSE

Einstien [18] 0.083422758
Batchelor [20] 0.083058883
Wang [89] 0.066209608
Chen [90] 0.062280061
Ho [91] 0.069636179
Duangthongsuk [21] 0.060700168

Moldoveanu [53]
Dalkilic [78]
BAG 1

0.173518889
0. 081515186
0.038959537

(24)

2
RMSE = \/Zi\;l ('“pre - MCXp)
N

Zi'il (”pre - '“CXp)

2?;1 (”pre - pr)

Findings based on the RMSE value indicate that the BAG
I model has a 35.82% lower performance error than the best
correlation presented by the researchers to estimate the vis-
cosity of water-based nanofluids.

R*=1-

(25)
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Fig. 16 The value of R? in the

94.86
BAG I model compared to other
correlations for water-based
nanofluids
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In addition, the diagram of the results of the R? coef-
ficient for the conventional and acceptable correlations of
Table 1 and the BAG I model is presented in Fig. 16. Besides
the reasonable accuracy of other correlations in estimating
nanofluid viscosity, the BAG I model has higher accuracy
than other correlations in estimating nanofluid viscosity
according to the trend of nanofluid viscosity changes.

In most studies on the viscosity of nanofluids, especially
the conventional correlations, the correlations cannot predict
the viscosity of nanofluids with the ethylene glycol-based
nanofluid. One of the reasons for the weakness of these cor-
relations is the high concentration of ethylene glycol-based
nanofluid viscosity relative to water. On the other hands,
usual correlations have been optimized for the viscosity of
low concentration nanofluids. Therefore, conventional cor-
relations do not respond proportionally to the nanofluid's
viscosity with the ethylene glycol-based nanofluid. With
these interpretations, the BAG II model for the viscosity for
the nanofluids with ethylene glycol-based nanofluid has high
accuracy for estimating viscosity.

Then, the results of estimating the viscosity of ethylene
glycol-based nanofluid based on the BAG II model in row
1 of Table 7 have been evaluated with the conventional and
selected correlations in Eqs. (17) to (23) according to the
experimental data in Fig. 13.

In Fig. 17, parts a and b, the viscosity of the nanofluid is,
respectively, at 30 and 50 °C and the variable concentration.
In sections ¢ and d, the results for the nanofluid viscosity
have been plotted at volume fractions of 0.2 and 0.8% and
variable temperature, respectively.

As expected, because the conventional correlations for
the viscosity of nanofluids with the water-based nanofluid

@ Springer
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have been optimized, they cannot estimate the viscosity of
nanofluids with ethylene glycol-based nanofluid. Consider-
ing the experimental data, the viscosity values predicted by
the BAG II relation are much more accurate than the con-
ventional relations.

In another analysis, the BAG II model with the acceptable
correlations in Table 1 for ethylene glycol-based nanoflu-
ids has been investigated based on the experimental data
in Fig. 13.

However, the accuracy range of the acceptable correla-
tions in Table 1 is not the same as the range of experimental
data in Fig. 13, but to quantitatively present the estimation
of the considered correlations relative to the BAG II model,
which can estimate in a wide range of temperature 20 to
60 °C and volume fraction 0 to 2%. Also, the results are
presented in Fig. 18.

According to parts a and b of Fig. 18, at the volume frac-
tion range of 1-2% and temperatures of 30 and 50 °C, the
BAG II model is significantly more accurately predicted than
the other correlations.

Also, in Fig. 18, parts ¢ and d, at volume fractions of
0.2 and 0.8% and in the temperature range of 20-60 °C, the
BAG II model has mainly provided better results than other
correlations.

Table 9 shows the RMSE values obtained for the conven-
tional correlations and acceptable correlations in Table 1 and
the BAG II model on the experimental points for estimating
the viscosity of the ethylene glycol-based nanofluid.

Findings based on the RMSE value indicate that the BAG
II model has a 49.84% lower performance error than the
best correlation presented by the researchers to estimate the
viscosity of ethylene glycol-based nanofluids.
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Fig. 17 Comparison of BAG I model with conventional correlations in Egs. (17) to (23)

To know the accuracy of the BAG II model for ethyl-
ene glycol in terms of R? coefficient, Fig. 19 is plotted. The
results show that the accuracy of the BAG II model is sig-
nificantly higher than other correlations.

The base fluid viscosity parameter 4, is available in most
of the correlations presented in Table 1 and the conventional
correlations for calculating nanofluid viscosity. In this case,
the viscosity of the base fluid plays the role of the variable
temperature of the base fluid in addition to its role in the cal-
culations so that the viscosity of the base fluid changes with
the change of temperature. Therefore, the viscosity of the

base fluid must also show the effect of temperature. Thus, by
assuming the nanofluid type to be constant with temperature
change, the base fluid viscosity in the nanofluid viscosity
estimation correlation changes. On the other hands, in the
nanofluid viscosity estimation correlations, the nanofluid
temperature factor is not directly present in the above cor-
relations. Therefore, these correlations alone are not able to
estimate the nanofluid viscosity. Thus, when the nanofluid
temperature is variable, the mentioned correlations increase
the error probability in the calculations.
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Fig. 18 A comparison of the BAG II model with acceptable correlations appeared in Table 1

Table9 The RMSE value of

Equations RMSE

the BAG II model compared to

other correlations for ethylene Einstien [18] 526808813

glycol-based nanoffuid Batchelor [20]  5.261787151
Wang [89] 5.101411188
Chen [90] 4.665411049
Ho [91] 4.860567618
Saeedi [55] 2.08799302
Adio [73] 4.863051208
Li [79] 2.63545833
BAG 11 1.047228701
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Fig. 19 The value of R? in the BAG II model compared to other cor-
relations for ethylene glycol-based nanofluid



Statistical study and a complete overview of nanofluid viscosity correlations: a new look 7129

(@

1.6

[ ] Experimental data [21,84]

— =3~ — BAG | Water

o - -
o] - n N
I I

Dynamic viscosity/m~'Pa.s"
/

[=]
o
I
@
/

o
IS
1

0.2 S N e | 1 | e 1 I
15 20 25 30 3 40 45 50 55 60
Temperature/ °C

(b)

35

® Experimental data [21,84]

| =—=f—-— BAGI
30 -

- nN N
(6] o [6)]
O

Dynamic viscosity/m~1Pa.s™1
)
/

—_—T
/

(&)1
1

o Db v b b
20 25 30 35 40 45 50 55 60
Temperature/ °C

Fig.20 Estimation of water- and ethylene glycol-based nanofluid viscosity using the BAG model

Also, while solving numerical problems of heat trans-
fer due to temperature changes in the problem, it is some-
times impossible to change the base fluid's viscosity in the
problem, which deviates the answer from the correct path.
Therefore, the presence of a temperature variable in viscos-
ity models is also felt here. Under such circumstances, the
BAG model in Table 7 could be a turning point for other
viscosity models in the future.

According to the above, another strength of BAG models
is the ability to estimate the viscosity of the base fluid in
the conventional temperature range used in heat transfer,
which is less likely to provide a suitable response at zero
concentration. To demonstrating the relationship ability of
BAG, the values predicted by the BAG relation are exam-
ined with the experimental values of the viscosity of water-
based nanofluid and ethylene glycol in Fig. 20, parts a and
b, respectively.

Conclusions

The viscosity component plays a crucial role in heat transfer,
especially convection heat transfer. The addition of nanopar-
ticles to the base fluid is commonly considered to increase
the viscosity rate. With the increase in the number of nano-
fluid viscosity models proposed, it has become necessary
to review these models in the present study. We also evalu-
ated the correlations in terms of physical compatibility with
the viscosity of nanofluids and performed statistical tests of
variance and sensitivity analysis on the viscosity models.

Finally, based on the weakness identified in previous
models, through our statistical and correlation evaluations,
two general equations for water- and ethylene glycol-based
nanofluids were presented to predict the behavior of nano-
fluids. A summary of the results presented in this study is
as follow;

e The results of variance analysis on the viscosity correla-
tions showed the non-dependence of 42.2% of the corre-
lations on the temperature component and another 27.3%
on the volume (mass) fraction component.

e The volume (mass) fraction variables in nanofluid vis-
cosity models are valid only in a certain range, and most
correlations are not able to provide a solution at a zero
volume (mass) fraction. Therefore, most nanofluid vis-
cosity models do not cover the range of volume (mass)
fractions used in heat transfer.

e In some of the viscosity models introduced by research-
ers, correlations sometimes have complex and long terms
unrelated to viscosity physics. The presence of such
terms in viscosity models only increases the likelihood
of errors in calculations. However, many of these cor-
relations can be corrected and modified with simple and
short models.

e According to the study conducted physically and statisti-

cally on the viscosity models of nanofluids, only 53.6%

of the correlations are statistically acceptable, and 73.2%

of the correlations are physically reliable, and a total of

35.7% of the correlations have acceptable conditions.

Sensitivity analysis revealed the significant contribution

of temperature component in estimating nanofluid vis-

@ Springer



7130

A. Barkhordar et al.

cosity. It is while the effect of temperature in the form
of nanofluid viscosity models is not directly considered.
Instead, the effect of temperature is determined by the
independent variable of base fluid viscosity 4, . in the
desired viscosity models. Therefore, the viscosity models
cannot estimate the nanofluid's viscosity in proportion to
the temperature variation trend, and this factor can cause
problems.

e For modeling, the viscosity of nanofluids separated to
water or ethylene glycol-based nanofluids, which is valid
in a wide temperature and volume fraction range and
function independent of the type of nanoparticles, BAG
models were introduced.

e The BAG models presented for nanofluid viscosity for
water- and ethylene glycol-based nanofluid have 97.01%
and 96.08% accuracy, respectively. Also, the RMSE
value improved by 35.82% and 49.84% compared to the
best correlation presented by the researchers for esti-
mating the viscosity of water-based and ethylene glycol-
based nanofluids, respectively.

e Most of the viscosity models have been optimized for
nanofluids with water-based nanofluids. However, the
BAG model has the ability to estimate the viscosity of
nanofluid with ethylene glycol-based nanofluid with
much higher accuracy than other correlations.

e Unlike other correlations, the results of BAG models
showed that by changing the temperature of the nano-
fluid, BAG models maintain the ability to estimate the
viscosity of the nanofluid accurately. Also, when the
nanoparticle concentration is zero, the viscosity of the
base fluid is well predicted.

Given that nanofluid with the oil base such as the applied
fluids in industry and few correlations have been provided
for oil-based nanofluids. Therefore, developing correlations
for oil-based nanofluids is a challenge and an open field of
research.
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