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Abstract

This paper takes a different look at the mathematical modeling of the effective thermal conductivity of nanofluids. Most
related published experimental-based mathematical models have been analyzed statistically. The sensitivity analysis showed
that in the most published models, the role of nanofluids bulk temperature may be ignored. Then, we extracted a lot of data
from the models in the valid ranges of variables. The next step was performing statistical analysis of the variances and means
of different datasets (data populations). The results showed that changing considerably the nanofluids temperature doesn’t
affect considerably the nanofluids thermal conductivity. We introduced a comprehensive, simpler and more accurate cor-
relation neglecting the nanofluids temperature to predict the effective thermal conductivity of nanofluids. Results indicated
that the predicted values using the proposed correlation are in a good agreement with experimental data.

Keywords Thermal conductivity - Statistical analysis - Nanofluids - Correlation - Temperature

Introduction

The total energy consumption of the world has been
increased sharply, during the past decades energy will be
one of the most critical challenges in the next decades, espe-
cially for developing countries. Heat transfer scientists and
engineers have concentrated on different methods to reduce
the energy consumption of heat transfer phenomena. Their
methods included but not limited to increase the heat transfer
fluid’s velocity (forced convection) [1-3], enhance the heat
transfer area (like fins, heat sinks, plate heat exchangers,
and so on) [4-6], fast transition from laminar flow regime
to the turbulent (increasing friction factor, and etc.) [7, 8],
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conjugate heat transfer and mixed convection [9—11], boil-
ing and other phase change processes because of the high
amount of latent heat (like heat pipes and phase change
materials) [12, 13] and so on.

Meanwhile, some scientists believed that this challenge
can be solved by increasing the relatively low thermal con-
ductivity of conventional heat transfer fluids. Maxwell [14]
thought we can experience considerable enhancement in
thermophysical properties of a mixture of a fluid and dis-
persed metal particles compared to the base fluid. He never
could set up such an experiment because of high mass value
(and size) of the particles has been manufactured at the time.
His idea remained only theoretical one until the last dec-
ade of the twentieth century. Choi and Eastman [15] based
on recent development of nanotechnology suggested a new
class of heat transfer fluid containing nanoparticles (parti-
cles generally smaller than 100 nm in dimensions). They
proposed to disperse a low volume concentration of metal or
oxide nanoparticles in a conventional heat transfer fluid like
water, oil and ethylene glycol. They reported an anomalous
enhancement in heat transfer coefficient of nanofluids com-
pared to the base fluid [16].

Great attentions have been devoted to this new scientific
horizon throughout the world and therefore an unbelievable
number of scientific papers have been published during past
two decades.
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Today, the nanofluids applications in different fields and
industries are under serious investigations and some experi-
mental successes have been achieved. The nanofluids appli-
cations include, but not limited to heat exchangers [17-19],
impingement jets [20, 21], renewable energies [22—24], heat-
ing and tempering processes [25-30], automotive industries
[31, 32], electronic cooling [33—37], lubrication [38—40],
medicine [41-43], combustion [44—46], and etc.

There are two conventional approaches to simulate the
nanofluids fluid flow and heat transfer characteristics named
single phase [47-49] and two phase approaches [50-53].
The single phase approach assumes that a nanofluid is a
homogenous mixture (suspension) of nanoparticles and base
fluid. This approach ignores the different interaction between
nanoparticles and liquid molecules and tends to estimate
the thermophysical properties using predictive models for
thermal conductivity, density, viscosity and specific heat.
Thus, the single phase approach deals with the nanofluids
as a whole.

Existing thermal conductivity models

Prediction of thermophysical properties of a mixture has a
longer history than that of nanofluids. In 1962, Hamilton
and Crosser [54] proposed one of the oldest correlation of a
mixture’s thermal conductivity based on a few experiments
on the spheres, disks, cylinders and cubes of aluminum and
balsa in silastic (n =3 for spherical particles):

ky + (n— Dk, — (n = 1) (k, —k,)
k, + (n— Dk, + (kb - kp)go

ke _
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At the same time, Hashin and Shtrikman [55] studied
theoretically the multiphase thermophysical properties using
variation approach and proposed one the first correlations on
the thermal conductivity of a mixture, where kg, k,, k, and
@ are the thermal conductivity of mixture, thermal conduc-
tivity of particles, thermal conductivity of fluid and volume

concentration of particles, respectively.

3k, = kp) 3(1 — @)k, — kp)
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Jeffery [56] investigated of heat conduction of a station-

ary random suspension of spherical particles with a low

volume concentration of particles. He extended the work

of Maxwell to calculate the heat flux with by considera-

tion of interactions between pairs of particles. Eventually,

he proposed a useful correlation for thermal conductivity
of a mixture:
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Turian et al. [5S7] conducted an experimental study on the

suspension of coal particles in water, oil and other liquids.

They developed a simple correlation for thermal conductiv-

ity of a mixture. The results of their correlation are in good

agreement with the experimental data, especially for low
volume concentration of particles.

ko = <1+3ﬂ+ <3/32+
o

ke = K0k, ™" )

There are more than 70 models for predicting thermal
conductivity of nanofluids. More than 37 models are devel-
oped using experimental data and results. Finally, we found
14 models predicting thermal conductivity of nanofluids
including nanofluids temperature, using experimental data.
Table 1 shows all published experimental models for thermal
conductivity of nanofluids taking into account the nanofluids
temperature.

Methodology

All of the mentioned models in Table 1 consider the thermal
conductivity of nanofluids as a function of thermal conduc-
tivity of base fluid (k,), thermal conductivity of nanoparticle
(kp), nanoparticle volume concentration (¢) and temperature
(T). Two models [59, 61] additionally take into account the
nanoparticle mean diameter.

Generally, it seems normal that thermal conductivity of
nanofluids enhances with any increase in thermal conduc-
tivity of base fluid, thermal conductivity of nanoparticle,
nanofluids temperature and any decrease in the mean diam-
eter of nanoparticles. However, some models predict diverse
and sometimes bizarre behavior of thermal conductivity of
nanofluids according to different variables. For example, the
thermal conductivity of nanofluids enhances usually with
any increase in temperature, and conversely, some mod-
els predict the decreasing trend of thermal conductivity of
nanofluids with increase in temperature. This situation is
frequent, especially when the base fluid is ethylene glycol.

We decided to examine the behavior of the effective
thermal conductivity against different variables appear in
published models. Then, we tried to evaluate the role of
each variable in effective thermal conductivity, based on
published models. We guess that maybe we can neglect the
effect of one variable versus the others. We think that rep-
resenting the contradictions in our understanding about the
role of different variables will help to attract the attention
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of researchers to this challenging issue, since we highly
believed that the single phase approach of nanofluids inves-
tigation is severely dependent on the predictive models. The
next step is devoted to extract some easier and more accu-

rate correlations. Figure 1 shows the algorithm has been
employed to conduct this research. Extracting responses from the model
Some methods should be put in the front being given
before running the above-mentioned algorithm. First of all,
we perform a sensitivity analysis of each proposed model to
find out the most sensitive variables in the model. In fact, Sensitivity analysis on the proposed model
sensitivity analysis allows you to identify the inputs whose
variations have the most impact on the key outputs. v
Then, we run the published models in their validation Providing diverse datasets using
range of variables mentioned by the authors (Table 1) to responses
extract a couple of predicted data. Then, different datasets T
will be provided with different temperature. For example,
when a model is valid in the temperature range of 20-40 °C, Statistical analysis on the datasets Variances
we provide five datasets (statistical populations) for using
temperature of 20, 25, 30, 35 and 40 °C. It should be noted Y
that we assumed a number of datasets statistically same No
when two parameters of all datasets are statistically equal: P"(’)a(l)‘;e >
mean and variance. '
The null hypothesis is all population means (or variances) Yes
are equal, while the alternative hypothesis states that at least
one is different. So, when the P value is more than 0.05 (for Statistical analysis on the datasets Means
the 0.05 level of significance), the test is unable to reject

the null hypothesis. This means that despite of temperature
changing in different datasets, the means (or variances) of
them are statistically equal.

With this intention, we conduct statistical analysis for
each model, separately. Then, if our analysis is sufficient for
the hypothesis, then we move to develop a different model
taking into account different variables. At the final step of
the algorithm, model’s the goodness of fit will be evaluated Developing correlation based on experimental
and reported. ¢

Evaluation of goodness of fit and error of model

Results and discussion

In this section, all published models (Table 1) will be inves-
tigated and analyzed, separately. The above-mentioned No
algorithm will be run for each model. At the end, we try to
develop a simple mathematical model to predict all available
experimental data. The goodness of fit of the final compre-
hensive model will be analyzed, statistically.

Fail to reject
the Null
hypothesis

Yes

Introduce the model as a valid
simpler alternative model

Model by Aberoumand et al. [58]

Aberoumand et al. [58] conducted an experimental study
on the rheological behavior of heat transfer oil-based nano-
fluids and provided two correlations for effective thermal
conductivity and effective viscosity of nanofluids. They dis-
persed Ag nanoparticles with a mean diameter of 20 nmin  Fig.1 The employed algorithm for statistical analysis

End

) 4
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oil heat transfer with a range of 0-2% volume concentration.
Then, they added some other experimental data about Cu
and MCWNT nanoparticles to develop predictive correla-
tion for effective thermal conductivity of nanofluids (Eq. 5).

ke = (3.9 x 107°T — 0.0305)@> + (0.086 — 1.6 X 107*T)¢
+3.1x107* T +0.129 - 5.77 x 10~%, — 40 x 107

®)

According to their model, the effective thermal con-
ductivity decreases with any increase in the thermal con-
ductivity of nanoparticles. Figure 2 shows the result of
sensitivity analysis of their proposed model. Generally,
to identify inputs whose variations have little or no effect
on the response, look for inputs with a flat line. For inputs
with a flat line, one can ease the requirements (tolerances)
without adversely affecting the performance, which will
save time and cost. The graph shows that changes in the

Fig.2 The result of sensitivity 0.03
analysis for proposed model by
Aberoumand et al. [58] 0.0275
c
2 0.025
8
3 0.0225
kel
°
]
°
C
8
[9p]
0.015
0.0125

—-50% —30% —20% —10%
% Change of input standard deviation

Fig.3 The result of variance
analysis of the Aberoumand
et al. [58] model

T1{ +—

T2 _—

T_3 —_

variation of the purple and green effects have little influence
on the effective thermal conductivity. However, nanoparticle
volume concentration plays a key role in the prediction of
the response.

We extracted 6000 data from their model in the valida-
tion ranges of variables and categorized the responses using
different temperatures. Statistical analysis gives p values of
0.963 and 0.332 for means and variances analysis, respec-
tively (at the 0.95 level of significance). Therefore, there
is no statistically significance difference between different
datasets in different temperature. Statistically speaking, the
responses are the same, despite of considerable change in
temperature. It can be concluded that the nanofluids tem-
perature doesn’t play a key role in the effective thermal
conductivity prediction in their model with more than 95%
of probability and so we can neglect easily the role of tem-
perature. Figure 3 shows the result of variance analysis of
the model of Aberoumand et al. [58].

e phi
e kp

0.02 —0 9 4——0—'—."’"’.
0.0175 ._—.——._::j/

-5% 0% 5% 10% 20% 30% 50%

Test for equal variances: T_1; T2, T.3; T 4, T 5, T 6, T_7; T_8; ...
Multiple comparison intervals for the standard deviation, a = 0.05

Multiple comparisons
PValue 0.332
Levene’s test
PValue 0.989

T 4 I

75

T_6 '

T_7

T_8

79

T_10

0 2 4

6 8 10 12 14 16

If intervals do not overlap, the corresponding stdevs are significantly different.
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The next step is providing a correlation for effective
thermal conductivity without nanofluids temperature using
experimental data based on the nonlinear regression method.
Equation 7 is our proposed correlation and it is shown that
this correlation is simple, accurate and it also gives effective
thermal conductivity equal to thermal conductivity of base
fluid when the nanoparticle volume concentration is zero.

keir = ki (1 4+ 1.255369°27%7) (6)

The average absolute error of correlation (6) from the
experimental data is 3.62%. Therefore, this correlation has
an appropriate goodness of fit and gives a reliable estima-
tion of experimental data. The predicted value of effective
thermal conductivity of nanofluids is approximately equal
to thermal conductivity of base fluid, when the nanoparticle
volume concentration is zero.

Model by Fakoor Pakdaman et al. [59]

An experimental investigation of heat transfer performance
of oil-based nanofluids inside vertical helically coiled tube
was conducted by Fakoor Pakdaman et al. [59]. They dis-
persed MWCNT nanotubes with 5-20 nm in diameter in heat
transfer oil with range of 0-2% volume concentration. They
introduced a correlation for effective thermal conductivity
of nanofluids (Eq. 7).

K oo 1 0.369
= = 1 4+304.47(1 + @)% exp(—=0.021T) [ —
k, d,

analysis provides P values of 1.000 and 1.000 for means
and variances analysis, respectively (at the 0.95 level of
significance). So, there is no statistically significance dif-
ference between different datasets in different temperature.
Statistically speaking, the responses are the same, despite of
considerable change in temperature. It can be concluded that
the temperature doesn’t play a key role in the effective ther-
mal conductivity prediction in their model with more than
95% of probability and so we can neglect easily the role of
temperature. Figure 5 shows the result of variance analysis
of the model of Fakoor Pakdaman et al. [59].

Then, we try to propose a correlation to predict the effec-
tive thermal conductivity of nanofluids, neglecting the role
of temperature using nonlinear regression method. Equa-
tion 8 is our proposed correlation with an average absolute
error of 2.41%.

273465(p > 0.270822

ke = ki 1+< 7

®

Therefore, this correlation has an excellent goodness of
fit and gives a high reliable estimation of response. Our pro-
posed equation (Eq. 8) gives effective thermal conductivity
of 0.1235 W m K~!, when the nanoparticle volume concen-
tration is zero. This is equal to thermal conductivity of the
base fluid. It means that when there is no any nanoparticle

712321
10610.6287/(T~140) > W

Figure 4 demonstrates the result of sensitivity analysis of
their model. It can be concluded from the lines that the most
important variables in this model are nanoparticles mean
diameter and nanofluids temperature, respectively.

We extracted 8036 responses from their model in the
valid ranges of variables and categorized the responses
using different temperatures in seven groups. Our statistical

Fig.4 The result of sensitivity
analysis for proposed model by
Fakoor Pakdaman et al. [59]

0.0065

0.006

0.0055

0.005

0.0045

Standard deviation

0.004

-50% —30% —-20% -10%

in the liquid, we have the pure base fluid.
Model by Ahammed et al. [60]

Ahammed et al. [60] investigated heat transfer and fluid flow
of grapheme—water nanofluids, experimentally implement-
ing a transient hot wire technique at temperatures below and

® phi
® kb
[ ] dp

-5% 0% 5%
% Change of input standard deviation

10% 20% 30% 50%
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Fig.5 The result of variance
analysis of the Fakoor Pakda-
man et al. [59] model

T_1 }

Test for equal variances: T_1, T 2, T3, T4, T.5, T 6, T_7
Multiple comparison intervals for the standard deviation, a = 0.05

i Multiple comparisons

T 2 [

P Value 1.000
Levene’s test

i PValue 1.000

T3 [

T 4 t

75 f

T_6 t

T7 }

0 5

10 15 20 25 30

If intervals do not overlap, the corresponding stdevs are significantly different.

above ambient conditions ranging from 10 to 50 °C. The
author mentioned that the valid range of nanoparticle vol-
ume concentration is between 0.05 to 0.15%, and an empiri-
cal correlation has been developed in form of Eq. 9 (which is
dimensionally consistent). It shown that the nanofluids tem-
perature plays an important role in prediction of the effective
thermal conductivity of nanofluids.

@ = 2.571032,0.108 ©)
kb r

Nevertheless, we decided to investigate the case in
details. So, we extracted 243 responses in different values
of variables using their model and categorized them in nine
groups for different nanofluids temperature. The statistical
analysis for mean and variance gives p values of 0.772 and
0.762, respectively (Appendix, Figs. 1-2). Therefore, there
is no statistical significant difference between nine groups. It
means that changing considerably temperature doesn’t affect
the mean and variances of different datasets. So, one may
develop a correlation neglecting the nanofluids temperature.
We followed such an approach and Eq. 10 has been resulted.

keff — kb (1 + (p0.69844l ) (10)

The average absolute error of this correlation from exper-
imental data is 3.31%. So, it can be concluded that the pro-
posed simple correlation is accurate, reliable and well-fitted.

Model by Patel et al. [61]
A series of experiments have been conducted to measure

thermal conductivity of different oxide and metal-based
nanofluids by Patel et al. [61]. They dispersed silver,

@ Springer

alumina, copper and aluminum nanoparticles in water, eth-
ylene glycol and transformer oil with volume concentration
in range of 0.1-3% using sonication method. The mean
diameter of nanoparticles was in range of 10-50 nm, and
the minimum and maximum nanofluids temperature were
20 and 50 °C, respectively. They also proposed a correlation
for prediction of effective thermal conductivity of nanofluids
(Eq. 11).

kA 0273 70547 £ 100\ °2*
ko=k(1+0135% (=2 0467(—) 100
ef b( * <kb> 20 d

p
1D

Results show that most and least affective variables in the
proposed model based on a sensitivity analysis are thermal
conductivity of the base fluid and nanofluids temperature,
respectively (Appendix, Fig. 3).

For detailed investigation, we extracted 105,847 responses
from their model within the valid ranges of variables and
created seven unique datasets using different nanofluids tem-
peratures. The statistical analysis shows that the p values
for the means and variances are 0 and 0.938, respectively.
Although the p value for means is zero, and therefore, this
test fails to prove the null hypothesis, we decided to compare
the values of responses in different datasets. It should be
noted that the average of response values for datasets with
temperature of 20, 25, 30, 35, 40, 45 and 50 °C, are 0.49772,
0.50430, 0.51031, 0.51588, 0.52110, 0.52604, and 0.53072,
respectively. This means that when we increase the nanoflu-
ids temperature from 20 to 25 °C, we experience only 1.32%
enhancement in effective thermal conductivity. Increasing
temperature from 45 to 50 °C gives only 0.89% enhance-
ment in effective thermal conductivity. Therefore, we can
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conclude that there is no significant difference between these
seven groups of response (Appendix, Fig. 4).

We developed a simple correlation for prediction the
effective thermal conductivity of nanofluids neglecting the
role of nanofluids temperature, employing nonlinear regres-
sion method. Equation 12 shows our proposed correlation.

0.232706¢742458 x k.,
kg = ko 1+ (12)

d,
The average absolute error from the experimental data is
3.44%. It can be concluded that Eq. 12 is accurate, reliable
and well-fitted.

Models by Li and Peterson [62]

Li and Peterson [62] introduced the first correlation for
effective thermal conductivity of nanofluids including the
nanofluids temperature based on experimental data. They
synthesized two categories of nanofluids in nanoparticles
volume concentration in range of 2-10%: Al,Os-water and
CuO-water. The mean diameters of alumina and copper
oxide were around 36 and 20 nm, respectively. The experi-
ments have been performed in nanofluids bulk tempera-
ture of 27.5-34.7 °C. Generally, they observed significant
enhancement in thermal conductivity up to 52% compared
to the base fluid. Finally, they developed two correlations
for prediction of effective thermal conductivity (Egs. 13 and
14).

l;j—:f = 0.7644815 ¢ + 0.018689 T + 0.537853, for Al,0O4
13)

kese

E =3.761088 ¢ + 0.017924 T + 0.69266, for CuO
(14)

The investigations showed that nanofluids temperature
doesn’t play a key role in prediction of the effective thermal
conductivity of nanofluids (Appendix, Fig. 5). For more
investigation, we extracted 1862 responses from their cor-
relations and categorized them into seven unique datasets
(for each correlation) with different temperature. Statistical
analysis gives p vales of 0.736 and 0.927 for means and vari-
ances, respectively for Eq. 13 and 0.755 and 0.925 for means
and variances, respectively for Eq. 14. Therefore, there is
no statistical meaningful difference between the means and
variances of different datasets (Appendix, Fig. 6). We tried
to develop two simple correlations for effective thermal
conductivity, neglecting the nanofluids bulk temperature.
Equations 15 and 16 show our proposed correlation for alu-
mina—water and copper oxide—water nanofluids.

ke = k(1 + 0.81874¢%%)  for Al,O, (15)

k

(&

¢ = ky(1 + @"2)  for CuO (16)

Equations 15 and 16 give predicted values with average
absolute error of 4.88% and 2.79% from experimental data.
Therefore, these two simple correlations are valid, accurate
and well-fitted.

Model by Hemmat Esfe et al. [63]

An experimental study has been performed on the thermal
conductivity of MgO-based nanofluids by Hemmat Esfe
et al. [63]. They dispersed 40 nm MgO nanoparticles in a
binary mixture of water and ethylene glycol (60:40) with
volume concentration in range of 0.1-3%, using an ultra-
sonic homogenizer. The minimum and maximum nanoflu-
ids bulk temperature were 20 and 50 °C, respectively. They
proposed a correlation for effective thermal conductivity
(Eq. 17), using experimental data.

ks = 0.4 +0.0332¢ + 0.001017 + 0.000619¢T + 0.0687¢°

+0.0148¢° — 0.00218¢° — 0.0419¢* — 0.0604¢>
a7
Figure 7 of Appendix represents the result of sensitivity
analysis of their proposed model, indicating that the nanoflu-
ids temperature doesn’t affect considerably the effective ther-
mal conductivity of nanofluids. For detailed investigation,
we extracted 784 responses from their model in validation
ranges of variables and categorized them in seven unique
datasets with different temperatures. The statistical analy-
sis gives p values of 0.995 and 0.927 for means and vari-
ances, respectively. Therefore, the test fails to reject the null
hypothesis and there is no statistical significant difference
between these seven groups, despite of changing consider-
able the nanofluids bulk temperature. We tried to develop
a simple correlation neglecting the bulk nanofluids tem-
perature using experimental data and nonlinear regression
method (Eq. 18). The average absolute error of the proposed
correlation from experimental data is 3.5%.

ke = ky (1 4 15.9106¢"28%) (18)

Models by Hemmat Esfe et al. [64]

Hemmat Esfe et al. [64] conducted an experimental study on
thermal conductivity of alumina-ethylene glycol nanofluids.
The experiments performed at temperature ranging from 24
to 50 °C while volume concentration up to 5%. They pro-
posed two correlations for prediction the effective thermal
conductivity of nanofluids (Egs. 19 and 21).
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keff _ -5 2
= = 1.04 +5.91 x 107°T + 0.00154T ¢ + 0.0195¢
b
— 0.014¢ — 0.00253¢° — 0.000104T ¢* — 0.0357
x sin(1.72 + 0.407¢* — 1.67¢)
(19)
keff _ -5 2
= = 0.999 +9.581 x 1077 + 0.00142T¢ + 0.0519¢
b

+ 0.00208¢” + 0.00208¢* — 0.00719¢ — 0.0193¢°

- 821x1073T¢?
(20)

The result of the sensitivity analysis shows that the role
of changing temperature on the effective thermal conduc-
tivity is negligible (Appendix, Fig. 8). We extracted 2548
responses from these two correlations in their valid range
of performance and categorized them in seven unique data-
sets (seven datasets for each correlation). Statistical analysis
for means and variances gives p values of 0.971 and 1.000,
respectively, for Eq. 19 and 0.880 and 1.000, respectively,
for Eq. 20. Therefore, it can be concluded that there is no
statistical significant difference between datasets.

For more investigation, we tried to develop a simpler cor-
relation neglecting the nanofluids bulk temperature using
experimental data and nonlinear regression model (Eq. 21).
This correlation predicts effective thermal conductivity of
nanofluids (covering all 14 datasets) with average absolute
error of 1.69%. Figs. It is clear that this simple correlation
is accurate, reliable and well-fitted (Appendix, Figs. 9-10).

ke = k(1 +7.05149¢) 1)

Model by Hemmat Esfe et al. [65]

An interesting study on the thermal conductivity of hybrid
nanofluids has been performed by Hemmat Esfe et al. [65].
They used experimental data about dispersion of Cu and
TiO, nanoparticles with mean diameter 70 and 40 nm in a
binary water-ethylene glycol (60:40) base fluid with volume
concentration of 0.1-2%. They implemented artificial neural
network (ANN) to correlate the result in a mathematical
model. They considered temperature and volume concentra-
tion as input layers and relative thermal conductivity (the
proportion of effective thermal conductivity of nanofluids to
thermal conductivity of base fluid) as output layer. Finally,
they developed a trigonometric correlation:

k _
kif = 1.04 + 0.0005897 + —2:000184

b
X cos(6.11 +0.00673T + 4.41T¢ — 0.0414sin(T)) — 32.5¢
(22)

The result of sensitivity analysis shows that the most and
least affective variables on the prediction of the effective
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thermal conductivity of nanofluids based on their model are
nanoparticles volume concentration and nanofluids tempera-
ture, respectively (Appendix, Fig. 11).

For a detailed investigation, we extracted 980 values from
their model in mentioned ranges of variables and then cat-
egorized them onto seven unique datasets with different tem-
peratures. The statistical analysis gives p values of 0.999 and
0.976 for means and variances of the model, respectively.
This test fails to reject the null hypothesis, and therefore,
there is no statistical significant difference between these
seven datasets. This means that temperature doesn’t affect
considerably the responses, despite changing consider-
ably temperature. We implemented a nonlinear regression
method to propose Eq. 23 with an average absolute error
of 3.86%. So, the proposed correlation is accurate, reliable
and well-fitted.

keff - kb<1 + (p0.304()9) 23)

Model by Hemmat Esfe et al. [66]

Hemmat Esfe et al. [66] dispersed carbon nanotubes with
mean average of 5—15 nm and alumina nanoparticles with
mean diameter of 20 nm into water using an ultrasonic vibra-
tor and a magnetic mixer to measure thermal conductivity
of nanofluids, experimentally. Experiments were conducted
with various solid volume concentrations of 0.02, 0.04, 0.1,
0.2,0.4, 0.8 and 1.0% and various fluid temperatures of 303,
314, 323 and 332 K. Measured data reveal that the thermal
conductivity of nanofluids highly depends on the solid vol-
ume concentration. They finally proposed Eq. 24 to predict
the effective thermal conductivity of nanofluids. Results of
sensitivity analysis indicate that the nanofluids temperature
is the least affective variable on the prediction of the effec-
tive thermal conductivity (Appendix, Fig. 12).

k —21483+ T 227.69
== s (24)
k, 3465810698 T

We extracted 1029 different responses from their model
within their valid ranges of variables and then categorized
them into seven unique datasets. The statistical analysis
gives p values of 1.000 and 1.000 for mean and variances,
respectively. This means that there is no statistical significant
difference between seven datasets. So, changing consider-
ably temperature doesn’t affect considerably responses. We
proposed a simple correlation using the nonlinear regression
method to predict effective thermal conductivity based on
experimental data. Equation 25 gives an average absolute
error of 1.11%. So, the proposed correlation is very accurate
and well-fitted.
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kegr = k(1 + 5.72977¢"806027) (25)

Model by Harandi et al. [67]

Harandi et al. [67] conducted an experimental study on ther-
mal conductivity of hybrid nanofluids and considered the
effect of nanofluids bulk temperature and volume concentra-
tion. They dispersed F-MWCNT-Fe;0, nanoparticles in eth-
ylene glycol using an ultrasonic processor. The experiments
were carried out for solid volume concentration range of 0 to
2.3% in temperatures ranging from 25 to 50 °C. They finally
developed a correlation (Eq. 26) using their experimental
data to predict effective thermal conductivity.

k,
kaf =1 40.0162 07038706009 (26)
b

We conducted a sensitivity analysis on their proposed
model and concluded that the role of nanofluids temperature
on the response can be neglected (Appendix, Fig. 13).

We extracted 828 responses from their model in valid
range of variables and then categorized them into six unique
datasets. The statistical analysis gives p values of 0.997 and
1.000 for mean and variances of seven unique datasets. So,
temperature doesn’t play a key role in prediction of effective
thermal conductivity in their model. We proposed a simple
correlation based on experimental data using the nonlinear
regression method (Eq. 27).

ke = ky (1 — 0.526495¢~00539237) 7

The average absolute error of the proposed correlation is
2.7%. It can be concluded that the proposed correlation is
accurate and well-fitted.

Model by Zadkhast et al. [68]

An another experimental study on the thermal conductiv-
ity of hybrid nanofluids has been performed by Zadkhast
et al. [68]. They used an ultrasonic processor to disperse
MWCNTs and CuO nanoparticles into water with volume
concentration range of 0.05-0.6%. All thermal conductiv-
ity measurements are repeated three times in the range of
25-50 °C. A hot water bath is used to stabilize the tempera-
ture at 25, 30, 35, 40, 45 and 50 °C, during the measure-
ments. They developed a mathematical model (Eq. 28) to
predict the effective thermal conductivity of hybrid nano-
fluids using experimental data. It can be concluded that the
most and least affective variables on the prediction of the
effective thermal conductivity are the thermal conductivity
of the base fluid and the nanofluids temperature (Appendix,
Fig. 14).

koo
kL‘* =0.907 exp (0.36¢™""" + 0.0009567) (28)
b

We extracted 432 responses from their model within their
valid ranges and categorized them into six unique datasets
with different temperatures. Statistical analysis gives p val-
ues of 0.065 and 1.000 for means and variances, respec-
tively. Therefore, there is no statistical significant difference
between datasets. We tried to propose a simple correlation
using the nonlinear regression model based on experimental
data. Equation 29 gives an average absolute error of 4.71%.
So, the proposed correlation is accurate and well-fitted.

ke = k(1 +0.574519¢) (29)

Model by Kakavandi and Akbari [69]

Kakavandi and Akbari [69] measured thermal conductivity
of SiC-MWCNT/water-EG hybrid nanofluids, experimen-
tally. The volume concentration was in range of 0-0.75%.
They finally introduced a correlation to predict the effective
thermal conductivity of hybrid nanofluids (Eq. 30).

keff

~ =0.0017x "% x T'3% +0.981 (30)
b

We performed a sensitivity analysis on their proposed
model, indicating that the nanofluids temperature doesn’t
play a key role in the prediction of the effective thermal con-
ductivity. We tried to extract as much as possible responses
from their model and categorized 576 responses into six
unique datasets. Statistical analysis gives p values of 0.998
and 0.632 for means and variances of these datasets, respec-
tively. Therefore, the test failed to reject the null hypothesis,
and so, temperature doesn’t affect considerably the response.
We proposed a simple correlation neglecting the role of
temperature using the nonlinear egression model based on
experimental data with average absolute error of 6.27% from
experimental data. Since the proposed correlation (Eq. 31)
is accurate and well-fitted enough.

kegr = ki (1 + 39842¢>61172) 31

Model by Karimi et al. [70]

An experimental investigation of thermal conductivity of
Fe;0, and CoFe,O,—water magnetic nanofluids has been
performed by Karimi et al. [70]. They synthesized nano-
particles using the co-precipitation method and the X-ray
diffraction, transmission electronic microscopy and vibra-
tion sample magnetometer are implemented to character-
ize the structure, size and magnetic properties of nanopar-
ticles. They measured thermal conductivity of nanofluids
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with volume concentration in range of 0 to 4.8% and finally
developed two correlations to predict effective thermal con-
ductivity of different nanofluids (Eqs. 32 and 33).

T 0.06418
kor = <1 + 359.28¢< ))
Tmax

X (—6.58 X 10772 + 0.00187 + 0.5694) for Fe,0,

(32)
T 0.06748
ko = <1+418.81<p<T >>

X (=6.58 x 107°T2 + 0.0018T + 0.5694) for CoFe, 0,
(33)

The results demonstrate that the most and least affective
variables on the response are thermal conductivity of the
base fluid and nanofluids temperature, respectively (Appen-
dix, Fig. 15).

We extracted 4851 responses from these two models and
categorized them into nine unique datasets. The statistical
analysis of these responses gives p values of 0.982 and 0.930
for means and variances. It means that changing consid-
erably temperature doesn’t affect considerably responses.
We proposed a simple correlation for prediction of effec-
tive thermal conductivity of nanofluids using the nonlinear
regression method based on experimental data (Eq. 34).

kegp = k(1 + 0.148349¢%001453%) (34)

This correlation gives an average absolute error of 3.06%
from experimental data. It can be concluded that this cor-
relation is accurate and well-fitted.

Model by Karimipour et al. [71]

Karimipour et al. [71] measured thermal conductivity of
CuO/liquid paraffin nanofluids in different range of volume
concentration (0.25 to 6 mass%) and bulk temperature (25
to 100 °C), experimentally. They introduced a mathematical
model to predict effective thermal conductivity of nanofluids
(Eq. 35). The sensitivity analysis shows highest sensitivity
on the thermal conductivity of the base fluid.

k
kiff =0.792194 4+ 0.0547913¢ + 0.00998805T
b

+0.000730423¢T — 0.00421237¢* — 0.000064329272

(33)

This case needs more investigations; therefore, we

extracted 6144 responses from their model in valid ranges

of variables and categorized them into 16 unique datasets.

Our statistical analysis gives p values of 1.000 and 0.980 for

means and variances of these datasets. Therefore, nanofluids

temperature doesn’t play a vital role in estimation of effec-
tive thermal conductivity (Appendix, Fig. 16).
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We proposed a simple correlation (Eq. 36), neglecting
the role of bulk nanofluids temperature using the nonlin-
ear regression method based on experimental data with an
average absolute error of 7.34%. It can be concluded that
the proposed correlation is accurate enough and well-fitted.

kegr = ki (1 +2.13017¢%30021¢) (36)

Model by Ranjbarzadeh et al. [72]

Ranjbarzadeh et al. [72] conducted an experimental study
on the water—silica nanofluids with an eco-friendly method
of nanoparticles production, recently. Their temperature and
nanoparticle volume concentration ranges are 20-55 °C and
0.1 to 3%, respectively. They proposed a correlation using
Levenberg—Marquardt algorithm, based on experimental
data (Eq. 37):

Kot T A7 e
k—b=1+0.4281<m> 08449 G37)

It can be concluded that thermal conductivity of the base
fluid is the most affective variable in effective thermal con-
ductivity prediction and the response isn’t much sensitive to
the nanofluids temperature (Appendix, Fig. 17). For further
investigation, we extracted 441 different responses from
their correlation in above-mentioned range of variables and
categorized them into seven unique datasets with different
temperatures. We computed p values of 0.998 and 0.960 for
means and variances, respectively, using statistical analysis.
It means that when we change considerably the nanoflu-
ids temperature, the responses don’t change significantly
(Appendix, Fig. 18). We introduced a simple correlation
using the nonlinear regression method, using experimen-
tal data (Eq. 38). This correlation predicts effective thermal
conductivity of nanofluids with an average absolute error of
3.44%. It can be concluded that the proposed correlation is
a simple, accurate and well-fitted.

ker = k(1 + 5.027430%67218) (38)

Model by Keyvani et al. [73]

Keyvani et al. [73] conducted an experimental study on the
measurement of cerium (CeO,)-ethylene glycol nanoflu-
ids, probably for the first time. The samples were made in
volume concentration range of 0.25-2.5% using a two-step
method. Measurements were done for all samples at temper-
atures ranging from 25 to 50 °C. They eventually proposed a
new correlation to predict the effective thermal conductivity
of nanofluids (Eq. 39):
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koo
kiﬁ = 0.9320 + 0.0673¢ + 0.0021T 39)
b

As a result of the investigations, the response is a high
sensitive function of the nanoparticle volume concentra-
tion and relatively insensitive to the nanofluids temperature
(Appendix, Fig. 19).

For further investigation, we extracted 360 responses
from their model within the valid range of variables and
categorized them into six unique datasets. The statistical
analysis of the means and variances gives 0.997 and 0.984,
respectively. This shows that there is no significant differ-
ence between datasets. We proposed a simpler correlation
neglecting the nanofluids temperature using experimental
data (Eq. 40) with an average absolute error of 5.66% from
experimental values.

keg = ky (1 4 556.762¢>2862%) (40)

Model by Afrand et al. [74]

An experimental study on thermal conductivity of
Fe;O,-water nanofluids has been performed by Afrand et al.
[74] with the nanoparticle volume concentrations of 0.1%,
0.2%, 0.4%, 1%, 2% and 3% under temperatures ranging
from 20 °C to 55 °C. They introduced a new correlation for
prediction of effective thermal conductivity of nanofluids
(Eq. 41).

k
ki"f = 0.9320 + 0.0673¢*33 7024 41
b

It is obvious from the statistical considerations (Appen-
dix, Fig. 20) that the most and least affective variables on the
effective thermal conductivity are the nanoparticle volume
concentration and nanofluids temperature, respectively.

We extracted 1920 responses from their model and cat-
egorized them into eight unique datasets. Our statistical
analysis gives p values of 0.937 and 0.926 for means and
variances of datasets, respectively. We tried to propose a
replacing simpler correlation ignoring the role of nanoflu-
ids temperature. The proposed correlation gives an average
absolute error of 5.98%.

kegr = ki (1 +2.42534¢0241448) (42)

Table 2 lists published experimental model for effective
thermal conductivity of nanofluids considering the nano-
fluids bulk temperature. P values for means and variances
are listed based on statistical analysis. The proposed replac-
ing correlation (neglecting the role of temperature) for each
model is shown in a separate column. The average absolute
error and the maximum deviation for each correlation also

are mentioned. All proposed correlations have been proved
simple accurate, reliable and well-fitted.

A comprehensive correlation

To propose a comprehensive correlation, we need to take a
statistical look at the result of sensitivity analysis of pub-
lished models. As it shown in Table 3, the nanofluids tem-
perature is the most frequent variable with title of “Least
Affective Variable”. Since we ignored the role of nanofluids
temperature and used 603 experimental data extracted from
10 published experimental papers (all mentioned papers
except those related to hybrid nanofluids) to correlate a
comprehensive mathematical model (Eq. 43) which had
been derived employing the nonlinear regression method to
predict effective thermal conductivity of nanofluids:

ko = kb<1 + 1.9647 0410499 kg.169334 d504244673>

LN @
P kpref P dpref
where ky, k., ¢ and d,, are thermal conductivity of base

fluid (W m K1), thermal conductivity ratio of nanoparticles
(WmK™), nanoparticle volume concentration and mean
diameter ratio of nanoparticles (nm). Thermal conductivity
ratio of nanoparticles is assumed thermal conductivity (k,, ),
which is 1500 (W m K~!) for MWCNTs. Mean diameter
ratio of nanoparticles also is the proportion of mean diam-
eter of used nanoparticles to the reference value of mean
diameter (a’pm_ = 10). Equation 39 is dimensionless and its
average absolute error of proposed compared to the experi-
mental data is 5.39%. This correlation is much simpler than
the other correlations involving trigonometric (sinus and
cosine), exponential, logarithmic, and so on. Furthermore, it
covers all experimental measured data in volume concentra-
tions ranging from O to 4% and mean diameter of nanopar-
ticles ranging from 10 to 150 nm. Figure 6 demonstrates the
fitness of predicted values versus experimental data. Figure 7
also shows the accuracy of the proposed correlation. Table 4
shows the predicted values of effective thermal conductivity
versus the experimental data and their deviations. Two last
columns list the correlated values by the models provided
by the other researchers and their deviations. As shown, our
proposed correlation gives more accurate values. It finally
can be concluded that the proposed correlation is compre-
hensive, reliable in mentioned range of variables, simpler
than the other correlations, accurate enough and well-fitted
on the experimental values. Therefore, it recommended to
use this correlation in prediction of nanofluids thermal con-
ductivity in studies employing the single-phase approach.
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Table 3 The summary of sensitivity analysis of the published models

References

Most affective variable

Least affective variable

Aberoumand et al. [58]
Fakoor Pakdaman et al. [59]
Ahammed et al. [60]

Patel et al. [61]

Li and Peterson [62]
Hemmat Esfe et al. [63]
Hemmat Esfe et al. [64]
Hemmat Esfe et al. [65]
Hemmat Esfe et al. [66]
Harandi et al. [67]
Zadkhast et al. [68]
Kakavandi and Akbari [69]
Karimi et al. [70]
Karimipour et al. [71]
Ranjbarzadeh et al. [72]

Keyvani et al. [73]
Afrand et al. [74]

Volume concentration

Mean diameter of nanoparticles
Nanofluids temperature

Thermal conductivity of the base fluid
Volume concentration

Volume concentration

Volume concentration

Volume concentration

Volume concentration

Thermal conductivity of the base fluid
Thermal conductivity of the base fluid
Thermal conductivity of the base fluid
Thermal conductivity of the base fluid
Volume concentration

Thermal conductivity of the base fluid

Volume concentration
Volume concentration

Thermal conductivity of nanoparticles

Thermal conductivity of the base fluid

Thermal conductivity of the base fluid, volume concentration
Nanofluids temperature, thermal conductivity of nanoparticles
Nanofluids temperature, thermal conductivity of the base fluid
Nanofluids temperature

Nanofluids temperature

Nanofluids temperature

Nanofluids temperature

Nanofluids temperature, volume concentration

Nanofluids temperature

Nanofluids temperature

Nanofluids temperature

Thermal Conductivity of the Base Fluid

Nanofluids temperature,
volume concentration

Nanofluids temperature
Nanofluids temperature

Fig.6 The fitness of responses
predicted by the proposed cor-
relation on the experimental
values
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Fig.7 The accuracy of pro- 1
posed correlation
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Conclusions

This paper takes a different look at the published mathemati-
cal model of the effective thermal conductivity of nanoflu-
ids. There are a couple of correlations considering different
variables with different roles. Nevertheless, there is no a
global agreement on the role of different variables on the
nanofluids thermal conductivity. We started with the mod-
els which driven from an experimental study. Our sensitiv-
ity analysis demonstrated that in most published models,
the role of nanofluids bulk temperature is negligible. For
detailed investigation, we extracted a big data bank from the
models in the valid ranges of variables. The next step was
performing statistical analysis of the variances and means of
different datasets (data populations). The results showed that
there is no significant statistical difference between different
datasets. It means that changing considerably the nanofluids
temperature doesn’t affect considerably the nanofluids ther-
mal conductivity.

We don’t claim that nanofluids bulk temperature really
doesn’t affect the effective thermal conductivity. Nonethe-
less, the proposed mathematical models for effective thermal
conductivity of nanofluids didn’t devote a considerable role
for temperature. Since we believe that the process of devel-
oping a correlation should be more detailed and the result-
ing correlation must satisfy physical aspects of phenomena.
Moreover, it was shown that the most of proposed correla-
tions for effective thermal conductivity are dimensionally
inconsistent.

We introduced a replacing simpler correlation (neglecting
the nanofluids temperature) for each published model with
a low average absolute error from experimental data. At the
end, we proposed a comprehensive correlation to estimate all
available experimental data. In this correlation, the role of
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nanofluids bulk temperature has been ignored. However, the
predicted values of the effective thermal conductivity are in
a good agreement with experimental results. Future studies
can be focused on investigation of effect of temperature on
all effective parameters of nanofluids. One also can experi-
mentally measure the thermal conductivity of nanofluids
with and without considering temperature to examine the
actual effect of temperature change on thermal conductivity
of nanofluids.
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