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Abstract
This work explores the second law analysis in the pseudoplastic, Newtonian and dilatant fluid flows over a truncated cone 
situated in a Forchheimer type of non-Darcy porous medium. The influence of viscous dissipation and thermal dispersion 
parameters on this free convective flow is studied in the presence of nonlinear Boussinesq approximation. The primary focus 
of this work is to have a clear idea about entropy generation in the flow of pseudoplastic, Newtonian and dilatant fluids over 
a truncated cone. Due to a complex nature of flow governing equations, the combination of local non-similarity approach 
and spectral local linearization method is found to be more accurate in comparison with other spectral methods; hence, this 
combination is proposed to discuss the solution of system of equations. An error analysis is employed to check the relevance 
of utilizing the spectral method for this kind of flow governing equations. In addition to this, the comparisons with the existing 
results, in particular cases are also inserted to show correctness and validity of the results. The study of physical quantities 
reveals that Nusselt number, entropy generation rate and Bejan number are higher for the dilatant fluid in comparison with 
the pseudoplastic and Newtonian fluids with or without above-mentioned effects. Increments in heat transfer and entropy 
generation rates are noticed with streamwise coordinate ( � ) for all the fluids in the presence and absence of these effects 
which imply that heat transfer and entropy generation rates for the flow over a truncated cone lie between the flow over a 
full cone and a vertical plate.

Keywords Second law analysis · Viscous dissipation · Thermal dispersion · Non-Darcy porous medium · Pseudoplastic and 
dilatant fluids · Truncated cone

List of symbols
A  Inclination of angle ( ◦)
b  Empirical constant
Be  Bejan number
Br  Brinkman number
CP  Specific heat capacity (J kg−1 K−1)
d  Pore diameter (m)
Ds  Dispersion parameter
Ef  Error norm for velocity (m s−1)
Eθ  Error norm for temperature (K)
g∗  Acceleration due to gravity (m s−2)
Gr∗  Modified Grashof number
O  Origin of the coordinate system
kd  Dispersion thermal conductivity (W K−1 m−2)

K∗  Modified permeability (m2)
Lx  Numerical approximation at infinity (m)
n  Power-law index
Ns  Dimensionless entropy generation rate
Nx  Collocation points in � direction
N1  Dimensionless entropy generation due to heat 

transfer
N2  Dimensionless entropy generation due to fluid 

friction
Nux̄  Nusselt number
r  Radius of the truncated cone (m)
Ra  Modified Darcy–Rayleigh number
S′′′
g

  Dimensional entropy generation rate (W m−3 K−1)(
S′′′
g

)

0
  Characteristic entropy generation rate 

(W m−3 K−1)
T  Temperature (K)
Tw  Wall temperature (K)
T∞  Ambient temperature (K)
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u  Velocity in x-direction (m s−1)
v  Velocity in y-direction (m s−1)

Greek symbols
�  Molecular diffusivity (m−2 s−1)
�d  Thermal diffusivity (m−2 s−1)
�1  Nonlinear convection parameter
�0  First-order thermal expansion coefficient (K−1)
�1  Second-order thermal expansion coefficient (K−2)
�  Viscous dissipation parameter
�  Dimensionless variable in y-direction
�  Dimensionless temperature
�  Dynamic viscosity (kg m−1 s−1)
�  Kinematic viscosity (m2 s−1)
�  Streamwise coordinate (m)
�  Density of fluid (kg m−3)
�  Mechanical dispersion coefficient
�  Stream function (m2 s−1)
�  Dimensionless temperature difference

Introduction

Any porous medium is usually famed by its porosity defined 
as the fraction of the volume of void spaces over the total 
volume (between 0 and 1). Examples of porous media are 
very wide, ranging from natural substances (e.g. soil, rocks 
and biological tissues) to artificial ones (e.g. cements, 
ceramics), and porous medium concept is used in the dif-
ferent areas of engineering and applied sciences, for exam-
ple, petroleum, construction or material science, filtration, 
geomechanics, soil mechanics, acoustics, etc. In particular, 
if the temperature and moisture distribution over agricultural 
fields are studied with this approach, then these ideas can 
be used in the control of environment pollution. Keeping all 
these in mind, development of many different fluid models 
has been discussed and few of them are analysed to explain 
fluid flow properties through non-Darcy porous media in 
the different books by Vafai [1], Pop and Ingham [2], and 
Nield and Bejan [3]. The power-law fluids, in particular 
pseudoplastic and dilatant fluids, are usually known as time 
independent non-Newtonian fluids (generalized Newtonian 
fluid). Shenoy [4], Mandal et al. [5], Cheng [6] and Kumar 
and Diwakar [7] have taken the power-law fluids to study 
the effects of physical parameters over different geometries 
because of its extensive applications in various technologi-
cal fields, medical science and research. The study related 
to non-Darcy hydromagnetic free convection, combined 
heat and mass transfer, magnetohydrodynamics and mixed 
convective boundary layer flow over different geometries 
can be found in the papers [8–13]. RamReddy et al. [14] 
explained the Soret effect by considering stagnation point 
flow of a nanofluid in a non-Darcy porous medium. Some 

theoretical studies related to integral transform and applica-
tions in heat transfer problems can be found in the papers 
[15–20]. The effect of magnetic field on heat transfer in an 
L-shaped enclosure containing non-Newtonian fluid is pre-
sented by Jahanbakhshi et al. [21]. Kairi [22] has shown 
that the increment in the radius of a slender paraboloid in a 
porous medium reduces the heat transfer rate and the influ-
ence of radiation on the same is reduced for all the three 
types of power-law fluids.

The second law of thermodynamics gives an idea of opti-
mization in the design of different devices involved in the 
thermal field by making the sum of thermal and frictional 
entropy generation rates minimum. To get an optimal set 
of operating and design conditions, one can minimize the 
system’s irreversibility. There is a basic difference between 
transfer of energy into a system in the form of heat and doing 
the same by work. Both can be of equal quantity but after 
being a part of system energy, these have much distinct char-
acter. This can be seen as the amount of energy involved in 
the process of energy transport (e.g. heat transfer), energy 
character and its change in the course of transport activity. 
So, in order to measure this character along with its possible 
decay in the process of energy transfer, entropy plays a very 
significant part. The entropy generation analysis has great 
importance in the manufacturing and upgrading of various 
thermofluid components, e.g. turbines, heat exchangers, 
pumps, energy storage systems, etc. Bejan [23, 24] stud-
ied the effectiveness of various factors involved in entropy 
generation in thermal systems. Khan and Gorla [25], and 
Gorla et al. [26] considered the non-Newtonian boundary 
layer flows over a horizontal plate and wedge immersed in 
a porous medium, respectively, and performed the second 
law analysis. Das et al. [27] explained the combined effects 
of Navier slip, convective heating and magnetic field on the 
analysis of entropy generation and an alternative irrevers-
ibility distribution parameter known as Bejan number. The 
entropy generation analysis for a nonlinear convective flow 
in a porous medium with stratification is done by Vasu et al. 
[28]. The numerical investigation of the entropy generation 
on MHD mixed convection flow of Cu-water nanofluid with 
partial slip influence is done by Chamkha et al. [29]. Simi-
larly, Rashad et al. [30] performed a numerical investigation 
related to the impacts of a heat sink and the source size and 
location on the entropy generation and MHD free convection 
flow. Sheikholeslami et al. [31] demonstrated the heat trans-
fer and entropy generation by considering nanofluid flow via 
heat exchanger. Recently, Noreen and Ain [32] investigated 
the entropy generation for electroosmotic flow across a non-
Darcy porous medium by peristaltic pumping. The effects of 
partial slips, heated rotating inner cylinder and wavy heater 
block on entropy generation analysis are given in the papers 
[33–35].
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The nonlinear density temperature relationship strongly 
influences the fluid flow and heat transfer characteristics (for 
more details, one can refer Pop and Ingham [2] and Partha 
[36] and citations therein). Due to the existence of inertial 
effects, thermal dispersion effect in a non-Darcy porous 
medium is very important and studied by Cheng [37] and 
Plumb [38] with their models. Also, Hong et al. [39] con-
ducted the theoretical studies extensively on thermal disper-
sion. However, the dispersion effect together with nonlinear 
convection has been incorporated by Kameswaran et al. [40] 
in a non-Darcy (Forchheimer model) porous medium and 
revealed the fact that it enhances the heat transfer rate. The 
viscous dissipation plays an unavoidable role in highly vis-
cous fluids with low thermal conductivity. Its importance in 
the free and forced convective flows at large Rayleigh num-
bers is also notable. The viscous dissipation effects in the 
natural convection are important because the induced kinetic 
energy is appreciable in comparison with the quantity of 
heat transferred. This occurs when either the equivalent body 
force is large or when the convection region is extensive. 
Though the flow is quite slow in this natural convection phe-
nomenon, viscous dissipation effect plays an important role 
in natural convection in various devices that are subjected to 
large variations of gravitational force or that operate at high 
rotational speeds [41]. Many experimental and analytical 
studies on viscous dissipation in natural convection can be 
found in the literature [42–45]. The variations in viscous 
dissipation parameter are useful to analyse the fluid veloc-
ity and temperature in the convection process. In the case of 
uniform forced convective flow of a fluid saturated porous 
medium along a plane surface, its effect in the presence of 
wall temperature distribution is studied by Magyari et al. 
[46]. El-Amin et al. [47] considered a power-law type of 
non-Newtonian fluid flow over a vertical plate immersed in 
a porous medium to investigate its influence. On the other 
hand, Aydin and Kaya [48] studied its effect on Newtonian 
fluid forced convective flow over a flat plate immersed in 
a non-Darcian porous medium. Its effect on heat and mass 
transfers for natural convection in a nanofluid saturated non-
Darcy porous medium along a vertical plate is discussed by 
Ramreddy et al. [49]. Chamkha et al. [50] examined the vis-
cous dissipation effect in the presence of convective bound-
ary condition by considering non-Darcy porous medium 
saturated with a nanofluid. The role of local production of 
thermal energy through the mechanism of viscous stresses 
in the free convective flow from a vertical plate for a power-
law fluid saturated non-Darcy porous medium, is studied by 
Khidir et al. [51].

From literature survey, it is found that this type of flow 
study over a truncated cone is not attained proper attention. 
Due to great importance of the geometry in any fluid flow, 
it is a key factor in practical applications. For example, the 
fluid flow over a truncated cone is useful in medical science 

to design heartbeat controlling systems and in technical 
areas, e.g. industrial processing of melted plastics and manu-
facturing edible items or slurries. This flow model involv-
ing truncated cone has different engineering applications 
too, e.g. solar collectors, automobile industries, rotating 
heat exchangers, aeronautics and aerosols engines. Further, 
this model may be used extensively in oil recovery technol-
ogy. This flow model over a truncated cone is very impor-
tant because both the vertical plate ( � = 0 ) and full cone 
( � → ∞ ) cases can be directly studied with this model by 
using two different values of streamwise coordinate. The 
main aim of this study is to show the impacts of different 
parameters on Nusselt number, entropy generation and Bejan 
number along with velocity and temperature profiles in pseu-
doplastic and dilatant fluids saturated Forchheimer type of 
non-Darcy porous medium. Further, this type of exploration 
is helpful to understand the characteristics related to heat 
transfer surrounding red hot radioactive subsurface storage 
location or cooling magmatic intrusion which involve heat 
transport theory.

Problem description and geometry

In this paper, the effect of viscous dissipation on a free con-
vective flow over a truncated cone immersed in a Forch-
heimer type of non-Darcy porous medium saturated by 
dilatant and pseudoplastic fluids with nonlinear Boussinesq 
approximation and thermal dispersion, is considered. The 
physical model with coordinate system is displayed in Fig. 1. 
The leading edge of the truncated cone is kept at a distance 
x0 from the origin O, where x and y axes are taken along and 
normal to the surface of the truncated cone, respectively. 

x

x0

u

u → 0

vv = 0

g*

A

O

y

T = Tw

T → T∞

Fig. 1  Geometry used in the problem
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The ambient medium and wall temperatures are taken as T∞ 
and Tw , respectively, together with the modified streamwise 
coordinate x̄ , which is defined as x̄ = x − x0 for the truncated 
cone. In addition, this fluid flow is taken for granted to be 
two-dimensional and steady along with the laminar behav-
iour and the porous medium is assumed to be homogeneous 
and isotropic. The flow intensity is taken to be moderate and 
the permeability of the medium is presumed to be less to 
certify the applicability of the Forchheimer flow model and 
negligence of boundary effect. Also, the nonlinear tempera-
ture density variations bring a significant influence on the 
flow field due to notably large changes in the temperature 
between the surface of truncated cone and the ambient fluid.

One more assumption involved is that the boundary layer 
thickness is very small in comparison with the local radius 
of the truncated cone. So, the two radii, namely local radius 
at a point located in the boundary layer and the radius of 
the truncated cone, can be approximated by r = x sinA (see 
Singh et al. [52]). Therefore, the equations and boundary 
conditions involved are valid only in the region x0 < x < ∞ . 
Hence, the above assumptions are physically realistic in 
nature with more relevance in practical situations.

Taking the boundary layer hypothesis into the considera-
tion with above-mentioned assumptions and approximations, 
the flow governing equations over a truncated cone are given 
by [53–56]

and the boundary conditions associated with these equations 
are

where � , b , A, g∗ , T, CP and (u, v) denote the kinematic vis-
cosity, empirical constant, inclination of angle, acceleration 
due to gravity, temperature, specific heat capacity and Dar-
cian velocities, respectively. A variable quantity �∗ = � + �d 
is used to denote the sum of the molecular diffusivity � and 
the thermal diffusivity �d = �ud followed by Plumb [38], 

(1)
�(ru)

�x
+

�(rv)

�y
= 0

(2)

�un

�y
+

bK∗

�

�u2

�y

=
K∗g∗�0cosA

�

[
1 +

2�1
(
T − T∞

)

�0

]
�T

�y

(3)
u
�T

�x
+ v

�T

�y

=
�

�y

(
�∗

�T

�y

)
+

�u

K∗CP

(
un +

bK∗

�
u2
)

(4)
v(x, y) = 0, T(x, y) = Tw, at y = 0

u(x, y) → 0, T(x, y) → T∞ as y → ∞

where � denotes the coefficient of mechanical dispersion 
and its value is based on experiments and d represents the 
pore diameter. Next, we have considered the thermal expan-
sion coefficients of first and second order, namely �0 and �1 , 
respectively. Here, n is the power-law index (for n < 1 , the 
fluid is pseudoplastic; for n > 1 , the fluid is dilatant; and for 
n = 1 , the fluid is Newtonian). K∗ is the modified permeabil-
ity of the porous medium which is a function of power-law 
index n, well explained by Christopher and Middleman [57] 
and Dharmadhikari and Kale [58].

The stream function �  is introduced as u =
1

r

��

�y
 , 

v = −
1

r

��

�x
 to satisfy the continuity equation (1) automati-

cally. To get the non-dimensional form of Eqs. (2)–(3) and 
boundary conditions (4), the following dimensionless trans-
formations are used

where Ra =
x̄

𝛼

(
𝜌 𝛽0 g

∗ K∗ cosA (Tw − T∞)

𝜇

) 1

n

 is the local 

modified Darcy–Rayleigh number.
Using transformations (5) into Eqs. (2)–(3), the following 

resultant dimensionless equations are obtained

Previous boundary conditions (4) are converted into f and 
� form as

where the differentiation with respect to � is indicated by 

primes. In usual notations, Gr∗ = bK∗

𝜈

(
𝛼 Ra

x̄

)2−n

 , 

𝜖 =
𝜈 x0

K∗ CP (Tw − T∞)

(
𝛼 Ra

x̄

)n

,   �1 =
�1

�0
(Tw − T∞) , and      

Ds =
𝜒dRa

x̄
 . Here, Gr∗ is the modified Grashof number, � is 

the viscous dissipation parameter, �1 is the nonlinear density-
temperature parameter and Ds is the thermal dispersion 
parameter. When x0 = 0 , � becomes very large and this limit-
ing case is used to get the fluid flow problem over a full 

(5)

𝜉 =
x̄

x0
, 𝜂 =

y

x̄
Ra

1

2 , 𝜓(𝜉, 𝜂) = 𝛼 r Ra
1

2 f (𝜉, 𝜂),

T(𝜉, 𝜂) = T∞ +
(
Tw − T∞

)
𝜃(𝜉, 𝜂)

(6)n
(
f �
)n−1

f �� + 2Gr∗ f � f �� = (1 + 2 �1�)�
�

(7)

(1 + Ds f �)��� + Ds f �� �� +

(
1

2
+

�

� + 1

)
f ��

− � ST f
� + ��f �

[(
f �
)n

+ 2Gr∗
(
f �
)2]

= �

(
f �
��

��
−

�f

��
��
)

(8)

2 � (� + 1)

(
�f

��

)
+ (3 � + 1)f (�, �) = 0, �(�, �) = 1 at � = 0

f �(�, �) → 0, �(�, �) → 0 as � → ∞
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cone. Likewise, when � = 0 (i.e. x = x0 ), the present problem 
reduces to fluid flow problem along a vertical plate.

Analysis of heat transfer and entropy 
generation

Non-dimensional form of heat transfer coefficient, com-
m o n l y  k n o w n  a s  N u s s e l t  n u m b e r 

Nux̄ = −
x̄

k

(k + kd)

(Tw − T∞)

[
𝜕T

𝜕y

]

y=0

, is given by

where the addition of the dispersion thermal conductivity 
kd and the molecular thermal conductivity k is used as the 
effective thermal conductivity of the porous medium.

The available amount of energy in any system related to 
industrial or engineering processes, is destroyed by entropy 
generation and so this property plays significant role in these 
fields. It is therefore important to determine the entropy gen-
eration rate in any system so that the operation efficiency of 
the system can be optimized. The dimensional form of the 
expression for entropy generation related to the present flow 
problem is written as

The characteristic entropy generation is defined as (
S���
g

)

0
=

K∗

T2
∞

(Tw − T∞)
2

x̄2
 and so the non-dimensional form 

of entropy generation Ns =
S���
g(

S���
g

)

0

 can be written as

where Br =
𝛼 𝜈 x0

K∗2 CP (Tw − T∞)

(
𝛼 Ra

x̄

)2−n

 is Brinkman num-

ber and Ω =
Tw − T∞

T∞
 is the dimensionless temperature 

difference.
Equation (11) can be split into two parts as Ns = N1 + N2 

where N1 = Ra ��2 and N2 =
Br Ra

Ω
�
[
(f �)n+1 + Gr∗(f �)3

]
 . The 

first part denotes the entropy generation due to heat transfer 
and the second part is responsible for the entropy generation 
due to fluid friction. To check the domination of fluid fric-
tion irreversibility over heat transfer irreversibility, one more 
irreversibility distribution parameter is defined which is the 
ratio of entropy generation due to heat transfer over total 
entropy generation and known as Bejan number (Be). The 
expression for the Bejan number can be given as

(9)
Nux̄

Ra
1

2

= −
[
1 + Ds f �(𝜉, 0)

]
𝜃�(𝜉, 0)

(10)S���
g

=
K∗

T2
∞

(
�T

�y

)2

+
�

K∗ CP T∞

(
un+1 +

bK∗

�
u3
)
.

(11)
Ns

Ra
= ��2 +

Br

Ω
�
[
(f �)n+1 + Gr∗(f �)3

]
,

In particular, Be = 0 shows that the irreversibility due to 
fluid friction dominates, but Be = 1 reveals that the irrevers-
ibility due to heat transfer dominates. Further, the irrevers-
ibility due to viscous dissipation and heat transfer are equal 
in the process of entropy generation if Be = 0.5.

Numerical solutions

The governing equations for this fluid flow along with the 
boundary conditions result in a complex nonlinear system 
of PDEs and its closed form of solutions cannot be obtained. 
So, Eqs. (6)–(8) are solved with the combination of local 
non-similarity approach and spectral local linearization 
method which gives accurate outcomes among other spectral 
methods for these kind of complex boundary layer equations. 
The details of this methodology are given in the following 
subsections:

Local non‑similarity procedure

In this subsection, using the local similarity and non-simi-
larity approach (see Sparrow and Yu [59]), the governing 
equations of present fluid flow problem are obtained in the 
form of a system of ordinary differential equations (ODEs) 
after the three level of truncations. Taking 𝜉 ≪ 1 as a special 
case, the preliminary approximate solutions may be obtained 
from the local similarity equations by treating the terms car-
rying � �

��
 as insignificant. So, the local similarity equations 

corresponding to the first level of truncation of Eqs. (6)–(8) 
can be written as

along with the boundary conditions

In the second level of truncation, the local non-similarity 
nonlinear ODEs are obtained to get the ignored terms from 
the initial level of truncation by using freshly introduced 

(12)Be =
N1

Ns
=

��2

��2 +
Br

Ω
�
[
(f �)n+1 + Gr∗(f �)3

] ∈ [0, 1]

(13)n
(
f �
)n−1

f �� + 2Gr∗ f � f �� − (1 + 2 �1�)�
� = 0

(14)
(1 + Ds f �)��� + Ds f �� �� +

(
1

2
+

�

� + 1

)
f ��

+ ��f �
[(
f �
)n

+ 2Gr∗
(
f �
)2]

= 0

(15)
f (�, 0) = 0, �(�, 0) = 1,

f �(�, �) → 0, �(�, �) → 0 as � → ∞.
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variables U =
�f

��
and V =

��

��
 . Thus, the truncation at sec-

ond level gives

together with the updated BCs

In the third and final level of truncation, Eqs. (16)–(18) 
are differentiated in respect of � . Also, the involved partial 
derivatives of U and V  are dropped. So, the final equations 
may be written as

in association with BCs

Local linearization method

In this subsection, the implementation of spectral local lin-
earization method (SLLM) on this particular problem is 
discussed. One can get detailed explanation about lineari-
zation with examples in the work of Motsa and Sibanda [60]. 
SLLM is used by Motsa [61] to get the solution of a coupled 
system of nonlinear ODEs. The solution methodology of 
these equations involves three steps: (i) first, an innovative 

(16)n
(
f �
)n−1

f �� + 2Gr∗ f � f �� − (1 + 2 �1�)�
� = 0

(17)

(1 + Ds f �)��� + Ds f �� �� +

(
1

2
+

�

� + 1

)
f ��

+ ��f �
[(
f �
)n

+ 2Gr∗
(
f �
)2]

− �
(
V f � − U ��

)
= 0

(18)

(3 � + 1)f (�, 0) + 2 � (� + 1)U(�, 0) = 0, �(�, 0) = 1,

f �(�, �) → 0, �(�, �) → 0 as � → ∞.

(19)
n
(
f �
)n−1

U�� + n(n − 1)
(
f �
)n−2

f ��U�

+ 2Gr∗ (f �� U� + U�� f �)−

− V � − 2 �1(V�
� + �V �) = 0

(20)

V �� + Ds(f �V �� + f ��V �) +

(
1

2
+

�

� + 1

)
fV �

+ �UV � − f �V − �U�V + Ds(U���� + U����)

+

(
1

2
+

�

� + 1

)
U�� + ��U + � � (n + 1) (f �)nU�

+ � (f �)n+1 + 3 � � Gr∗ (f �)2 U�

+ �Gr∗ (f �)3 +
1

(� + 1)2
f �� = 0

(21)
3f (�, 0) + (7� + 3)U(�, 0) = 0, V(�, 0) = 0

U�(�, �) → 0, V(�, �) → 0 as � → ∞.

linearization procedure locally based on quasi-linearization 
is used to linearize Eqs. (16), (17), (19) and (20), (ii) next, 
the Chebyshev spectral collocation method is used to obtain 
the matrix form of the system of linear algebraic equations 
from the iterative sequence of linearized ODEs, and (iii) 
finally, using initial approximations (which are taken to sat-
isfy the BCs), the final form of the following equations is 
solved iteratively:

where 

a1,r =
n(n − 1)f ��

r

(
f �
r

)n−2
+ 2Gr∗f ��

r

n
(
f �
r

)n−1
+ 2Gr∗f �

r

 , 

K1,r =

(
��
r
+ 2�1�r�

�
r

)
+ n(n − 1)f ��

r

(
f �
r

)n−1
+ 2Gr∗f ��

r
f �
r

n
(
f �
r

)n−1
+ 2Gr∗f �

r

 

b1,r =

Dsf ��
r+1

+

(
1

2
+

�

�+1

)
fr+1 + �Ur

1 + Dsf �
r+1

 , 

K2,r =
�f �

r+1
Vr − ��(f �

r+1
)n+1 − ��Gr∗(f �

r+1
)3

1 + Dsf �
r+1

 , 

x1,r =
n(n − 1)f ��

r+1

(
f �
r+1

)n−2
+ 2Gr∗f ��

r+1

n
(
f �
r+1

)n−1
+ 2Gr∗f �

r+1

 , 

K3,r =

(
V �
r
+ 2�1�

�
r+1

Vr + 2�1�r+1V
�
r

)

n
(
f �
r+1

)n−1
+ 2Gr∗f �

r+1

 , 

y1,r =

Dsf ��
r+1

+

(
1

2
+

�

�+1

)
fr+1 + �Ur+1

1 + Dsf �
r+1

 , 

y2,r =
−f �

r+1
− �U�

r+1

1 + Dsf �
r+1

 , 

K4,r =
1

1 + Dsf �
r+1

[−Ds (U�
r+1

���
r+1

+ U��
r+1

��
r+1

)

−(
3

2
+

�

�+1
) Ur+1�

�
r+1

−
1

(�+1)2
fr+1�

�
r+1

− �(f �
r+1

)n+1

−(n + 1)� �(f �
r+1

)n U�
r+1

− 3 � � Gr∗ (fr+1)
2 U�

r+1
 

−�Gr∗ (f �
r+1

)3] , 

(22)f ��
r+1

+ a1,rf
�
r+1

= K1,r

(23)���
r+1

+ b1,r�
�
r+1

= K2,r

(24)U��
r+1

+ x1,rU
�
r+1

= K3,r

(25)V ��
r+1

+ y1,rV
�
r+1

+ y2,rVr+1 = K4,r
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with respect to the linearized BCs:

The matrix representation of these equations can be given as

(26)

fr+1(�, 0) = −
2�(� + 1)

3� + 1
Ur(�, 0), �r+1(�, 0) = 1,

Ur+1(�, 0) = −
3

7� + 3
fr+1(�, 0), Vr+1(�, 0) = 0,

f �
r+1

(�, �) → 0, �r+1(�, �) → 0,

U�
r+1

(�, �) → 0, Vr+1(�, �) → 0, as � → ∞.

�1 � =�1

�2 Θ =�2

�3 � =�3

�4 � =�4

where

Here I is an identity matrix of the order (Nx + 1) and F, Θ , 
U and V are the vectors containing approximate values of 
f, � , U and V, which are estimated at the collocation points. 
Finally, these resultant equations along with the BCs are 
solved with the help of suitable initial approximations to 
study the fluid flow properties.

Results and discussion

The power-law fluids are mainly divided into two categories: 
pseudoplastic (shear thinning) and dilatant (shear thicken-
ing). There is decrement in the fluid viscosity with stress 
for the first and increment for the second one. The broad 
application range of these fluids in latest technical fields 
and modern science motivates us to study the flow of pseu-
doplastic and dilatant fluids in detail. The rheogram for 
obtained results in the fixed values of parameters is given 
in Fig. 2. In this part, the numerical findings related to the 
solutions of Eqs. (6)–(7) with the BCs (8) for various values 
of physical parameters, are discussed. All the computations 
in this solution procedure have been carried out with 50 col-
location points ( i.e.Nx = 50 ) in �-direction and Lx = 10 is 
used for numerical approximations at infinity in �-direction. 
MATLAB software is used to implement the spectral local 
linearization method. The convergence test of the iteration 
scheme is also conducted by taking the norm of difference in 
the values of two consecutive iterations. We have presumed 

�1 =�
2 + diag(a1,r)�, �1 = K1,r

�2 =�
2 + diag(b1,r)�, �2 = K2,r

�3 =�
2 + diag(x1,r)�, �3 = K3,r

�4 =�
2 + diag(y1,r)� + diag(y2,r)�, �4 = K4,r

Pseudoplastic fluid

Newtonian fluid

Dilatant fluid

Shear rate 

n = 0.8
n = 1.0

n = 1.2
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ar
 s
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s

Fig. 2  The rheogram for obtained results when Gr∗ = 2.0 , Ds = 1.5 , 
�
1
= 0.1 , � = 0.1 and � = 1
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that the algorithm is convergent when these norms will be 
less to a fixed toleration level (say, � = 10−10 ). The two 
expressions used, for velocity and temperature at (r + 1) th 
iteration, for error norms are given as

To plot these error trends, a logarithmic approach is 
adopted, i.e. the natural logarithmic value of the error is 
plotted with respect to iterations. In Figs. 3a–4b, the vari-
ation in the norm of residual errors over iteration level for 
both the governing Eqs. (16) and (17) with five values of � 
is shown. The first two figures show the trend for Newtonian 
fluid and other two show for non-Newtonian fluid. It is read-
ily visible from all these plots that these residual errors are 
decreased with iterations in every case considered which 
indicates the convergence property. Moreover, the very 
less residual error, attained after few iterations, indicates 

Ef = max ||fr+1,i − fr,i||∞, 0 ≤ i ≤ Nx,

Eθ = max ||�r+1,i − �r,i||∞, 0 ≤ i ≤ Nx.

the precision of the method involved to solve the governing 
equations of the present problem. In this way, validation of 
method used in this work is done.

To verify the correctness of the formulation and accuracy 
of calculations, the outcomes of this problem in the case of 
vertical plate (i.e. � = 0 ) when Ds = 0 , � = 0 and �1 = 0 , 
are compared with the exact results (see Nakayama et al. 
[62]) and the results of Plumb and Huenefeld [63] for the 
Newtonian fluid case. The comparisons are matching at a 
good extent which is shown in Table 1. In the next subsec-
tions, the detailed analysis of power-law fluid flows over 
a truncated cone is done due to its emerging applications 
in diverse fields. Also, these results reveal few interesting 
facts involving boundary layer flow field, heat transfer and 
entropy generation rates for physically realistic values of 
pertinent parameters.

Effect of viscous dissipation parameter ( �)

In this subsection, the graphs in Fig. 5a–e related to non-
dimensional velocity and temperature profiles, heat trans-
fer and entropy generation rates along with Bejan number, 
respectively, are displayed. The effect of viscous dissipa-
tion parameter on these profiles and quantities, is analysed 
properly for pseudoplastic, Newtonian and dilatant fluids. In 
the physical sense, � refers to the transformation of energy 
from the motion of fluid to the fluid’s internal energy. Vis-
cous dissipation is high in the regions of large gradients, e.g. 
boundary layers, shear layers, etc. Velocity and temperature 
profiles are studied in respect of � and from Fig. 5a, it is 
observed that the velocities in dilatant fluid flow are higher 
when compared to the pseudoplastic fluid flow. The presence 
of � increases the velocity and temperature for each fluid, but 
the temperature is found to be higher in the case of pseudo-
plastic fluid. The presence of � makes the temperature of the 
system stable for all the fluids because viscous dissipation 
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Table 1  Comparison of −��(�, 0) for various values of Gr∗ when 
� = 0 , Ds = 0 , � = 0 and �

1
= 0 : Newtonian fluid case ( n = 1)

Gr∗ Present Nakayama et al. 
[62]

Plumb and 
Huenefeld 
[63]

0 0.44390437 0.4439 0.44390
0.01 0.44231590 0.4423 0.44232
0.1 0.42968906 0.4297 0.42969
1 0.36616650 0.3662 0.36617
10 0.25748252 0.2513 0.25126
100 0.16190872 0.1519 0.15186
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behaves like a source term in the fluid flow generating nota-
ble rise in the fluid temperature as the kinetic motion of fluid 
is converted to thermal energy. This observation has sig-
nificance in the heat and fluid flow in microchannel having 
larger ratio of length to diameter. The non-dimensional heat 
transfer and entropy generation rates along with the Bejan 

number are analysed in respect of streamwise coordinate � 
and the variations in these quantities prove the non-similar 
nature of this problem. From Fig. 5c–e, it is seen that these 
quantities show decrements with increasing values of � for 
all the fluids. As the streamwise coordinate increases, there 
is continuous increment in the heat transfer and entropy 
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generation rates, but opposite is observed with Bejan num-
ber. As expected, Bejan number approaches zero for higher 
values of � . These smaller values of Bejan number indicate 
the domination of irreversibility due to fluid friction in the 
areas where streamwise coordinate is large. In all these three 
analyses, the dilatant fluid dominates. The entropy genera-
tion minimization is very useful in the thermal engineering 
and design variable selection in many efficient fluid systems.

Effect of thermal dispersion parameter (Ds)

In this subsection, the thermal dispersion parameter effects on 
the non-dimensional velocity and temperature profiles, Nus-
selt number, entropy generation rate and Bejan number are 
shown in Fig. 6a–e. The first two graphs show the variations 
in respect of � and the later three show in respect of � . The 
studies of pseudoplastic, Newtonian and dilatant fluids are 
combined in single figure. Basically, this effect brings up the 
effectiveness of non-uniform pore level velocity on the tem-
perature field inside the particular porous medium. As there 
are sufficiently high velocities due to the fluid flow through a 
porous medium, hence the molecular diffusion is dominated 
by the thermal dispersion. Also, it shows the significance of 
combined changes from the velocity and temperature to the 
heat transportation. From Fig. 6a, b, it is observed that the 
presence of Ds enhances the velocity and temperature pro-
files for all the fluids and dilatant fluid dominates in the case 
of velocity profiles and pseudoplastic fluid dominates for the 
temperature profiles. It is found from Fig. 6c that the heat 
transfer rate is increased in the presence of dispersion param-
eter for all these fluids and there is domination of dilatant fluid 
in this case too. There is slight change in the heat transfer rate 
with � in the absence of dispersion but variation is compara-
tively larger in its presence. In Fig. 6d, e, the impact of Ds on 
entropy generation and Bejan number is shown and both are 
decreased for its higher values. The values of entropy genera-
tion rate and Bejan number are more for dilatant fluid in com-
parison with pseudoplastic and Newtonian fluids. With higher 
streamwise coordinate, as expected, entropy generation rate 
increases and Bejan number decreases. This entropy genera-
tion and Bejan number analysis give the idea of components 

and processes (mechanisms) of the system which provides 
real advantage in the improvement of the system efficiency 
by allocating proper engineering resources and efforts. Also, 
it can be said that the effect of thermal dispersion is signifi-
cant when the inertial effect is frequent and its negligence can 
result in a decent amount of error.

Effect of nonlinear convection parameter ( ̨
1
)

In this subsection, the graphs in Fig. 7a–e related to non-
dimensional velocity and temperature profiles, heat trans-
fer and entropy generation rates along with Bejan number, 
respectively, are shown. The nonlinear convection parameter 
effect on these profiles and quantities, is analysed properly 
for the pseudoplastic, Newtonian and dilatant fluids. This 
nonlinear convection parameter deals with the nonlinearity 
in the density temperature relationship. Due to this reason, it 
is also termed as nonlinear density temperature parameter. In 
the physical sense, 𝛼1 > 0 refers to the relation Tw > T∞ , so 
the surface of a truncated cone produces remarkable quan-
tity of heat to the fluid flow region. Velocity and tempera-
ture profiles are studied in respect of � and from Fig. 7a, 
continuous increment is noticed in the velocity profiles 
with increase in �1 value for all the fluids but overall there 
is domination of dilatant fluid. On the other hand, pseudo-
plastic fluid dominates in the case of temperature profile 
and it decreases with increase in �1 . The non-dimensional 
Nusselt number, entropy generation rate and Bejan number 
are analysed in respect of streamwise coordinate � . From 
Fig. 7c–e, it is found that the heat transfer and entropy gen-
eration rates increase with increasing values of �1 but Bejan 
number decreases for all the fluids. With increase in stream-
wise coordinate, continuous increments in heat transfer and 
entropy generation rates are seen but opposite is observed 
with Bejan number. The Bejan number lies between 0 and 1 
and approaches zero for higher values of � . The higher val-
ues of Bejan number show the domination of irreversibility 
due to heat transfer in the case of small � . The Bejan number 
analysis is widely useful in various areas of heat transfer, e.g. 
electronic cooling, contact melting, lubrication, etc.



5222 R. Chetteti, A. Srivastav 

1 3

Conclusions

In this paper, the effects of viscous dissipation, thermal dis-
persion and nonlinear density-temperature parameters on the 
velocity and temperature profiles, heat transfer and entropy 
generation rates along with Bejan number for the dilatant, 
Newtonian and pseudoplastic fluid flows over a truncated 
cone in a non-Darcy porous medium, are discussed in detail. 

The consideration of power-law fluids over a truncated cone 
with viscous dissipation and thermal dispersion increased 
the number of non-dimensional parameters considerably, 
and hence, the nonlinear complexity of the present power-
law fluid flow problem is increased significantly. Therefore, 
the flow governing equations are solved with the combi-
nation of local non-similarity approach and spectral local 
linearization method, and also noticed that this combination 
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is working very well with minimum error when compared 
to spectral method alone. The conclusive remarks of this 
work for physically suitable values of the flow governing 
parameters, are:

• The higher values of viscous dissipation, thermal disper-
sion and nonlinear convection parameters increase the 
velocity, and the dilatant fluid dominates over the New-
tonian and pseudoplastic fluids.

• The temperature profiles are increased in the presence of 
viscous dissipation and thermal dispersion parameters 
and decreased with higher values of nonlinear convection 
parameter for all the fluids.

• The entropy generation and heat transfer rates increase 
with streamwise coordinate ( � ) for all the fluids irre-
spective of presence and absence of all these parameters 
which shows that the heat transfer and entropy generation 
rates for a truncated cone are less than that for full cone 
(higher values of � ) and more than that for vertical plate 
( � = 0).

• The smaller values of Bejan number for higher values 
of � show the domination of irreversibility due to fluid 
friction in the case of full cone.

• The analysis of entropy generation and Bejan number 
gives the idea about the stability of the system. Greater 
entropy generation results in unstable system.

• This kind of study is useful in the field of high-tempera-
ture polymeric mixtures, aerosol technology, electronic 
cooling, contact melting, etc., which are related with 
temperature-dependent density.
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