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Abstract
The need for fresh drinking water is increasing rapidly, and drinking water availability reduces day by day. Solar desalination 
is a viable option to change saltwater to fresh drinkable water. Solar still used for desalination includes processes like heating, 
evaporation, and condensation. The major problem faced by solar stills is that they have low productivity. Therefore, high 
demand for freshwater cannot be met. The present review aims to provide the researchers with an idea to select suitable meth-
ods for enhancing solar stills’ performance. This article mainly focuses on the climatic, design, and operational parameters 
affecting the performance of solar stills. Results reveal that a combination of the incredible intensity of solar radiations, solar 
still type, and regions with optimum temperature can provide higher daily distillate output. Further, high productivity can 
be achieved with inclined solar stills by making an inclination angle equivalent to the location’s latitude. A water depth of 
around 1 cm can provide the best output in terms of productivity for conventional solar stills. A combination of V-corrugated 
absorber plate with fins and energy storing materials coupled with external reflector plates can provide optimized conditions 
to enhance productivity. The performance of solar still can be improved by minimizing the gap between absorber plates and 
condensing cover. Finally, the sun tracking system, either single or dual axis in solar still, can enhance productivity.
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Introduction

The presence of quality drinking water strongly influences 
the socio-economic development of a country. Near about 
97% of water present on the earth is saline water [1]. This 
saline water can neither be used for industrial, agricultural, 
nor for drinking purposes. Presently the need of the hour is 
to convert saltwater into clean, usable water. To achieve this, 
the desalination process is the best alternative that includes 
heating, evaporation, and condensation processes. The best 
device available for the desalination process is solar still [2]. 
People around the globe are facing the problem of clean and 
potable water. Therefore, solar still can be considered as the 
best alternative that is cheap and possess low maintenance 
[3, 4]. However, low productivity concomitant with solar 
stills is hindering the distillate output per day [5]. Thereby, 
a comprehensive study involving different aspects that affect 
the output of solar still needs to be reviewed.

Furthermore, using renewable energy sources for power 
generation and heating/cooling purposes is an attractive idea 
[6]. As renewable energy is considered as green and clean 
energy [7], the different factors affecting solar still efficiency 
are categorized as climatic, operational, and design. Table 1 
depicts the details of various factors affecting the perfor-
mance of solar still. Out of these, the climatic factors are 
considered metrological factors that are not controlled by 
human beings. Therefore, it is necessary to concentrate on 
the operational and design aspects of solar stills for improv-
ing their overall performance [8, 9].

In the recent decade, due to global warming, a tempera-
ture rise is observed worldwide. Acute shortage of potable 
drinking water is reported due to a decrease in sources of 
ground-level water. Therefore, much attention is given to 
harnessing conventional and non-conventional resources. 
Solar energy is recognized as one of the cleanest energy 
sources utilized for power generation and other uses [3]. 
Solar still, in particular, has emerged as one of the best 
alternatives for generating potable water from saline water. 
The process of removing salt content from saline water and 

converting it into potable drinking water is known as desal-
ination [10]. Seawater contains about 55% chlorine ions, 
30.7% sodium ion, 7.7% sulfate ions, 3.6% magnesium ion, 
1.2% calcium ions, and 1.1% potassium ions of dissolved 
matters that vary from place to place. The desalination pro-
cess works on two methods, namely thermal and electrical 
desalination. The thermal desalination process utilizes solar 
energy or sun radiation [11, 12]. Solar radiations are used to 
heat the saline water resulting in evaporation of the saline 
water. Vapors formed owing to evaporation are collected on 
the condensing surface, and condensation of these vapors 
results in water droplets [13, 14].

On the other hand, there are several membranes and 
thermal processes like reverse osmosis (RO), multi-effect 
desalination (MED), multistage flashing (MSF), adsorption 
desorption desalination (ADD) and ion exchange (IEX) [15, 
16]. However, high energy consumption and brine disposal 
problem are associated with these technologies. Figure 1 
depicts the energy consumption from various desalination 
technologies. The most leading desalination technology by 
considering volume is RO with a portion of 65%, followed 
by MSF, MED, ED, and others with a portion of 21%, 7%, 
3%, and 4%, respectively [17, 18]. Figure 2 represents the 
amount of water produced from different technologies.

Table 1  Various parameters affecting the performance of solar still

Climatic parameters Design parameters Operational parameters

The intensity of solar radiation
Wind speed
Ambient temperature
Dust and cloud cover
Latitude and longitude of the location

Selection of material
Depth of water
Absorber plate area
Thermal energy storage materials
The inclination of the cover plate
The thickness of the cover plate
Use of internal/external reflectors
Gap distance
Sun tracking system
The thickness of insulation and insulating material

Salinity of water
The flow rate of water
Use of dyes
Others
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Fig. 1  Energy consumption from different technologies [15] (adapted 
with permission from ELSEV. B.V. with LIC. No. 5030650070249)
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Malaiyappan and Elumalai [19] studied single-basin 
solar still by using glass, plastic, and aluminum as a basin 
material. Results show that aluminum material gives bet-
ter performance than other materials, and the productivity 
of solar still depends upon the thermal conductivity of a 
material. Sameet al. [20] examined single-basin solar still 
performance in an arid region of Pakistan. The experiment 
conducted for eight days revealed an output of 1.7 L  day−1. 
Gnanadasonet et al. [21] worked on single-basin solar still to 
enhance efficiency. Two similar-sized solar stills were fab-
ricated for the experiments. The first still was tested experi-
mentally at atmospheric pressure, while various modifica-
tions (use of fins, pebbles, coating of a basin with black 
paint) were done to test the second. Results show that modi-
fied solar still provides better performance as compared to 
the one without modification. Abujazaret et al. [22] designed 
an inclined stepped solar still to conduct experiments in 
Malaysia’s Bangi region. The experimental setup comprised 
28 trays with dimensions of 0.6 m height and 1.2 m length 
to enhance the evaporation rate. Results revealed productiv-
ity of 4.383 L  m−2  day−1. Rashidi et al. [23] numerically 
studied nanoparticles’ effect on the productivity of stepped 
solar still. Results show that increasing the concentration 
of nanoparticles from 0 to 5% enhanced the productivity of 
stepped solar still by 22%. Most of the research is performed 
on conventional solar stills but owing to their low productiv-
ity. These stills are not utilized in day-to-day life regularly.

Based on the current work, it is noted that a comprehen-
sive assessment that affects the solar still performance based 
on climatic, design, and operational parameters is lacking. 
In the present work, a review of solar stills is carried out 
addressing the following points: (a) climatic conditions 
(intensity of radiation, ambient temperature, wind speed and 
latitude and longitude of location), (b) design parameters 
(selection of material, depth of water, absorber plate area, 
thermal energy storage materials, the thickness of insulation 

and insulating material, the inclination of the cover plate, 
cover plate thickness, use of internal/external reflectors, gap 
distance, sun-tracking system), and (c) operational param-
eters (salinity of water, the flow rate of water, use of dyes).

Parameters affecting the productivity 
of solar still

Climatic parameters

Various climatic parameters that affect the productivity of 
solar still are listed below.

• The intensity of solar radiation
• Wind speed
• Ambient temperature
• Dust and cloud cover
• Latitude and longitude of the location

Intensity of solar radiation

Distillate output associated with solar still is strongly 
affected by the intensity of solar radiations. The higher the 
intensity of radiations, the better will be productivity [18, 
24]. Hourly variation in atmospheric temperature (Ta), water 
temperature (Tw), glass temperature (Tg), and intensity of 
radiation is depicted in Fig. 3. It is observed that temperature 
rises from 8:00 to 14:00 and then starts to decline due to the 
low intensity of radiations. In the afternoon session between 
12:00 and 13:00, the intensity of radiation and ambient tem-
perature is at the higher side worldwide. The temperature 
of water and glass shows an increasing trend toward radia-
tion intensity, enhancing the productivity in the afternoon 
session.

65.00%

21%

7%
3% 4%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Reverse
osmosis

(RO)

Multi stage
flash

distillation
(MSF)

Multi effect
distillation

(MED)

Electro
dialysis

(ED)

Other

W
at

er
 p

ro
du

ce
d/

%

Fig. 2  Amount of water produced from different technologies 
[17] (adapted with permission from ELSEV. B.V. with LIC. No. 
5030640738937)
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[13] (adapted with permission from Taylor & Francis with LIC. No. 
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Moreover, maximum water and glass temperature are 
found in afternoon session; hence, productivity get increased 
[13]. The effect of solar intensity on the thermal output 
of single-slope solar still was investigated by Omar et al. 
[25]. Experimental results conclude that solar still output 
is directly relative to the concentration of solar radiations. 
Maximum productivity is obtained in the afternoon, attrib-
uting to higher intensity of radiation. Evaporative cooling 
system integrated with single-slope solar still was analyzed 
by Almuhanna [26]. Results revealed the intensity of solar 
radiations dictates the solar still productivity. It is further 
reported that 5.9 L  m−2 is the distillate output achieved from 
the tests. Nafey et al. [27] studied various parameters that 
can affect the solar still performance and concluded that 
at a high degree of temperature, solar still can give better 
performance. Ghoneyemet al. [28] analyzed solar still and 
established empirical equations to express the dependency 
of solar still productivity on ambient temperature and solar 
radiation. A literature survey based on the location and 
intensity of radiation is depicted in Table 2.

Based on the above literature, it can be concluded that a 
combination of the incredible intensity of solar radiations 
and regions with high temperatures can provide better pro-
ductivity in terms of daily distillate output. However, the 
solar still utilized for generating distillate output can signifi-
cantly affect productivity. Single-basin multi-step solar basin 

(1100 W  m−2 and 8.9 L  m−2  day−1) and multi-wick solar still 
(1198 W  m−2and 9.012  Lm−2) provide better productivity 
as compared to triangular prism solar still (1256 W  m−2and 
0.91 L  m−2).

Wind speed

Another significant factor influencing the productivity of 
solar stills is wind speed. Sebaii [29] evaluated the effect 
of wind speed on active and passive-type solar stills exper-
imentally. Additionally, numerical calculations have also 
been computed. Results infer that solar still productivity 
is directly relative to the wind speed. Soliman [30], Garg 
and Mann [31] also predicted that productivity enhances 
higher wind speed and solar radiations. Tiwari et al. [32] 
studied the parameters affecting active and passive distil-
lation. Results inferred that the distillate output of solar 
still increases with increasing wind velocity up to a certain 
peak point. Productivity remains constant after attaining 
peak point. Zurigat et al. [33] worked on a regenerative 
solar desalination unit and concluded that wind veloc-
ity has a substantial effect on the productivity of solar 
still. Productivity can be enhanced by increasing the wind 
velocity from 0 to 10 m  s−1 to about 50%, depicted in 
Fig. 4. Reddy et al. [34] carried out a thermal analysis on 
basin type of solar still and invented a correlation model 

Table 2  Performance of solar stills at different locations and intensity of radiation

References Design of solar still Location The intensity of 
the radiation/
Wm−2

Remark

[146] Passive solar still Egypt 978.52 Average productivity was 4.1 L  m−2

[147] Triangular pyramid solar still Chennai, India 984.73 Latent heat of thermal energy storage system integrated 
with solar still produced 4.5 L  m2  day−1

[148] Hemispherical solar still Tamil Nadu, India 732 and 745 Results show that distillate output can be increased by 
lowering the cover temperature

[149] Single-basin solar still Mashhad, Iran 943.5 The productivity of the still can be improved by intro-
ducing partitions in the still

[150] Single-basin multi-step solar still Selangor, Malaysia 1100 The modification resulted in increased productivity of 
solar still from 6.9 to 8.9 L  m−2  day−1

[151] Basin solar still Guwahati, India 919 Maximum distillate per day was reported to be around 
3.94 L  m−2

[50] Hybrid solar still Tamilnadu, India 1039 Inclined still combined with fin-shaped absorber gives 
5.21 L  m−2 distillate output

[152] Triangular prism solar still Victoria, Australia 1256 Triangular prism solar still produced an output of 0.9 L 
 m−2  day−1

[153] Floating wick, multiple effect 
diffusion solar still

Patiala, India 917 Basin with wick material and heat exchanger were 
used for waste heat recovery. Results depict enhanced 
productivity

[154] Weir-type cascade solar stills Zahedan, Iran 817 Results show that phase change materials with a weir 
type of cascade solar still can give better distillate 
output

[155] Multi-wick solar still Allahabad, India 1198 The maximum yield obtained is 9.012 L  day−1 by using 
a black cotton wick
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on the effect of wind speed on radiative, convective, 
and evaporative heat transfer coefficient. The active and 
passive solar still critical or typical speeds were 10 and 
8 m  s−1 for summer and winter seasons. However, there 
is sufficient literature available based on the wind speed 
effect influencing productivity. Research on the optimum 
values of wind speed that can increase the overall produc-
tion is lacking.

Dust and cloud cover

Accumulation of dust and dirt particles on the solar still 
glass surface can reduce solar energy conduction and 
reduce productivity. Hegazy [35] studied the influence 
of dust particles on the solar still output in Egypt’s Cen-
tral regions. Experiments were conducted for one month 
without cleaning the glass cover. Results revealed that the 
presence of dust and dirt particles reduced the productivity 
of solar still significantly. Accumulation of dust on evacu-
ated tube collectors was examined by Nasharet al. [36]. 
For the experiments, two collector blocks, one with dust 
and dirt particles and the other in cleaned condition, were 
used. Results show that the dusty collector block’s heat 
was 60–70% lower than the clean collector. Nashar [37] 
investigated the seasonal effect of deposition of dust on the 
evacuated tube collector. The experimentation was carried 
out in Abu Dhabi, United Arab Emirates. Results inferred 
that dust deposition could drop the glass transmittance 
by 10 to 18%. Zamfiret et al. [38] studied the influence 
of cloud cover on flat plate solar collectors’ efficiency. 
Results indicated that cloudy conditions dictate the output 
from solar collectors. Most of the investigations carried 
out in dusty environments reveal that productivity reduces 
with such natural occurrences, and subtle precautions can 
enhance productivity.

Latitude and longitude of the location

The experimental setup’s latitude and longitudinal location 
plays a pivotal role in determining the overall productivity 
of the solar stills [39]. Researches carried out with these 
parameters at different locations worldwide are presented 
in a tabular form in Table 3. This information is utilized to 
build up a variation pattern among the optimum cover tilt 
angle and latitude of the location. Longitude and latitude 
are imaginary lines that run across the earth. Longitudes 
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Fig. 4  Effect of wind speed on the productivity of solar still 
[27] (adapted with permission from ELSEV. B.V. with LIC.
No.4827130278404)

Table 3  The productivity of solar still at different latitude and longi-
tude

References Location Latitude and lon-
gitude

Productivity/
Lm−2  day−1

[156] Jeddah, Saudi 
Arabia

21.543° N
39.172° E

4.90

[157] Ahmedabad, India 23.030° N
72.580° E

3.80

[158] Mashhad, Iran 36.300° N
59.600° E

3.14

[159] Tipaza, Algeria 28.000° N
2.0000° E

4.00

[160] Tamil Nadu, India 13.090° N
80.270° E

2.90

[161] Adrar, Algeria 27.866° N
0.2833° E

1.31

[162] Delhi, India 28.613° N
77.209° E

7.50

[43] Amman, Jordan 31.949° N
35.932° E

5.68

[163] Tanta, Egypt 30.783° N
31.000° E

5.70

[164] Isa Town, Bahrain 26.173° N
50.547° E

5.90

[165] Tamil Nadu, India 13.090° N
80.270° E

4.00

[166] Dhahran, Saudi 
Arabia

26.266° N
50.150° E

5.71

[167] Rajasthan, India 26.572° N
73.839° E

3.90

[168] New Delhi, India 28.613° N
77.209° E

2.50

[169] Selangor, Malaysia 3.333° N
101.500° E

5.00

[170] Muscat, Oman 23.610° N
58.540° E

6.00

[171] Valencia, Spain 39.466° N
0.3833° W

1.60

[172] Allahabad, India 25.450° N
81.850° E

2.00

[173] Foggia, Italy 41.464° N
15.546° E

1.80

[174] Yokohama, Japan 35.444° N
139.638° E

9.44
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are vertical lines that meet at the North and South poles, 
whereas latitudes are horizontal lines running from East to 
West. Experimental results inferred that latitude coordinate 
location influences the productivity than coordinates of lon-
gitude [40]. Further, it also noted that productivity is maxi-
mum with inclined solar stills when the inclination angle is 
made equivalent to that location’s latitude.

Design parameters

Various design parameters affecting the solar still productiv-
ity are listed below:

• Selection of material
• Depth of water
• Absorber plate area
• Thermal energy storage materials
• The inclination of the cover plate
• Cover plate thickness
• Use of internal and external reflectors
• Gap distance
• Sun tracking system
• The thickness of insulation and insulating material

Selection of material

Evaluating the properties (thermal conductivity, absorptiv-
ity and transmissivity) of still material is the first step in the 
fabrication of solar stills, since the selection of materials 
for the various components of solar still plays a vital role. 
Researchers have investigated the various materials for basin 
and cover plate of solar stills. Burbano [41] studied the effi-
ciency of solar still by using different basin materials. In the 
study, stainless steel and aluminum were utilized as basin 
materials. Results showed that aluminum could give better 
results than stainless steel due to its good thermal conductiv-
ity. Alaudeen et al. [42] analyzed the solar stills by consid-
ering glass as basin material. Solar still with basin size of 

1 × 1 × 0.2  m3 was tested with various heat-storing materials. 
Tests infer a considerable enhancement in the solar still out-
put by incorporating corrugated sheets as the basin material. 
Badran et al. [43] performed experiments on a single-slope, 
solar still using an asphalt basin liner. Test results revealed 
that the productivity enhanced by around 51% by using an 
asphalt basin liner. Ghoneyem et al. [28] designed and fab-
ricated basin solar still with different cover plate materials 
(glass and plastic). Experimental results inferred that the 
glass cover plate with the minimum thickness (3 mm) sub-
stantially influences the solar still distillate output. Apart 
from the investigations above, cast iron has also been used 
as basin material. However, rusting and corrosion of cast 
iron have restricted the utilization of solar stills. Therefore, 
based on the literature, it can conclude that aluminum and 
glass with nominal thickness can be used as basin and cover 
plate material, respectively, for better output.

Depth of water

The depth of water in the solar still is one of the significant 
design factors that must be assessed to enhance the overall 
distillate output from stills. The productivity of solar still 
is maximum at a minimum depth of water. Figure 5a and b 
shows the effect of water depth on the efficiency and annual 
yield of solar still. Retaining the minimum depth of water in 
solar still is a challenging task. To achieve this, various aug-
mentation techniques have been put forth by many research-
ers. The details of the results attained for water depth and 
solar still type are mentioned in Table 4.

From the above literature, it is observed that the depth 
of water influences productivity inversely. Maintaining a 
minimum water depth is a difficult and challenging task 
due to the evaporation of water droplets continuously. It is 
also reported that wet clothes are used to maintain water’s 
required depth in the solar stills. However, it is concluded 
that the water depth of around 1 cm in the basin can give 
the best output in terms of productivity in the case of 

Fig. 5  Effect of water depth 
on the (a) efficiency and (b) 
annual yield of solar still 
[143] (adapted with permis-
sion from ELSEV.B.V. with 
LIC. No. 4827130436034 and 
4827130628421)
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conventional (single basin) solar still. Using high water 
depth, the amount of water existing in the basin will be 
more due to which time required for heating the water and 
evaporation.

In contrast, at shallow water depths like 2 to 5 mm, the 
basin’s water is significantly less. It may not be uniformly 
distributed over the steps because of dry spots due to rapid 
evaporation. In such conditions, though the depth of water 
is less, the productivity of the still may decrease; hence, 
it is essential to have an optimum depth of water that will 
enhance the still’s productivity [44, 45].

Absorber plate area

The absorber plate is mainly used to absorb maximum solar 
radiation; thereby, the absorber plate’s area plays a vibrant 
role in designing solar still [46]. Copper, aluminum, steel 
are most widely used as materials for absorber plate [47]. 
Many researchers have proved that the performance of a 
solar still improves by enhancing the surface area of evapo-
ration [48]. Numerous augmentation techniques to increase 
surface area are formulated by many investigators. Velmuru-
gan et al. [49] developed a galvanized iron absorber plate 
with 25 trays. Fins and sponges were also incorporated to 
enhance the exposed surface area. Results show that produc-
tivity improved by the incorporation of fins and sponges on 
the absorber plate. Hansen and Murugvel [50] performed 
experiments by considering different absorber configura-
tions. The integrated solar still was tested with different 
geometries of absorbers, namely flat grooved and fin-shaped. 
Results reveal that fin-type absorber yields higher produc-
tivity (25.7% higher than flat absorber). Figure 6 depicts 
the variation in overall efficiency with different types of the 
absorber.

Performance of inclined solar still with absorber plate 
possessing rectangular grooves and ridges was studied 
by Anburaj et al. [51]. Tests reveal yield of solar still was 

around 4.27 Ld  ay−1 owing to the excessive heat absorbed 
in energy storage materials placed in rectangular grooves. 
Kabeel et  al. [52] investigated pyramid solar still hav-
ing V-grooved absorber plate with phase change material 
depicted in Fig. 7. Results show that an 87% increase in 
distillate output as compared to conventional pyramid solar 
still was observed. Elshamy et al. [53] studied tubular solar 
still using a flat plate and semicircular corrugated absorber 
shape. Figure 8 shows a semicircular corrugated absorber. 
Experimental results showed that the semicircular absorber 
plate gave 4.3 L  m−2 distillate output (26.46% higher than 
the flat plate absorber). Deu [54] worked on a non-contin-
uous absorber area and determined the thermal efficiency 
and overall thermal losses of semispherical solar collector. 
Effect of hollow circular and hollow square fins on the sur-
face of the mild steel absorber plate was investigated by Jani 
and Modi [55]. For the experiments, circular fins and square 
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plate fins (Fig. 9a and b) made up of mild steel with dimen-
sions of 25 × 20 × 2 mm were used. Experimental results 
showed that absorber plates with hollow circular fins gave 
more distillate output than hollow square fins. The produc-
tivity of any solar still is strongly influenced by the evapora-
tive area. Integration of fins in a basin of solar still increases 
the surface area and enhances the rate of evaporation, lead-
ing to improving the productivity of solar still [56]. Sathy-
amurthy et al. [57] studied the influence of fin on an absorber 
plate of tubular solar still. The result of experimentation 
shows improvement in surface area and evaporation rate 
that leads to accelerating the productivity of still. Panchal 
et al.[58] assessed the impact of vertical and inclined fin and 
compared the results with CSS. The results show that 27 and 
25% increment in the productivity of still is obtained with 
inclined and vertical fins compared to CSS. Finally, it can be 
concluded that a combination of V-corrugated absorber plate 
with fins and energy-storing materials can provide optimized 
conditions to enhance productivity.

Use of thermal energy storage materials

Enhancing the productivity of solar still necessitates the 
temperature of basin water to be high [59]. Various augmen-
tation techniques are employed to achieve temperature rises, 
such as thermal energy-absorbing and storing materials, the 
use of phase change materials, and the use of nanoparticles 
[39, 60]. A nanofluid is a substance that contains nanosized 
particles [61]. Sun-oriented thermal advancements utilize 
the whole solar spectrum to give high temperature [62]. 
Figure 10 shows various thermal energy storage materi-
als. Incorporating materials that are energy absorbent has 
a very prominent role in the fabrication of solar stills [63]. 
A substantial amount of work is reported on the usage of 
energy-storing materials [62]. The productivity of solar still 
was examined by using black granite gravel, Sakthivel and 
Shanmugasudar [64]. Black granite gravel was sprayed on 
the basin area with an average thickness of 6 mm to act as 
energy storage material. The mathematical model was devel-
oped to predict the temperature of gravel, glass, and water. 
Results show that the utilization of black granite gravel 
observes a 17 to 20% increase in yield. Abdallah et al. [65] 
studied the effect of thermal energy-absorbing material on 

solar still. Experimental results show that black rocks absorb 
the incident radiations better than metallic sponge wire and 
result in enhanced productivity by 20%. Figure 11 represents 
the results of experimentation.

Murugavel et al. [66] investigated the effect of wick mate-
rials (cotton, jute, sponge) on the performance of solar still. 
Results show that black cotton cloth offers greater yield as 
compared to other wick materials. Further, Kalidasa et al. 
[67] studied the influence of several sensible heat-soaring 
materials (quartzite rock, red brick pieces, concrete cement, 
washed stones, and iron scraps) on the productivity of sin-
gle-basin double-slope solar still. Results show that quartzite 

Fig. 9  a Hollow circular and (b) 
square fins [55] (adapted with 
permission from ELSEV.B.V. 
with LIC. No. 4827060084558 
and 4827060273211)
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rock material offers enhanced productivity as compared to 
other materials. Nafey et al. [68] investigated the influence of 
black rubber (energy-soaring material) with variable thick-
ness. Results reveal that enhanced performance is attained 
by black rubber possessing a thickness of 10 mm.

Further, Kabeel et al. [69] examined the influence of 
sensible storage material on single-basin solar still. For the 
experimental study, graphite was used as a sensible stor-
age material due to its high thermal conductivity. Results 
revealed that daily production of still was around 7.7 L 
 m−2 that are much higher than traditional single-basin still. 
Samuel et al. [70] studied the utilization of low-cost energy 
storage materials. Theoretical and experimental tests using 
spherical salt storage material were conducted. Results infer 
that solar still gave maximum productivity up to 3.7 L  m−2 
compared to conventional single-basin solar still. Omara 
and Kabeel [71] performed experiments on sand bed solar 
still using black and yellow sand. Additionally, the effect of 
the height of sand beds was also studied. Results show that 
black sand with 0.01 m height gives 42% more yield than 
conventional solar still, while yellow sand with the same 
height gives 17% more yield. Figure 12 depicts the cumula-
tive distillate output with different types of sand. In addition 
to energy storage materials, phase change materials have 
also been used to improve solar still’s productivity. Phase 
change materials are also called latent heat storage materi-
als because of their unique property of absorbing energy 
and adapting to physical state change [72]. Paraffin wax is 
utilized as a phase change material more popularly due to its 
better thermal properties (specific heat 2320 J  kg−1 0C; ther-
mal conductivity 0.23  Wm−10C; density 802 kg  m−3) [73]. 
Table 5 depicts the summary of phase change materials used 
on different types of solar stills.

Moreover, hybrid nanoparticles are the combination of 
two or more organic or inorganic components [74, 75]. 
These materials have gigantic exploration interest due to 
their special properties, like quantum confinement effect and 
extremely large surface-to-volume ratios [76]. These nano-
fluids are utilized for various solar applications like flat plate 
collectors, parabolic collectors, evacuated tubes, and solar 
still [77–79]. Nanomaterials’ properties depend on their size, 
shape, and other structure porosity [80]. Gazar et al. [81] 
assessed the performance of conventional solar still with 
alumina and copper oxide as a hybrid nanofluid. The result 
of the experiment inferred a 27 and 21% rise in productiv-
ity in the summer and winter season, respectively, with the 
integration of hybrid nanofluid. Kabeel et al. [82] studied the 
impact of paraffin wax and graphite nanoparticles as hybrid 
material on CSS performance. The result shows a 63 to 94% 
enhancement in productivity.

Effect of insulating material and thickness of insulation

Generally, heat loss occurs from the lower and lateral sur-
faces of the basin due to the absence of insulation at these 
surfaces, affecting the overall production. The productivity 
of any solar still gets decreased due to a large amount of 
heat loss through the basin and sidewalls of a still. Most of 
the researchers reported that only 38.40% of solar energy 
was used for evaporation. The remaining 61.60% of energy 
gets wasted as heat loss from the solar still. About 35.70 
and 25.70% of energy were lost from the glass cover and 
side-bottom of the still, respectively [83, 84]. Therefore, it 
is necessary to minimize the heat loss that can be attained 
by providing adequate padding using different insulating 
materials. Numerous researchers have widely investigated 
insulating materials such as sawdust, polyurethane, and 
gypsum. The research showed that the required thickness 
of insulation directly depends on insulating constituents’ 
thermal conductance. Solar still productivity improves 
with an increase in the thickness of insulation depicted in 
Fig. 13. It is observed that the daily productivity increases 
from around 1.8 to 3.3 L  m−2 as the thickness of insulating 
material increased from 0 to 0.1 m, indicating that proper 
insulation is necessary to reduce the heat losses and enhance 
productivity. A detailed summary of insulating materials and 
the thickness of insulation are presented in Table 6.

Inclination of the cover plate

As discussed in the previous sections, solar still productivity 
strongly depends on latitude coordinates and the intensity of 
radiations on saline water [61]. To receive a higher amount 
of solar radiation from the sun, the solar still covers plate’s 
inclination angle cover plate is a crucial factor that needs to 
be considered. Most of the investigations revealed that the 
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inclination angle must be equivalent to that particular loca-
tion’s latitude so that the maximum intensity of radiations 
can be achieved throughout the year. Further, it is observed 
that varying the tilt angle concerning the latitude coordinates 
decreases the overall productivity (Fig. 14). Table 7 summa-
rizes the inclination angle of the cover plate used for differ-
ent configurations of solar still. Also, Fig. 15 represents the 
condensing cover of solar still at different inclination angles. 
The result depicts the monthly variation of distillate output 
nearly the same for all the cover plate’s inclination angle.

Thickness of cover plate

The thickness of the cover plate and condensing cover mate-
rial are two other factors that can significantly influence the 
productivity of solar stills [85]. Highly transmissive materi-
als like glass are widely used as cover plate material for solar 
stills owing to their high affinity to absorb radiations. Addi-
tionally, it is also absorbed that lower cover plate thickness 
is favored for stills with higher productivity. Figure 16a and 
b depicts the influence of glass cover thickness and condens-
ing cover materials on the solar still productivity, respec-
tively. Results reveal that maximum solar still productivity 
is attained with a 2-mm-thick cover plate and decreases with 
the increase in cover plate thickness. Figure 16b shows the 
productivity attained with copper, glass, and plastic cover 
plates. Results show that plastic and glass cover plates pos-
sessing lower density can provide productivity similar to 
copper. Therefore, the cover plate’s material and thickness 
need to be correctly selected to achieve good productivity. 
Table 8 depicts a review of the effect of cover plate thickness 
on the productivity of solar still (Fig. 17).

Use of internal and external reflectors

Conventional solar stills have the constraint of low output. 
Many researchers have worked on the use of reflectors to 
improve solar still productivity [86]. The use of reflectors 
comes into consideration when the intensity of radiation Ta
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from the sun is low or the atmospheric temperature is 
low. There are three types of reflectors, namely internal, 
external reflectors (top and bottom) and a combination 
of internal and external reflectors, shown in Figs. 18, 19, 
and 20, respectively. Internal reflectors are positioned on 

the inner side of solar still to enhance productivity sig-
nificantly. These reflectors are used to centralize all the 
solar radiations onto the water. Tamimi [87] experimented 
on single-slope solar still. Mirrors were used as internal 

Table 6  Summary of the various insulating materials and insulation thickness

References Type of solar still Insulating material The thickness of insulation/mm Remarks

[68] Single sloped Foam 40 Foam is provided on the bottom 
and lateral surfaces of the still 
to reduce the loss of heat

[31] Double slope Sawdust 25 7% rise in productivity due to the 
effect of insulation

[205] Ground still Soot layer 25 Solar still productivity improves 
by 17%

[206] Inclined humidifier dehumidi-
fier still

Glass wool 10, 50, and 100 Results show a slight improve-
ment in productivity

[207] Double basin and conventional 
single slope

Styrofoam (sides) 25 and (base) 50 For conventional solar still 
9% improvement while 33% 
improvement for double-basin 
solar still

[208] Single basin Sawdust 75 Results reveal considerable 
improvement in productivity

[209] Single basin – 10–50 Results infer that by increasing 
the thickness of insulation, 
output improves by 40% in July 
and 50% in January shown in 
Fig. 14

[210] Single basin Polyester 100 Results depict significant produc-
tivity improvement

[211] Single basin Styrofoam 100 The bottom and lateral surfaces of 
the still are insulated to reduce 
the loss of heat

[212] Single basin Fiberglass 50 Considerable improvement is 
achieved in terms of output of 
solar still

[213] Single basin Thermocole – The output from still shows 6% 
enhancement

[214] Single-slope solar sill Air film acts as insulation 
with polyurethane as a 
sealant

–

Fig. 14  Effect of thickness of 
insulation on the productivity 
of solar still in January and July 
[209] (adapted with permission 
from ELSEV. B.V. with LIC. 
No. 4827070699983)
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reflectors, located on the inner walls of the still. Results 
show a considerable increase in solar still productivity.

External reflectors are utilized to improve the direction of 
radiation beams transmitted through the glass cover. Gen-
erally, suitable reflective materials such as mirror-finished 
metal plates are used to produce external reflectors. Fur-
ther, there are two types of external reflectors, external top 
reflectors, and external bottom reflectors depicted in Fig. 19a 
and b. However, incorporating internal and external reflec-
tors separately has resulted in enhanced productivity [86]. 
A detailed summary to depict the review of the effect of 
various reflectors on solar still is presented in Table 9. Incor-
porating reflector plates, either internal, external, or both, 
can significantly increase the distillate output in solar stills.

Gap distance between absorber plate and condensing 
cover

It was observed from various studies that solar still output 
could be enhanced by reducing absorber plates and con-
densing cover gaps. If the gap is optimum, saturated fluid 

Table 7  Summary of the inclination angle of the cover plate with different locations along with remarks

References Solar still type Angle of inclination Latitude of location Remarks

[100] Basin type solar still 15°, 25°, 35°, 45°, and 55° Jordon, 31.949° N Experimental results show that at 
a 35° tilt angle, solar still gives 
maximum distillate output

[215] Single-basin solar still 10° Madurai, 9.9252° N It was seen that solar still produc-
tivity improves once the inclina-
tion angle is near about equal to 
that place’s latitude

[216] Solar still 30° Mehsana, 23.5880° N Solar still gives better perfor-
mance with a higher angle of 
tilt as compared to the latitude 
location

[212] Single-basin solar still 45° Syria, 34.8021° N Inclination angle ± 10° of latitude 
can give better results

[217] Pyramid-shaped and single 
slope

Pyramid tilt angle 50° Aswan, Egypt, 24.0889° N Single-slope type was recom-
mended for such the location 
where the latitude is higher than 
20°

[183] Active and passive 5°, 15°, 30°, 40°, 45° Chennai, Jodhpur, Kol-
kata, Mumbai, and New 
Delhi

Annual solar still productivity 
was higher when the inclina-
tion angle was equivalent to the 
latitude of the location

[31] Double-slope solar still 10°,20°,30° Madras, 13.0827° N Better results were obtained at 
10°angle of inclination

[218] solar still with inclined evapo-
rating yute

30°,35°,40° Egypt, 26.8206° N Results show that 30°and 35° 
were the optimum angle of incli-
nation for increased productivity

[219] Single-basin solar still 50°, 15°, 25°, 35°, 45°, 55°, 
and 65°

Cyprus, 35.1264° N The best angle of inclination was 
35°, which is equivalent to the 
latitude of that region

[220] Single-compartment and 
double-compartment still

13°, 14.5°, 16°, and 17.5° Cameroon, 7.3697° N Better results were obtained when 
the angle of inclination was 16°
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will reach the condensing surface in less time, enabling to 
improve the continuous air movement [88]. Keshtkar et al. 
[88] performed CFD modeling to observe the impact of gap 
distance between the cover plate and basin of a solar still. 
The investigation inferred at a gap distance of 8 cm still 
provides the highest distillate out than the 4 and 12 cm gap. 
Therefore, it was presumed that to achieve maximum pro-
ductivity from solar still, the gap between cover and surface 
of water basin essentiality is optimum. Outcomes of the 
experimentations are depicted in Fig. 21.

Rahbar and Esfahan [89] analyzed the effect of gap dis-
tance on the single-basin solar still production theoretically 
and numerically. Results inferred that when the height of 

the solar still was minimized, the distance between the glass 
cover and water surface also gets minimal, thereby improv-
ing the convective heat transfer coefficient and, therefore, 
an enhanced condensation rate. Jamil et al. [90] investigated 
the effect of varying the gap plate distance on solar still 
productivity. Figure 22b shows the gap distance between 
the absorber and condensing surface. H1 was the highest 
gap distance, while H4 was the lowest. Experimental results 
for the varying gap are shown in Table 10. Results revealed 
that productivity gets enhanced by maintaining optimum 
gap distance. The gap distance between the glass cover and 
water surface is minimum (in the case of H3 and H4), which 
improves the convective heat transfer coefficient and thus 

Fig. 16  a Effect of thickness of 
glass cover on yield and b effect 
of condensing cover material on 
daily yield [167] (adapted with 
permission from ELSEV. B.V. 
with LIC. No. 4827071047892 
and 4827071198971)
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Table 8  Review of the effect of thickness of cover plate over the productivity of solar still

References Type of solar still The thickness of 
the cover plate/
mm

Cover material Remarks

[167] Active solar still 2, 3, 4, 5, and 6 Copper, glass, plastic Experimental results show at 2 mm thickness of the 
cover plate, and productivity was higher. Copper 
provides a higher yield in comparison with glass 
and plastic owing to their high thermal conductiv-
ity

[28] Single-basin solar still 3, 5, and 6 Glass 3-mm glass cover gives maximum productivity up 
to 15.5%

[221] Passive single-slope single basin 4, 8, and 12 Glass Results show that the thinnest glass cover gives 
higher distillate output

[222] Double-slope solar still 3, 4, and 5 Glass Experimental results revealed that 3 mm thickness 
of glass cover gives a better productivity

[140] Pyramid-shaped solar still 3 Glass 3 mm glass thickness was considered for better 
output

[223] Finned acrylic solar still 4 Glass 4 mm glass thickness was considered for better 
output

[224] Domestic scale solar still – Transparent PVC sheet The experiment’s outcome depicts the productivity 
of still with PVC sheet found to be less (42% less) 
compared to the glass material

[85] Single-basin solar still 4, 5, and 6 Glass Results show that 4-mm and 6-mm-thick glass cover 
provides 27 and 12% higher yield when contrasted 
with 6-mm-thick cover. Results of the experiment 
are shown in Fig. 17
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increases condensation rate, leading to improvement in solar 
still performance. The optimum gap between absorber plates 
and condensing cover needs to be considered in detail to 
have higher productivity of solar stills.

Sun tracking system

The primary purpose of the development of a sun track-
ing system is to enhance solar still productivity. One can 
increase the incident solar radiations on still by tracking the 
sun’s location in the sky. The slant angle of the sun is one 

of the vital factors in solar applications [91]. Sun tracking 
system is a computerized device that rotates solar still direc-
tion as per the sun’s movement. Mainly there are two types 
of sun trackers, namely, single-axis tracker and dual-axis 
tracker [92]. Single-axis trackers can track the sun only from 
East to West direction, while dual-axis trackers can track the 
sun’s location on any day and anytime. From most of the 
literature, it was clear that the sun tracking system enhances 
solar still productivity when compared with a fixed system. 
Maliani et al. [93] and Abdelghani [94] demonstrated that 
with the sun tracking system’s utilization, the temperature 
of the water increases quickly. Abdallah and Badran [95] 
found out that a 22% improvement in solar still productiv-
ity was observed by incorporating a sun tracking system. 
Figure 23 shows water collected for both fixed still and still 
with a sun tracking system. Khalifa and Mutawalli [96] used 
a two-axis sun tracking system and concluded that a 75% 
improvement in solar still performance could be attained. 
Abdallah and Nijmeh [97] worked on a two-axis sun track-
ing system; results show that a 41.34% increase in collected 
solar energy on the water’s surface was achieved. Abdallah 
et al. [98] investigated modified design of single-basin sys-
tem with sun tracker. Results show that stepwise basin with 
sun tracking system gives highest thermal performance of 
380%. Sun tracking system can be affective to increase the 
productivity of solar stills.

Operational parameters

Various operational parameters that affect productivity are 
listed below.

• The salt content of water
• The flow rate of water
• Use of dyes
• Others

Salt content of water

The concentration of salt present in the water is known as 
the salinity of water [99]. Generally, the salinity of salt is 
measured in g(salt)  kg−1(seawater). From various literature, 
it is observed that the productivity of solar still declines by 
increasing salt concentration in the water. Bilal et al. [100] 
studied the effect of salinity of water on basin-type solar 
still. Results show that the salinity of water reduces solar 
still productivity, as depicted in Fig. 24. Hoque et al. [101] 
studied the effect of salinity of water on solar still produc-
tivity with synthetic saline water. Results show that with 
increasing total dissolved salts (TDS) value from 2000 to 
8000 ppm, the productivity of solar still declined by 7.8%. 
Shirsatha et al. [102] studied the effect of salinity of water 
on doubly inclined solar still and concluded that solute in 
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water decreases solar still productivity. Mahdi et al. [103] 
conducted the experiments on wick-type solar still. Results 
show that at 2.50% of saline water, efficiency was 39%, 
while for 5.00% saline water, efficiency was 33%. Further, it 
was also concluded that the efficiency of solar still decreases 
linearly with increasing salt concentration. Rai et al. [104] 
experimented on single-basin solar still and found out that 
an increase of salt concentration in water increases the sur-
face tension and reduces the evaporation rate, and leads to a 
decrease in productivity.

Flow rate of water

From most of the literature, it was found that the efficiency 
of solar still declines as the flow rate of water increases 

[105]. Tabrizi et al. [106] designed weir-type cascade solar 
still and studied the effect of water flow rate on productiv-
ity and internal heat and mass transfer. Results show that 
a decrease in the productivity and rate of heat and mass 
transfer was observed with increasing flow rate. When the 
mass flow rate was 0.065 kg  min−1 and 0.2 kg  min−1, the 
productivity was 7.4 kg  m−2 and 4.3 kg  m−2, respectively. 
Kerfah et al. [107] studied the effect of the volumetric flow 
rate of water on the evaporation rate and found out that the 
evaporation rate was maximum at a minimum volumetric 
flow rate (3 ×  10−6m3sec−1). Mahdi et al. [103] designed 
wick-type solar still and studied the effect of water flow 
rate on efficiency. Results illustrate that solar still efficiency 
decreases as the flow rate of water increases, as shown in 
Fig. 25. Further, Suneja and Tiwari [108] studied the effect 
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of water flow rate over the condensing cover of solar still and 
concluded that a particular flow rate of water evaporative 
heat transfer coefficient declines.

Use of dyes

In the case of a conventional solar still, heat is transferred 
from the bottom to the water’s surface with the convec-
tion mode of heat transfer [109]. As previously discussed, 

higher intensity of solar radiations enhances the productiv-
ity of solar still. Therefore, to gain a large amount of solar 
radiation from the sun, a dye is mixed with water to absorb 
maximum radiation from the sun. Cooper [110] reported that 
to improve solar still productivity, it is necessary to improve 
water’s absorptivity, which can be improved by adding blue 
and red dyes in water. Results of the study show that the 
addition of dyes can improve the absorptivity of the water. 
Sodha et al. [111] and Pandey [112] studied the effect of 

Table 9  Review of various reflectors effect on the performance of solar stills

References Type of solar still Reflector material Effect of 
the reflec-
tor/%

Remarks

Internal reflectors
[98] Conventional solar still Mirror 30 A 30% increase in efficiency is observed. The use of reflec-

tors can provide a daily output of 1.64 kg  m−2

[225] Conventional solar still Stainless still 25–35 Incorporating cylindrical stainless-steel internal reflector, 
solar still efficiency increases by 25–35%

[226] Stepped Mirror 18 The efficiency of stepped still with reflector increases by up 
to 75% as compared to conventional ones

[227] Conventional solar still Mirror 34 The use of internal reflectors helps to improve solar still 
productivity by 34%

[228] Wick type Mirror 55 Daily distillate output was found to be 4.1 kg  m−2 by using 
internal reflectors

[178] Conventional Mirror 20 Result reveal 11% rise in efficiency is attained by using 
internal reflectors

[86] Basin type of solar still Mirror 20 Results show a 19.9 and 34.5% rise in productivity when 
still was compared with no reflectors

External top reflector
[229] Conventional Mirror 45 Results depict enhancement in solar still productivity is 

achieved by incorporating mirror as an external top reflec-
tor

[230] Tilted wick Mirror 15 Solar still productivity improves by the utilization of 
inclined reflectors. Result reveals that productivity 
improves 15%—27% by the utilization of inclined reflec-
tors

[231] V-type of solar still Mirror 7.3 Results show that 2.7 kg  m−2 daily output is achieved and 
7.3% improvement in the solar still efficiency

External bottom reflector
[232] Inverted absorber solar still Steel 200 Results show that daily distillate output was 6.3 kg  m−2

[233] Double-slope solar still Mirror 82 82% improvement in efficiency was observed
[234] Double-slope single-basin solar still Mirror 19 and 30 19 and 30% improvement in efficiency is achieved in sum-

mer and winter conditions, respectively
[235] Tilted wick solar still Mirror 13 Results show a 13% increment in the solar still productivity
Combined internal and external reflectors
[236] Conventional solar still Mirror 42 The productivity of solar still with an internal and external 

reflector was 42% higher than conventional solar still
[237] Conventional solar still Mirror 145 Results show on winter days. There was a significant 

enhancement in the solar still output
[238] Portable thermoelectric solar still Aluminum foil 43 5 kg  m−2 distillate output per day was achieved. Solar still 

output increased by 43%
[239] Conventional solar still Mirror 72.8 Solar still productivity shows enhancement by use of a mir-

ror as an internal and external reflector
[240] Stepped solar still Mirror 77 Daily productivity of 7.4 kg  m−2 is achieved
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dye on solar still productivity. Results show productivity 
enhances with dye’s addition as the dyes help improve the 
evaporation rate shown in Fig. 26. As a result of this, an 
increase in distillate output is observed. Rajvanshi [113] 
studied the effect of black naphthylamine, red carmoisine, 
and dark green dyes at various concentrations. Results show 
that 29% rise in solar still productivity is attained when black 
dye with 172.5 ppm was used.

Other techniques

So far, we have discussed climatic, design, and operational 
parameters that affect solar still performance. In this sec-
tion, we will discuss some other modifications done by vari-
ous researchers on solar still. The performance of the solar 
still can be improved by preheating the inlet water [114]. 
The condensation and evaporation rate of preheated water 
is more than ordinary water [115]. Various techniques are 
utilized to preheat water, which includes integration of solar 
ponds, heat pipe, and flat plate collector [116–120]. Preheat-
ing water is mainly performed by passing the water over a 
solar panel before the solar still basin. Elbar and Hassan 
[121] assessed the performance of solar still by preheat-
ing the saline water. The experimental work results show 

preheating 60% of the saline water upsurge the productivity 
by 20.9%, contrasted with sun-powered desalination frame-
work without preheating. Subramanian et al. [122] utilized a 
flat plate collector for preheating the saline water in modified 
pyramid solar still. Results of the experiment depict a 60% 
rise in productivity compared to ordinary solar still. From 
the above literature work, it is concluded that preheating 
helps to enhance the water temperature. When the higher 
temperature water is passed through the basin of a still, the 
heat needed for evaporating the saltwater is less, and hence 
the profitability is increased. Refalo et al. [123] utilized the 
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solar chimney within solar still in association with copper 
pipe condenser. Solar chimney and condenser were utilized 
to enhance convective heat transfer and rate of condensation, 
respectively. Figure 27 depicts the solar still with the utiliza-
tion of chimney and condenser. Results show considerable 
enhancement in productivity (5.1 L  m−2  day−1) of still.

A large portion of research work demonstrated that the 
combination of wick material with a suitable absorber plate 
design gives a large amount of distillate yield [124]. In the 
case of a wick-type solar still, the sun-oriented radiation 
falling on the glass cover passes through it and arrives at the 
wick surface, where it is absorbed. A portion of the energy 
is used for warming the water coursing through the wick 

because of capillary action[125]. Much heat gets caught 
inside the still, and an exchange of energy occurs from the 
wick surface to the glass cover and to the surrounding air 
[126]. Agrawal et al. [127] utilized black jute cloth inside the 
basin of solar still that offers a large amount of surface area 
for the evaporation. Results of the experiment inferred a 62% 
improvement in productivity as compared to CSS. Ahmed 
and Ibrahim [128] studied the effect of five different wick 
materials on CSS performance. The experiment results show 
that black cotton sheet is the most effective wick material as 
it provides 36.9% enhancement in productivity compared to 
CSS. The impact of four different wick materials on pyramid 
solar still performance was carried out by Saravanan and 
Murugan [129]. For the experimentation purpose, polyester, 
terry cotton, jute cloth, and woolen fabric were selected. 
The experiment results show productivity improved by 9.4%, 
20.9%, and 33.1% utilizing woolen fabrics than jute, terry 
cotton, and polyester, respectively.

Experimental and theoretical analysis of solar still was 
assessed by Mahian et al. [130] by utilizing a heat exchanger 
with silicon dioxide and copper nanoparticles. Figure 28 
depicts solar still with a heat exchanger. The results of the 
experiment inferred that the utilization of a heat exchanger 
with nanofluid is advantageous. Furthermore, it was con-
cluded that copper/water nanofluids give better performance 
than silicon dioxide/water owing to its higher thermal con-
ductivity. Solar flat plate collector is mainly utilized to con-
vert solar energy into thermal energy [131, 132]. Halima 
et al. [133] numerically investigate the performance of solar 
still combined with heat pump. The utilization of the heat 
pump was advantageous for enhancing the temperature of 
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the water. Figure 29 depicts the layout of solar still with heat 
pump. Results reveal a 75% enhancement in the productivity 
of proposed still when contrasted with conventional solar 
still. Shatat and Mahkamov [134] experimentally investigate 
multistage solar still performance in association with the 
evacuated solar collector, as shown in Fig. 30. The experi-
ment’s results depict productivity of the proposed still was 

found to be 5 kg  m−2 day, which is significantly higher than 
conventional still.

Rabhar and Efahani [135] investigated portable solar still 
by the utilization of thermoelectric modules. These modules 
enhance the temperature difference between glass cover and 
basin surface; consequently, solar still productivity increases 
significantly. Figure 31a depicts the schematic layout of 

Fig. 27  Solar still with 
chimney and condenser [261] 
(adapted with permission from 
ELSEV. B.V. with LIC. No. 
5030780458402)
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solar still experimental setup with the thermoelectric mod-
ule. Results of the experiment reveal the daily efficiency 
of still was 7%. Somwanshi and Tiwari [136] studied the 
impact of cooling glass cover in association with the cool-
ing water from the desert cooler (Fig. 31b). The flow of cold 
water helps to increase the temperature difference between 
condensing and evaporative areas. The experiment tested 
for Jodhpur, and Chennai’s climatic conditions reveal that 
yearly productivity increases up to 7.4 and 9.9%, respec-
tively. Table 11 depicts the review of various modifications 
and their effect on the productivity of solar still. The profit-
ability of a still is affected by the temperature distinction 

among condensing and evaporative surfaces. Growing the 
distinction between water–glass temperatures improves the 
profitability still [137]. To keep up this temperature distinc-
tion high, fans, condensers, and glass cover cooling was 
used. Constant supply of air or water film over the glass 
cover leads to reduce the temperature of glass [138]. Patel 
et al. [139] assessed double-slope solar still incorporation 
with a separate cooling coil condenser. The entire vapors 
generated during the evaporation process are condensed due 
to the integration of the cooling coil condenser that leads 
to enhance the productivity of still. Kabeel and Abdelgaied 
[140] studied the impact of glass cover cooling on pyramid 
solar still. The experiment’s result shows daily efficiency of 
solar still with cooling cover improves by 97 to 98% com-
pared to traditional pyramid still.

As of late, attention has been pinpointed around the 
improvement of different designs of solar still. Pyra-
mid solar still is one of the results of such advancement 
[141]. The top cover’s shape seems to a pyramid; hence, 
these stills are popularly known as pyramid still. Trian-
gular and square are the two basic types of pyramid solar 
stills. Madhhachi and Smaisim [142] designed and tested 
square pyramid solar still. The performance of the solar 
still was measured for the four seasons in Iraq. Results 
of the experiments show a 60% rise in the efficiency of 
design still compared to others. The impact of insulation 
and water depth on pyramid solar still performance was 
studied by Muthu Manokar et al. [143]. The experiment 
was mainly conducted with varying water depth from 1 
to 3.5 cm and providing the insulation. The experiment 

Fig. 29  Solar still integrated with heat pump [133] (adapted with per-
mission from ELSEV. B.V. with LIC. No. 4827120405908)

Fig. 30  Schematic layout of 
multistage solar still with 
evacuated solar collector [134] 
(adapted with permission from 
ELSEV.B.V. with LIC. No. 
4827120535708)
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results show at 1 cm water depth and still with insula-
tion provides the highest distillate output, which seems 
to be improved by 19.46% compared to single-basin solar 
still. The impact of granite material, forced evaporation, 
and forced condensation on pyramid still was studied by 
Modi and Nayi [144]. Experimental results inferred still 
with forced evaporation, and granite material provides 
the highest yield (2.25 L  m−2) and is more efficient. The 
pyramid solar still performance with the integration of 
evacuated tubes and nanoparticles was studied by Shar-
shir et al. [145]. The experiment results show improve-
ment in productivity by 27.85% and 33.59% by utilizing 
copper oxide and carbon black, respectively.

Conclusion and future recommendations

In the present article, a review of various factors affecting 
the productivity of solar stills is discussed. A review of solar 
stills is carried out considering the climatic conditions, 
design, and optional parameters of solar stills. The follow-
ing conclusions are drawn from the study.

• Combining the good intensity of solar radiations, solar 
still type and regions with high temperature can provide 
better productivity in daily distillate output.

• Productivity can be enhanced by increasing the wind 
velocity from 0 to 10  ms−1 to about 50%.

• The presence of dust and dirt particles on the condensing 
surface reduces the glass cover’s transmission capacity. 
Therefore, condensing cover must be cleaned regularly.

• Maximum productivity can be attained with inclined 
solar stills when the inclination angle is made equiva-
lent to that location’s latitude. The maximum intensity of 
radiations can be achieved throughout the year by inclin-
ing the cover of still equivalent to the location’s latitude.

• Aluminum material with nominal thickness can be used 
as basin material due to its thermal conductivity and 
corrosion-resistant abilities.

• Minimum depth of water around 1 cm for conventional 
solar still enhances evaporation and provides higher pro-
ductivity.

• The rate of evaporation increases with an increase in the 
surface area of the absorber plate. A stepped basin will 
provide a higher surface area. The utilization of fins can 
also improve surface area.

• For better distillate output of solar stills during the low 
intensity of radiations, energy storage materials (graph-
ite, black rubber, and quartzite rock) and phase change 
materials (paraffin wax, lauric acid, and stearic acid) are 
widely used.

• An increase in the thickness of insulating material 
reduces heat losses in solar still and thereby enhances 
productivity. Foam, sawdust, and thermocol are widely 
used insulating materials

• Highly transmissive materials like glass are widely used 
with minimum thickness up to 3 to 4 mm

• Reflector plates, either internal, external, or both, can 
significantly increase the distillate output in solar stills.

Fan

Plexiglas inclined
surface

Collecting channel

Aluminum plate

Water

Black plexiglas wall

Plexiglas wall

Thermocouple

Heat pipe 

Thermoelectric module

Thermocouple

Desert cooler 

Make up
water

Insulated pipe

Water inlet
pipe

Valve

Water film

Pump

Distllate
channel

Water outlet pipe
40 cm

40 cm20 cm

25°

40°

Sun

(a) (b)

Fig. 31  a Still with a thermoelectric module and b still with desert cooler [136] (adapted with permission from ELSEV. B.V. with LIC. No. 
4827120659991 and 4827120788850)



4514 L. D. Jathar et al.

1 3

Table 11  Review of various modifications and their effect on the productivity of solar still

References Type of solar still Modification Remarks

[241] Solar still Use of storage tank Coupling the storage tank to the solar still 
helps increase the temperature of saline 
water and enhance the temperature difference 
between the surface of saline water and the 
condensing cover

[242] Water desalination system Use of low-grade solar heat Experimental results show that this system’s 
performance is a better one compared to flat 
basin solar still

[43] Single-slope solar still Use of asphalt basin liner and sprinkler Results show that the use of sprinklers helps to 
enhance the temperature difference between 
water and glass cover. 29% increase in output 
is attained using asphalt basin liner

[243] Double-slope active solar still Use of flat plate collector 51% higher yield was obtained from double-
slope active solar still

[244] Solar still Integration of evacuated tubular collector Results show that distillate output was 
630 kg  m−2 year, which was higher than 
single-slope solar still

[117] Solar still Integration with mini-solar pond Results show that a considerable rise in solar 
still productivity was attained when it was 
integrated with a mini-solar pond

[245] Single-slope solar still Use of a solar heating system It was found that solar still performance 
enhances considerably by the use of a solar 
heating system

[246] Modified solar still Use cuprous oxide nanoparticle along with 
sprinkler attachment

Productivity was improved and found to be 4.0 
L  m−2  day−1

[247] Solar still Use of forced convection The productivity of still was increased by 30%, 
and forced convection increases heat and 
mass transfer coefficient

[248] Double-basin solar still Integrated with flat plate collector using ther-
mosyphon and forced circulation of water

It was found that the performance of the forced 
circulation mode was better

[249] Glass basin solar still Use rectangular hollow fins for preheating 
purposes

Use of fins helps to increase the productivity of 
solar still up to 3.61 kg  day−1

[250] Portable solar still Use of sprinkler and thermoelectric cooling 
technique

Results show the rate of condensation, and the 
rate of evaporation enhances significantly

[251] Double-basin solar still Utilization of vacuum tubes The outcome of the investigation shows a 56% 
enhancement in the output of solar still, 
contrasting other researchers’ results

[252] Single-basin single-slope solar still Utilization of agitation effect and external 
condenser

The agitation effect was utilized to enhance the 
contact area between water and air. Moreo-
ver, the experiment results show a 39.49% 
increase in productivity was observed in 
contrast with conventional still

[253] Hybrid PV/T active solar still Use of Peltier system Results reveal a 30% enhancement in the pro-
posed solar productivity still when contrasted 
with conventional passive still

[254] Conventional still Utilization of rotating drum Drum assists in enhancing the evaporative sur-
face and abatement the thickness of the saline 
water film. The results of the experiment 
show a significant enhancement in productiv-
ity (350%) of still

[255] Single-slope single-basin solar still Use of PCM and hot air injection Results show a 108% enhancement in produc-
tivity when contrasted with conventional still
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• The performance of solar still can be improved by mini-
mizing the gap between absorber plates and condensing 
cover.

• Incorporating a sun tracking system, either single or dual 
axis in solar still, can enhance productivity.

• Higher salinity and mass flow of water decrease the effi-
ciency of solar stills.

• The use of dyes on the surfaces of solar still can also 
increase productivity.

The outcomes reported here offer a way to enhance the 
productivity of solar stills by considering the feasibility of 
incorporating advantageous modifications and avoiding 
the disparaging ones. The most noticeable challenge is to 
enhance the productivity of still by reducing the losses from 
the still. In view of the literature survey, researchers need to 
concentrate on the following areas:

• Broad experimentation is required to recognize the 
impact of various configurations of the still with heat 
transfer and thermodynamics.

• The software improvement is required to demonstrate 
and simulate solar stills concerning various discussed 
parameters.

• In the case of a stepped solar still, the impact of changing 
the shape of steps needs to be observed with sensible heat 
storage materials (SHM) and nanoparticles.
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