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Abstract
Hybrid nanomaterial flowing through Darcy–Forchheimer (D–C) porous medium bounded between two infinite parallel 
walls is considered in this analysis. The lower wall is fixed and stretchable, while the upper wall moves (squeezes) toward 
lower one. Cattaneo–Christov (C–C) heat flux is addressed instead of traditional Fourier’s heat flux. Further lower wall is 
subjected to melting heat. Viscous dissipation accounts heat transport features. Hybrid nanomaterial is constructed through 
dispersion of both GO (Grapheneoxide) and Cu (Copper) nanoparticles in the water-based liquid. Mathematical formulation 
in form of PDEs is done. Resulting PDEs are then non-dimensionalized via choosing suitable variables. Numerical technique 
namely FDM (finite difference method) through FD (forward difference) approximations is executed for these PDEs in order 
to construct the solutions. Moreover, the velocities and temperature are expressed graphically through involved physical 
parameters. Velocity of hybrid nanofluid (GO + Cu + Water) enhances with higher estimations of squeezing parameter and 
Reynolds number while it reduces with an increment in Forchheimer number and porosity parameter. Reduction in tempera-
ture of hybrid nanofluid (GO + Cu + Water) is noticed against larger melting parameter while it boosts for higher squeezing 
parameter and Eckert number.

Keywords  Melting heat · Cattaneo–Christov (C–C) heat flux · Viscous dissipation · FDM · Hybrid nanomaterial 
(GO + Cu + Water) · Darcy–Forchheimer (D-F) porous medium · Squeezing flow

Introduction

In order to overcome rise in the energy requirements due to 
advancement in technological and industrial processes, the 
only way is to use renewable energy. That is why the scien-
tists and researchers are devoted toward developing devices 
with advanced rate of cooing or heat which results in saving 
and storing of energy. The most appropriate, rich and easy 
source of such energy (renewable energy) is the solar energy. 
For this purpose thermal solar collectors are constructed in 

which ordinary fluids are used as heat transport medium. 
Such ordinary fluids possess very small thermal conductance 
and heat storing capacity due to which the performance of 
solar collectors is affected. Facing such issue, investigators 
focused toward developing materials possessing higher ther-
mal conductance and thermal storing capacity. In this regard, 
pioneer work is done by Choi et al. [1, 2]. They observed 
better thermal conductance of the material obtained by add-
ing nano-sized (1–100 nm) particles in the ordinary fluids. 
Such material is called nanofluid and the added nano-sized 
substances are called nanoparticles. A basic review work on 
hybrid nanomaterial is presented by Sarkar et al. [3]. Melt-
ing heat with chemical reactions in CNTs-nanomaterial is 
elaborated by Hayat et al. [4]. Hosseini et al. [5] examined 
entropy and MHD effects for nanomaterials flow with heat 
generation. Some latest investigations regarding nanomateri-
als flows are given in Refs. [6–28].

Although heat transport process is recently the core area of 
study but little interest has been shown toward studying heat 
transport via melting process. Melting heat plays a vital role in 
engineering, physics, technological and industrial processes. 
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Due to applications in aforementioned fields, investigators 
and researchers have shown great devotion toward developing 
effective and sustainable technologies for energy storage. The 
process of storing energy involves latent heat, sensible heat and 
chemical heat mechanisms. Among these mechanisms, latent 
heat is the most efficient and economically friendly for storing 
energy. Melting process is directly related to the latent heat. 
Melting condition stores the energy in the material while this 
stored energy can be regained through freezing. Manufacturing 
of semi-conductors, soil melting, magma solidification, per-
mafrost melting, freezing treatment of sewage, frozen ground 
thawing and many more are the applications of melting phe-
nomenon. Initial analysis on melting heat by placing ice slab in 
stream of hot air is performed by Rebert et al. [29]. Chemical 
reactions, melting and MHD impacts on tangent hyperbolic 
material flow due to nonlinear stretching surface is expressed 
by Qayyum et al. [30]. Qi et al. [31] studied heat transmission 
during melting process of lauric acid in a cavity. Few updated 
analyses on melting heat can be seen in Refs. [32–39].

Literature shows that researchers have shown their atten-
tions toward studying nanomaterials. Hybrid nanomaterials 
are discussed rare up to date. Further this analysis narrowed 
down when squeezing flow is considered in presence of Cat-
taneo–Christov (C–C) heat flux and Darcy–Forchheimer 
(D-F) porous medium. Thus, to fill up this void the hybrid 
nanomaterial (GO + Cu + Water) flow through Darcy–Forch-
heimer (D-F) porous medium bounded between two paral-
lel walls is examined in this analysis. Lower stretching wall 
is subject to melting. Cattaneo–Christov (C–C) heat flux is 
addressed. Viscous dissipation is accounted. Related expres-
sions of PDEs are constructed and then non-dimensionalized 

through suitable variables. Such non-dimensional PDEs are 
then solved by finite difference method. Velocities and tem-
perature are examined under involved parameters graphically.

Mathematical modeling

Consider 2D unsteady flow of hybrid nanomaterial con-
fined between two infinite walls. The lower wall y = 0 is 
fixed and stretches with velocity Uw(x, t) , while upper wall 
y = h(t) moves (squeezes) toward lower wall with velocity 
Vh(t) . Both the walls are at a distance h(t) from each other. 
Darcy–Forchheimer (D–C) porous medium is taken between 
these walls and hybrid nanomaterial flow through it. Dis-
turbance in hybrid nanomaterial is generated by stretching 
the lower wall. Lower wall is also subjected to melting heat 
effect and Cattaneo–Christov (C–C) heat flux instead of 
ordinary Fourier’s heat flux (see Fig. 1). Hybrid nanomate-
rial is made by adding two types of nanoparticles (GO, Cu) 
in water-based fluid.

Making use of above-mentioned assumptions, the flow 
and heat related expressions (PDEs) are [7]:

(1)Ux + Vy = 0,

(2)

Ut + UUx + VUy = vhnf(Uxx + Uyy) −
vhnf

k1
�0U −

cb
√

k1

U2,

(3)

Vt + UVx + VUy = vhnf(Uxx + Vyy) −
vhnf

k1
�0V −

cb
√

k1

V2,

Fig. 1   Physical diagram for 
considered problem

h(t) = 
vf(1–U

1
t)

U0

Hybrid nanofluid (GO + Cu + Water)

y = 0

U = Uw(t,x) =
U0x

1 – U1t

y

v = vh = 
dh(t)

dt

T = Th

x

KhnfTy = ρ
hnf(λ f + Cs(Tm–T0))V
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with IBCs (initial and boundary conditions)

In above equations U , V  and T  are functions of x , y and t 
while h(t) =

√

vf(1−U1t)

U0

.
Consider the dimensionless quantities

Using these variables in Eqs. (1–5), we are left with the 
following dimensionless DEs and IBCs

Dimensionless IBCs are

Here

(4)

Tt + UTx + VTy + �0[Ttt + UUxTx + VVyTy + UVxTy + VUyTx

+ 2UVTxy + U
2
Txx + V

2
Tyy + UtTx + 2UTxt + VtTy + 2VTty]

= �hnf[Txx + Tyy] +
�hnf

(�cp)hnf
(4(Ux)

2 + (Vx + Uy)
2),

(5)

U = 0, V = 0, T = Tw, Tt = 0 when t = 0

U = Uw(t, x) =
U0x

1 − U1t
, T = Tm,

khnfTy = �hnf(�f + Cs(Tm − T0))V when y = 0,

U = 0, V = Vh(t) = h(t)t =, T = Th when y = h(t).

(6)

f =
L

vf
U, g =

L

vf
V , t∗ =

vf

L2
t, y∗ =

y

L
, x∗ =

x

L
,

� =
T − Tm

Th − Tm
, Pr =

vf

�f
, Sq =

U1

U0

, � =
L2�0
√

k1

,

� =
�0vf

L2
, M =

U0L
2

vf − U1t
∗L2

, M1 =
(Th − Tm)(cp)f

�f + Cs(Tm − T0)
,

Fr =
cbL
√

k1

, Ec =
�f�f

L2(�cp)f(Th − Tm)
.

(7)fx∗ + gy∗ = 0,

(8)ft∗ + ffx∗ + gfy∗ = A11(fx∗x∗ − �f + fy∗y∗ ) − Fr(f )2,

(9)gt∗ + fgx∗ + ggy∗ = A11(gx∗x∗ − �g + gy∗y∗ ) − Fr(g)2,

(10)

�t∗ + f �x + g�y∗ + �[�t∗t∗ + f (t∗, x∗, y∗)fx∗�x∗

+ ggy∗�y∗ + fgx∗�y + vfy∗�x∗ + 2fg�x∗y∗ + f 2�x∗x∗

+ g2�y∗y∗ + 2fg�x∗y∗ + f 2�x∗x∗ + g2�y∗y∗ + ft∗�x∗

+ 2f �x∗t∗ + gt∗�y∗ + 2g�t∗y∗ ] =
A16

A21

PrEc(4(fx∗ )
2

+ (gx∗ + fy∗ )
2) +

A14

A15 Pr
[�x∗x∗ + �y∗y∗ ].

(11)

f = 0, g = 0, � = 1, �t∗ = 0 when t∗ = 0,

f = Mx∗, � = 1, g = 0,
M1

A14

�y∗ =
Pr

A21

g when y∗ = 0,

f = 0, g =
Sq

2

√

M, � = 0 when y∗ = 1.

A21 =
�hnf

�f
 . (16).

In above relations f  , g and � are functions of t∗ , x∗ and y∗.

Hybrid nanomaterial (GO + Cu + Water) expressions 
via Hamilton–Crosser model

Expressions for hybrid nanomaterial (GO + Cu + Water) pro-
posed by Hamilton–Crosser model are [7]

Here n represents shape of nanoparticles (GO, Cu). We 
have chosen n = 6 as we are interested in tube like or cylin-
drical nanoparticles.

Solutions methodology

The obtained relevant expressions (PDEs) of the problem are 
non-dimensionalized by choosing appropriate dimension-
less variables. These PDEs are then solved numerically via 
FDM. This methodology is implemented on FDEs (finite dif-
ference equations). Thus, we have converted our dimension-
less PDEs and IBCs into FDEs using FD forward difference 
approximations as below [39–43].

(12)

A11 =
vhnf

vf

=
1

(

1 − �1

)2.5(

1 − �2

)2.5
[
(

1 − �2

)

(

(

1 − �1

)

+ �1

�s1

�f

)

+ �2

�s2

�f
]

(13)A14 =
khnf

kf
,

(14)

A15 =

(

(

1 − �2

)

(

(

1 − �1

)

+ �1

(�cp)s1

(�cp)f

)

+ �2

(�cp)s2

(�cp)f

)

,

(15)A16 =
1

(

1 − �1

)2.5(

1 − �2

)2.5
.

(17)�hnf =
�f

(

1 − �1

)2.5(

1 − �2

)2.5
, �hnf =

�hnf

�hnf
,

(18)
(�cp)hnf =

(

1 − �2

) ((

1 − �1

)

(�cp)f + �1(�cp
)

s1
+ �2(�cp)s2 ,

(19)�hnf =
(

1 − �2

) ((

1 − �1

)

�f + �1�s1

)

+ �2�s2 ,

(20)
�hnf

�nf
=

�s2 + (n − 1)�nf − (n − 1)�2(�nf − �s2 )

�s2 + (n − 1)�nf + �2(�nf − �s2)
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Using these approximations in Eqs. (8)-(11), we get

(21)

ft∗ =
f n+1
i,j

− f n
i,j

hn
, fx∗ =

f n
i+1,j

− f n
i,j

hi
,

fy∗ =
f n
i,j+1

− f n
i,j

hj
, gt∗ =

gn+1
i,j

− gn
i,j

hn
,

gx∗ =
gn
i+1,j

− gn
i,j

hi
, gy∗ =

gn
i,j+1

− gn
i,j

hj
,

�t∗ =
�n+1
i,j

− �n
i,j

hn
, �x∗ =

�n
i+1,j

− �n
i,j

hi
,

�y∗ =
�n
i,j+1

− �n
i,j

hj
.

(22)

fx∗x∗ =
f n
i+2,j

− 2f n
i+1,j

+ f n
i,j

h2
i

, fy∗y∗ =
f n
i,j+2

− 2f n
i,j+1

+ f n
i,j

h2
j

,

gx∗x∗ =
gn
i+2,j

− 2gn
i+1,j

+ gn
i,j

h2
i

, gy∗y∗ =
gn
i,j+2

− 2gn
i,j+1

+ gn
i,j

h2
j

,

�t∗ t∗ =
�n+2
i,j

− 2�n+1
i,j

+ �n
i,j

h2
j

, �x∗x∗ =
�n
i+2,j

− 2�n
i+1,j

+ �n
i,j

h2
i

,

�y∗y∗ =
�n
i,j+2

− 2�n
i,j+1

+ �n
i,j

h2
j

, fx∗ t∗ =
f n+1
i+1,j

− f n
i+1,j

− f n+1
i,j

+ f n
i,j

hihn
,

fy∗ t∗ =
f n+1
i,j+1

− f n
i,j+1

− f n+1
i,j

+ f n
i,j

hihn
, fx∗y∗ =

f n
i+1,j+1

− f n
i+1,j

− f n
i,j+1

+ f n
i,j

hihj
,

gx∗ t∗ =
gn+1
i+1,j

− gn
i+1,j

− gn+1
i,j

+ gn
i,j

hihn
, gy∗ t∗ =

gn+1
i,j+1

− gn
i,j+1

− gn+1
i,j

+ gn
i,j

hihn
,

gx∗y∗ =
gn
i+1,j+1

− gn
i+1,j

− gn
i,j+1

+ gn
i,j

hihj
, �x∗ t∗ =

�n+1
i+1,j

− �n
i+1,j

− �n+1
i,j

+ �n
i,j

hihn
,

�y∗ t∗ =
�n+1
i,j+1

− �n
i,j+1

− �n+1
i,j

+ �n
i,j

hihn
, �x∗y∗ =

�n
i+1,j+1

− �n
i+1,j

− �n
i,j+1

+ �n
i,j

hihj
.

(23)
f n
i+1,j

− f n
i,j

hi
+

gn
i,j+1

− gn
i,j

hj
= 0,

(24)

f n+1
i,j

− f n
i,j

hn
+ f n

i,j

f n
i+1,j

− f n
i,j

hi
+ gn

i,j

f n
i,j+1

− f n
i,j

hj

= −Fr(f n
i,j
)2 + A11[

f n
i+2,j

− 2f n
i+1,j

+ f n
i,j

h2
i

− �f n
i,j
+

f n
i,j+2

− 2f n
i,j+1

+ f n
i,j

h2
j

],

(25)

gn+1
i,j

− gn
i,j

h
n

+ f n
i,j

gn
i+1,j

− gn
i,j

h
i

+ gn
i,j

gn
i,j+1

− gn
i,j

h
j

= −Fr(gn
i,j
)2 + A

11
[
gn
i+2,j

− 2gn
i+1,j

+ gn
i,j

h2
i

− �gn
i,j
+

gn
i,j+2

− 2gn
i,j+1

+ gn
i,j

h2
j

],

with IBCs

Discussion

Impacts of concerned physical variables toward velocities 
( f (t∗, x∗, y∗) , g(t∗, x∗, y∗) ) and temperature ( �(t∗, x∗, y∗) ) are 
enclosed in this section. Involved parameters and expressions 
are listed in nomenclature (see Table 1). Table 2 comprises 
thermal features of nanoparticles (GO, Cu) and baseliquid 
(water). During analyzing impacts of concerned parameters 
toward f (t∗, x∗, y∗) , g(t∗, x∗, y∗) and �(t∗, x∗, y∗) , t∗ = 1.0 and 
x∗ = 0.1 for line graphs while in Hamilton–Crosser expres-
sions for hybrid nanomaterial (GO + Cu + Water), n = 6 is 
taken for cylindrical nanoparticles.

(26)

�n+1
i,j

− �n
i,j

h
n

+ f n
i,j

�n
i+1,j

− �n
i,j

h
i

+ gn
i,j

�n
i,j+1

− �n
i,j

h
j

+ �[
�n+2
i,j

− 2�n+1
i,j

+ �n
i,j

h2
j

+ i,j
n
f n
i+1,j

− f n
i,j

h
i

�n
i+1,j

− �n
i,j

h
i

+ gn
i,j

gn
i,j+1

− gn
i,j

h
j

�n
i,j+1

− �n
i,j

h
j

+ f n
i,j

gn
i+1,j

− gn
i,j

h
i

�n
i,j+1

− �n
i,j

h
j

+ gn
i,j

f n
i,j+1

− f n
i,j

h
j

�n
i+1,j

− �n
i,j

h
i

+ 2f n
i,j
gn
i,j

gn
i+1,j+1

(t∗, x∗, y∗) − gn
i+1,j

− gn
i,j+1

+ gn
i,j

h
i
h
j

+ f n2
i,j

�n
i+2,j

− 2�n
i+1,j

+ �n
i,j

h2
i

+ gn2
i,j

�n
i,j+2

− 2�n
i,j+1

+ �n
i,j

h2
j

+
f n+1
i,j

− f n
i,j

h
n

�n
i+1,j

− �n
i,j

h
i

+ 2f n
i,j

�n+1
i+1,j

− �n
i+1,j

− �n+1
i,j

+ �n
i,j

h
i
h
n

+
gn+1
i,j

− gn
i,j

h
n

�n
i,j+1

− �n
i,j

h
j

2gn
i,j

�n+1
i,j+1

− �n
i,j+1

− �n+1
i,j

+ �n
i,j

h
i
h
n

]

=
A
16

A
21

PrEc

⎛

⎜

⎜

⎝

4

�

f n
i+1,j

− f n
i,j

h
i

�2

+

�

gn
i+1,j

− gn
i,j

h
i

+
f n
i,j+1

− f n
i,j

h
j

�2
⎞

⎟

⎟

⎠

+
A
14

A
15
Pr

�

�n
i+2,j

− 2�n
i+1,j

+ �n
i,j

h2
i

+
�n
i,j+2

− 2�n
i,j+1

+ �n
i,j

h2
j

�

,

(27)f 0
i,j
= 0, g0

i,j
= 0, �0

i,j
= 1,

�1
i,j
− �0

i,j

h0
= 0,

(28)

f n
i,0

= M(x∗
i+1

− x∗
i
),

�n
i,0

= 1,
M1

A14

(
�n
i,1

− �n
i,0

h0
)

=
Pr

A21

gn
i,0
, f n
i,1

= 0,

gn
i,1

=
Sq

2

√

M, �n
i,1

= 0.
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Discussion for f(t∗, x∗, y∗) and g(t∗, x∗, y∗)

Veloci ty  (  f (t∗, x∗, y∗) )  of  hybr id  nanomater ia l 
(GO + Cu + Water) due to an increase in Sq (squeezing 
parameter) is captured in Fig. 2. This figure elaborates that 
f (t∗, x∗, y∗) increases with higher Sq (squeezing param-
eter). Physically an increase in Sq (squeezing parameter) 
is related with execution of more squeezing force from 
upper wall on the hybrid nanomaterial (GO + Cu + Water) 
confined between the walls. Due to this squeezing force 
the velocity ( f (t∗, x∗, y∗) ) of the hybrid nanomaterial 
(GO + Cu + Water) increases. Figure 3 is made for studying 

impact of � (porosity parameter) on velocity ( f (t∗, x∗, y∗) ) 
of the hybrid nanomaterial (GO + Cu + Water). This fig-
ure shows that velocity ( f (t∗, x∗, y∗) ) reduces with higher 
� (porosity parameter). Reason behind this reduction in 

Table 1   Nomenclature

Expression SI unit Name Expression SI unit Name

u, v m s−1 Components of velocity (cp)f m2 s−2 K−1 Specific heat of basefluid
x, y M Cartesian coordinates Pr Dimensionless Prandtl number
�f kg m−1 s−1 Fluid dynamic viscosity �w N m (Pa) Wall shear stress
�f m2 s−1 Kinematic fluid viscosity Uw , Vh m s−1 Stretching and squeezing 

velocities
�f kg m−3 Density of basefluid GO Graphene oxide
kf kg m K−1 s−3 Fluid thermal conductivity Uw(t, x) m s−1 Stretching surface velocity
�f m2 s−1 Thermal diffusivity of basefluid M Dimensionless Reynolds number
f (t∗, x∗, y∗), g(t∗, x∗, y∗) Dimensionless Non-dimensional velocities Tw K−1 Temperature of lower wall
�(t∗, x∗, y∗) Dimensionless Non-dimensional temperature kS1 kg m K−1 s−3 Thermal conductivity of

GO

Cu Copper kS2 kg m K−1 s−3 Thermal conductivity of Cu
�0 Dimensionless Porosity of porous medium �2 Dimensionless Cu volume fraction
k1 m2 Permeability of porous medium �1 Dimensionless GO volume fraction
Sq Dimensionless Squeezing parameter U0,U1 s−1 Arbitrary constants
t∗, x∗, y∗ Dimensionless Dimensionless variables Th K−1 Upper surface temperature
� Dimensionless Relaxation time parameter �0 s Thermal relaxation time coef-

ficient
� Dimensionless Porosity parameter Fr Dimensionless Forchheimer number
M1 Dimensionless Melting parameter Ec Dimensionless Eckert number
Hybrid Nanofluid (GO + Ag + Kerosene oil) Nanofluid (GO + Kerosene Oil)
�hnf kg m−1 s−1 Dynamic viscosity knf kg m K−1 s−3 Thermal conductivity
�hnf m2 s−1 Kinematic viscosity �nf m2 s−1 Thermal diffusivity
�hnf kg m−3 Density (cp)nf m2 s−2 K−1 Specific heat
khnf kg m K−1 s−3 Thermal conductivity �nf kg m−1 s−1 Dynamic viscosity
�hnf m2 s−1 Thermal diffusivity �nf m2 s−1 Kinematic viscosity
(cp)hnf m2 s−2 K−1 Specific heat �nf kg m−3 Density

Table 2   Features of nanoparticles (GO, Cu) and basefluid (water) [7, 
25]

Substance\
characteristics

�∕kgm−3 �∕W m−1 K−1
cp∕J kg−1 K−1 Pr

Water 997.1 0.613 4179 6.2
GO 1880 s 717 –
Cu 632 76.5 531.8 –

0.0 0.2 0.4 0.6 0.8 1.0

y∗

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f(
t∗

,x
∗ ,
y∗

)

sq = 1.0

sq = 2.0

sq = 3.0

sq = 4.0

sq = 5.0 Hybrid nanofluid (GO + Cu + Water)

Fig. 2   Velocity ( f (t∗, x∗, y∗) ) against higher Sq



6398	 T. Hayat et al.

1 3

f (t∗, x∗, y∗) is that higher � (porosity parameter) relate with 
production of more porous space among hybrid nanomate-
rial (GO + Cu + Water). Such porous space resists flow of 
hybrid nanomaterial (GO + Cu + Water) and correspondingly 
f (t∗, x∗, y∗) reduces. Velocity ( f (t∗, x∗, y∗) ) of hybrid nano-
material (GO + Cu + Water) against variations in Fr (Forch-
heimer number) is expressed in Fig. 4. This plot reveals that 
f (t∗, x∗, y∗) is a decreasing function of Fr (Forchheimer num-
ber). Reason behind this decrease in f (t∗, x∗, y∗) is that higher 
Fr (Forchheimer number) being associated with more resis-
tive force (drag forces). Such force resists hybrid nanomate-
rial (GO + Cu + Water) flow and hence f (t∗, x∗, y∗) decreases. 
Figure 5 sketches impacts of M (Reynolds number) on veloc-
ity ( f (t∗, x∗, y∗) ) of hybrid nanomaterial (GO + Cu + Water). 
Here f (t∗, x∗, y∗) intensifies with higher M (Reynolds num-
ber). In fact an intensification in f (t∗, x∗, y∗) is that higher 
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M (Reynolds number) related with more turbulent flow of 
hybrid nanomaterial (GO + Cu + Water) and consequently 
f (t∗, x∗, y∗) increases. Velocity ( g(t∗, x∗, y∗) ) under higher 
estimations of M (Reynolds number) and Sq (squeezing 
parameter) is labeled in Figs. 6 and 7. These figures reveal 
that g(t∗, x∗, y∗) increases with higher M (Reynolds number) 
and Sq (squeezing parameter).

Discussion for �(t∗, x∗, y∗)

Temperature ( �(t∗, x∗, y∗) ) of the hybrid nanomate-
rial (GO + Cu + Water) due to increment in M1 (melt-
ing parameter) is plotted in Fig. 8. It is examined in this 
figure that increase in M1 (melting parameter) reduces 
�(t∗, x∗, y∗) . Higher M1 (melting parameter) is associated 
with more convective flow from hot hybrid nanomate-
rial (GO + Cu + Water) toward the cold lower wall. As 

0.0 0.2 0.4 0.6 0.8 1.0

(t
∗ ,x

∗ ,y
∗ )

y ∗

0.0

0.2

0.4

0.6

0.8

1.0

M
1
 = 0.1

M
1
 = 0.2

M
1
 = 0.3

M
1
 = 0.4

M
1
 = 0.5 Hybrid nanofluid (GO + Cu + Water)

0.40 0.41 0.42 0.43 0.44 0.45

0.30

0.29

0.28

0.27

0.26

0.25

0.24θ

Fig. 8   Temperature ( �(t∗, x∗, y∗) ) against higher

0.0 0.2 0.4 0.6 0.8 1.0

y ∗

(t
 ∗ ,

x 
∗ ,y

 ∗ )

0.0

0.2

0.4

0.6

0.8

1.0

= 0.01

= 0.02

= 0.03

= 0.04

= 0.05 Hybrid nanofluid (GO + Cu + Water)

0.220

0.215

0.210

0.205

0.200θ

γ

γ

γ

γ

γ

Fig. 9   Temperature ( �(t∗, x∗, y∗) ) against higher

0.0 0.2 0.4 0.6 0.8 1.0

Hybrid nanofluid (GO + Cu + Water)

(t
 ∗ ,

x 
∗ ,y

 ∗ )

0.0

0.2

0.4

0.6

0.8

1.0

y ∗

1
 = 0.01

1
 = 0.02

1
 = 0.03

1
 = 0.04

1
 = 0.05

0.70 0.72 0.74 0.76 0.78 0.80

0.15

0.14

0.13

0.12

0.11

0.10

0.09

0.08

φ
φ
φ
φ
φ

θ

Fig. 10   Temperature ( �(t∗, x∗, y∗) ) against higher

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Hybrid nanofluid (GO + Cu + Water)

0.13

0.12

0.11

0.10

0.09

0.08
0.70 0.72 0.74 0.76 0.78 0.80

2
 = 0.01

2
 = 0.02

2
 = 0.03

2
 = 0.04

2
 = 0.05

(t
 ∗ ,

x 
∗ ,y

 ∗ )
θ

y ∗

φ

φ
φ
φ
φ

Fig. 11   Temperature ( �(t∗, x∗, y∗) ) against higher

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Hybrid nanofluid (GO + Cu + Water)

0.70 0.72 0.74 0.76 0.78 0.80

Sq = 0.1

Sq = 0.2

Sq = 0.3

Sq = 0.4

Sq = 0.5

0.09

0.08

0.07

0.06

0.05

0.04

(t
 ∗ ,

x 
∗ ,y

 ∗ )
θ

y ∗

Fig. 12   Temperature ( �(t∗, x∗, y∗) ) against higher



6400	 T. Hayat et al.

1 3

a result �(t∗, x∗, y∗) decreases. Figure  9 sketches varia-
tions in temperature ( �(t∗, x∗, y∗) ) for hybrid nanomaterial 
(GO + Cu + Water) with rise in � (thermal relaxation param-
eter). This figure reveals that �(t∗, x∗, y∗) decreases with 
increase in � (thermal relaxation parameter). Figures 10 and 
11 capture impacts of �1 (volume fraction for GO) and �2 
(volume fraction for Cu). It is noted from these both figures 
that �(t∗, x∗, y∗) declines with increase in both �1 (volume 
fraction for GO) and �2 (volume fraction for Cu). Reason 
behind this reduction is the transmission of heat form heated 
hybrid nanomaterial (GO + Cu + Water) toward surrounding. 
Hence �(t∗, x∗, y∗) decreases. Temperature ( �(t∗, x∗, y∗) ) due 
to higher Sq (squeezing parameter) is presented in Fig. 12. 
It is revealed by this plot that temperature ( �(t∗, x∗, y∗) ) of 
the hybrid nanomaterial (GO + Cu + Water) increases with 
higher Sq (squeezing parameter). Physically higher Sq 
(squeezing parameter) is associated with insertion of more 
squeezing force from the upper wall on the hybrid nano-
material (GO + Cu + Water). Thus, due to collision among 
the particles of the hybrid nanomaterial (GO + Cu + Water), 
more heat is generated and consequently �(t∗, x∗, y∗) boosts. 
Figure 13 is plotted for studying variations in tempera-
ture ( �(t∗, x∗, y∗) ) due to higher Ec (Eckert number). It is 
observed from this plot that higher Ec (Eckert number) is 
directly associated with K.E (as it is the ratio of K.E and 
enthalpy). Hence �(t∗, x∗, y∗) increases with Ec (Eckert 
number).

Final remarks

Hybrid nanomaterial (GO + Cu + Water) bounded between 
infinite parallel walls is examined. Melting heat and vis-
cous dissipation elaborate heat transmission in the consid-
ered problem. Cattaneo–Christov (C–C) heat flux model is 

taken into account. Worth mentioning points are that veloc-
ity () enlarges with an increase in (squeezing parameter) 
and (Reynolds number). Higher (porosity parameter) and 
(Forchheimer number) cause decay in velocity (). Velocity () 
is higher for (squeezing parameter) and (Reynolds number). 
Higher (Eckert number) and (squeezing parameter) intensify 
temperature () of the fluid. Fluid temperature () is controlled 
by choosing higher (melting parameter), (thermal relaxation 
time parameter), (volume fraction for GO) and (volume frac-
tion for Cu).
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