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Abstract
In the current paper, numerical study is carried out to investigate the peristaltic propulsion of Eyring–Powell fluid in a vertical 
symmetric channel with electro-kinetic pumping and transvers Lorentz force. The mass, momentum and energy equations 
for non-Newtonian fluid are formulated and simplified using suitable transformations and dimensionless variables. The 
governing equations in dimensionless form are solved numerically by implicit finite difference scheme for stream function 
and temperature profile in computational software Mathematica 9. The impact of several parameters of interest is analyzed 
and discussed for both values of Helmholtz–Smoluchowski velocity UHS and Joule heating parameter through graphs. An 
entropy generation analysis is also considered and observed for various values of involved parameters. The nonlinear dimen-
sionless equations are also solved by another numerical technique which is built in routine in MATLAB which is commonly 
known as bvp4c. The results for velocity and temperature are compared by both techniques. The Joule heating parameter 
also increases the size and number of isothermal bolus. The entropy of the system can be controlled for assisting pumping, 
i.e., UHS < 0. The entropy generation decreases with k for UHS < 0, while increases with k for UHS > 0.
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Introduction

The entropy generation is the loss of energy in thermo-
dynamical systems due to resistive forces, diffusion pro-
cesses, radiation effects and chemical reactions. Mathema-
ticians and physicists observed in detail the analysis and 
discussion of entropy generation with thermal radiations, 
which defines the process of irreversibility in various ther-
mal systems. The irreversibility processes are upgraded by 
the well-known and powerful law called the second law of 
thermodynamics which is used by many researchers in this 

field due to these broad applications. Many researchers used 
the first law of thermodynamics instead of the second law 
of thermodynamics in the initial stage, but they finalize that 
latter one gives better results as compared to the former. 
Entropy generation also tells us about the destruction taking 
place in the related system. The most useful and tremendous 
results (factors) which play a vital role in the concept of 
entropy generation can be reduced by using entropy optimi-
zation. The best way to check the effect of energy utilization 
in during the convective flow is one of the main and ideal 
problems in the field of engineering. Similarly, the entropy 
generation has a fundamental and great applications in the 
process of power collectors, electronic systems, slider bear-
ing and geothermal system. According to the recent research 
and developing mechanism of the science and engineer-
ing field, there is great relation between entropy and fluid 
mechanics because they are interlinked with each other due 
to their great behavior and similar relationship.

The role of entropy in universe is either remains same or 
increases but nevermore subsidence. In the field of physics, 
the second law of thermodynamics is considered to be the 
foundation of entropy. Bejan [1] provided a comprehensive 
material on heat transfer and entropy analysis. After the 
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pioneer work of Bejan, the second law of thermodynam-
ics has been used by Nag and Kumar [2] to investigate the 
entropy generation in convective heat transfer for the flow 
of viscous fluid in a duct. The various reasons behind an 
entropy generation which are applied in thermal energy were 
studied by Bejan in [3]. He also studied that the entropy gen-
eration also destructs the available condition of the system. 
Entropy generation mechanism for the flow of liquid in a 
channel has been analytically studied by Mahmud and Fraser 
[4], and he also obtained the expression for Bejan number 
and entropy generation. Entropy generation in axisymmetric 
flow of Williamson fluid was studied by Azam et al. [5]. A 
numerical study has been conducted by Erbay et al. [6] to 
analyze the entropy generation during the Couette flow of 
a viscous fluid between two parallel plates. Makinde and 
Maserumule [7] realized the production rates of entropy for 
variable viscous Couette flow through a non-uniform chan-
nel having non-uniform wall temperature. Kumar’s function 
has been used for analytical treatment of the analysis of elec-
trically conducting viscoelastic fluid by Aiboud and souli 
[8]. Impact of thermal radiations and viscous dissipation on 
the entropy generation is numerically studied by Butt et al. 
[9] for the Blasius flow. Effects of viscous dissipation on the 
entropy generation in laminar fully developed forced convec-
tive in a micro-channel have been investigated by Mah et al. 
[10]. Das and Jana [11] found the exact solutions of entropy 
generation in that channel using the influence of MHD and 
constant pressure gradient and familiarized that the large 
amount of heat transfer and its effects can be detected in the 
center of that channel, whereas the irreversibility of fluid 
friction is dominated at the walls of the channel. Adesanya 
and Makinde [12] performed both the convective heating 
and suction/injection effects on the entropy generation of a 
steady fluid through a channel. Adesanya et al. [13] used the 
perturbation techniques to find the expressions of velocity, 
temperature and entropy for a couple stress fluid flowing in 
a channel. The analytical solution of entropy generation in a 
porous channel with appropriate boundary conditions within 
the convective heat transfer was treated by Ibanez [14]. A 
comprehensive review about the entropy generation over 
rotating frame was presented by Mabood et al. [15]. Numeri-
cal solutions for the entropy generation in the flow of Car-
reau fluid are examined by Raza et al. [16]. More recently, 
Yusuf and Mabood [17] analyzed the entropy generation for 
the slip flow of electrically conductivity Williamson fluid 
with chemical reaction.

In the above-mentioned studies, the flows between fix or 
moving parallel plates or in the channels with moving walls 
are considered, but peristalsis is one type of fluid motions in 
which the fluids are transported due to the contraction and 
relaxation of the walls of the channels. Furthermore, the flow 
induced by the combined effects of peristalsis and electro-
osmosis was discussed due to their ample applications in 

biomedical engineering. Entropy generation in the flow of 
different fluids considering different mediums is reported by 
several researchers; some latest studies are included here. 
Soudi et al. [18] discussed the reasons of entropy generation 
in the peristaltic pumps and circular tubes with contracting 
walls. A theoretical study has been carried out by Muna-
war et al. [19] to disclose the entropy production for the 
peristaltically induced flow of viscous fluid having temper-
ature-dependent viscosity, and they predicted that entropy 
generation in fluid motion can be minimized for case of low 
viscous dissipation and variable viscosity. Narla et al. [20] 
computed the Bejan number and entropy production number 
for a viscous fluid in curved configuration and concluded 
that curvature of the channel acts as source of entropy gen-
eration. Production of entropy generation in flow of blood 
in magnetic environment is investigated by Rashidi et al. 
[21] and concluded that entropy generation enhances with all 
pertinent parameters. Akbar and Butt [22] investigated the 
entropy production in the peristaltic flow of copper–water 
nanoliquid in a circular tube and concluded that near the 
walls the entropy generation number has high values com-
pared to the center of the tube. Saleem [23] examined the 
production of entropy in the peristaltically induced flow 
of viscous fluid having variable viscosity in a channel and 
established that in the cooled region of channel the variable 
viscosity enhanced the entropy generation. Nawaz et al. [24] 
emphasized the effects of radially applied magnetic field 
and curvature of the channel on entropy generation for the 
peristaltic motion of Williamson fluid. Bibi et al. [25] con-
sider the variable viscosity and thermal conductivity and 
discussed their influence on the entropy generation produc-
tion for peristaltic flow of Sisko fluid in a curved channel 
and summarized that large values of viscosity and thermal 
conductivity minimized the irregularity in thermal transport 
through entropy production. Hayat et al. [26] discussed the 
entropy generation minimization and non-Darcian resist-
ance on the peristaltic flow of Sutterby fluid with variable 
properties.

Flows due to the applied of electric field on channel’s 
walls have extensive range of applications in biomedical 
engineering. Zhao and Liu [27] discussed entropy genera-
tion analysis in electro-osmotic flow in open and closed end 
micro-channels. Shamshiri et al. [28] analyzed the entropy 
generation associated with mixed electro-kinetically induced 
and pressure-driven flow of power law fluid. Goswami et al. 
[29] studied the entropy generation minimization in a flow 
of non-Newtonian fluid through electro-osmosis. Bhatti et al. 
[30] discussed entropy analysis on electro-kinetically regu-
lated peristaltic propulsion of nanofluid flow with magnetic 
effects over a micro-channel. Xie and Jian [31] performed 
a study to discuss the entropy generation of double-layer 
MHD electro-osmotic flow over micro-channel. Ranjit 
and Shit [32] investigated the entropy generation in the 
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electro-osmosis-modulated peristaltic motion of electrically 
conducting viscous fluid. In another article, Ranjit et al. [33] 
analyzed the flow, heat transfer and entropy generation for 
two-layered flow produced by mutual contribution of peri-
staltic pumping and electro-osmosis. Narla et al. [34] dis-
cussed the phenomena of entropy production for the electro-
osmotic flow in curved configuration.

Joule heating is a process by which the thermal energy is 
produced in an electrical conductor produced by the passage 
of electric current. Swain and Mahanthesh [35] discussed he 
phenomena of Joule heating in electrically conducting fluid. 
Mahanthesh et al. [36] reported significance of Joule heat-
ing on the flow of hybrid nanofluid over a wedge. Entropy 
generation and heat transport analysis were carried out by 
Gireesha et al. [37] for the flow of Casson fluid flow with 
viscous and Joule heating in an inclined porous microchan-
nel. Shashikumar et al. [38] investigated the influence of 
Joule heating and multiple slips on the transport of magneto-
nanoliquid in a microchannel. Ahmed et al. [39] discussed 
the Joule heating in mixed convective peristalsis of Sisko 
fluid.

During recent years, the impact of magnetic field on the 
flow has various applications [40–45]. Moreover, it is obvi-
ous from the above discussion that entropy generation for 
the flow of Newtonian and non-Newtonian fluids in differ-
ent geometries has been reported, but the entropy produc-
tion in the electro-osmosis-modulated peristaltic flow of 
Eyring–Powell fluid is not reported. In this regard, a numeri-
cal study is performed to emphasize the effects of applied 
magnetic and electric fields on the behavior of flow, ther-
mal transport and entropy generation for the Eyring–Powell 
fluid. Moreover, how extraordinary physical parameters, 
all of those, are related to the issue impacts the liquid flow 
and heat transfer, and those impacts are analyzed through 
graphs and table so that the present study and outcomes are 
new. The problem formulation is presented in the “Introduc-
tion” section. The relation for entropy generation and Bejan 
number is given in the “Mathematical formulation” section. 
Solution methodology is described in the “Mathematical 
formulation” section. Obtained results along with discus-
sion are documented in the “Numerical method” section, 
while the obtained results are validated in the “Results and 
discussion” section and some findings are reported at the end 
in the “Validation of numerical results” section.

Mathematical formulation

The flow of electrically conducting generalized Newto-
nian fluid characterized by the constitutive equation of 
Eyring–Powell fluid in a vertical symmetric channel is taken 
into consideration. The flow is caused due to propagation of 
sinusoidal wave with speed c of amplitude a and wavelength 
� and the application of electric field. The Cartesian coor-
dinate system 

(

X′, Y ′
)

 is used in such a way that X′-axis is 
chosen in the direction of the transport of fluid, while Y ′-axis 
is taken in the direction normal to the flow. The right walls 
of the channel are represented by h

(

X′, t′
)

 and mathemati-
cally can be expressed as:

where 2d is used to represent the width of the channel and 
t′ is time (Fig. 1).

(1)h
(

X�, t�
)

= d − a cos2
�

�

(

X� − ct�
)

,

–h h

a

d

T
′ =

 T
0

T
′ =

 T
1

λ

0

Y
′

x
′

E
0

Fig. 1   Geometry of the problem
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The governing equations for the two-dimensional flow of 
generalized Newtonian fluid under consideration in Carte-
sian co-ordinate system are Ranjit and Shit [32]

The velocity due to no-slip boundary condition at both 
walls is zero; therefore, appropriate boundary conditions are

In the above equations, �X′X′ , �X′Y′ and �Y′Y′ are the compo-
nents of extra stress tensor and for Eyring–Powell fluid is defined 
as:

(2)�U�

�X�
+

�V �

�Y �
= 0,

(3)�

[

�U�

�t�
+ U� �U

�

�X�
+ V � �U

�

�Y �

]

= −
�P

�X�
+

��X�X�

�X�
+

��X�Y�

�Y �
+ �eE0 − �B2

0
U� + �g�1

(

T − T0
)

,

(4)

�

[

�V �

�t�
+ U� �V

�

�X�
+ V � �V

�

�Y �

]

= −
�P

�Y �
+

��Y�X�

�X�
+

��Y�Y�

�Y �
,

(5)�Cp

[

�T �

�t�
+ U

� �T
�

�X�
+ V

� �T
�

�Y �

]

= k1

[

�2T �

�X�2
+

�2T �

�Y �2

]

+ �B2
0
U

�2 + �E2
0
+

�U�

�X�
�X�X� +

(

�V �

�X�
+

�U�

�Y �

)

�X�Y� +
�V �

�Y �
�Y�Y� .

(6)
U� = 0, V � =

−h
(

X�, t�
)

�t�
, T � = T0 at Y

� = −h

U� = 0, V � =
h
(

X�, t�
)

�t�
, T � = T1 at Y

� = h.

denotes the thermal conductivity of the fluid, whereas �1 
denotes the coefficient of linear thermal expansion and �e 
is the ionic charge density, for a symmetric electrolyte the 
density of ionic energy is defined by Prakash et al. [46]

where n+ and n− are the number of densities of cations and 
anions, respectively. The charge density �e and the electric 
potential distribution E′ are related by the Poisson equation 

(8)�e = ez
(

n+ − n−
)

,

due to the presence of electric double layer in the channel 
and the well-known Poison equation is given as

where ∈ is the dielectric constant and ∈0 is the permittiv-
ity of the vacuum. To obtain the potential distribution and 
the charge number density, the Nernst Planck’s equation is 
given as:

(9)
d2E�

dX�2
+

d2E�

dY �2
= −

�e

∈∈0

,

where U′ and V ′ indicate the velocity components, P is the 
fluid pressure, E0 is the induced electric field and is taken as 
constant, B0 denotes the strength of magnetic field applied 
in the normal direction of the flow, � represents the fluid 
density, g denotes the gravitational acceleration, � denotes 
the electrical conductivity, � and c1 are characteristics of 
Eyring–Powell fluid, T ′ be the temperature distribution, k1 

(7)�ij = �
�U

�

i

�X
�

j

+
1

�
sinh−1

[

1

c1

�U
�

i

�X
�

j

]

,

where D represents the diffusivity, n is the number of ions, 
z is the charge difference, KB represents the Boltzmann con-
stant, e represents the electronic charge, E′ represents the 
electric potential, and Tav denotes the average temperature.

As the flow properties of the problem under considera-
tion are time dependent in the laboratory frame, in order 
to make the flow problem independent of time, we can 
relate the components of velocity and co-ordinates in the 
wave frame and in the laboratory frame using the Galilean 
transformations

(10)�n
�

±

�t�
+ U�

�n
�

±

�X�
+ V �

�n
�

±

�Y �
= D∇2n

�

±
±

Dez

KBTav

(

�

�X�

(

n
�

±

�E�

�X�

)

+
�

�Y �

(

n
�

±

�E�

�Y �

))

,

(11)
x� = X� − ct�, y� = Y � u� = U� − c, v� = V �,P = p� and T = T �.
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Using the above transformations, Eqs.  (2)–(5) and (9) 
become

The following dimensionless variables are introduced and

Using the non-dimensional variables in Eqs (12)–(16) and 
dropping the primes,

(12)
�u�

�x�
+

�v�

�y�
= 0,

(13)�

[

u�
�u�

�x�
+ v�

�u�

�y�

]

= −
�p�

�x�
+

��x�x�

�x�
+

��x�y�

�y�
+ �eE0 − �B2

0

(

u� + c
)

+ �g�1(T − T0)

(14)�

[

u�
�v�

�x�
+ v�

�v�

�y�

]

= −
�p�

�y�
+

��y�x�

�x�
+

��y�y�

�y�
,

(15)�Cp

[

u�
�T

�x�
+ v�

�T

�y�

]

= k1

[

�2T

�x�2
+

�2T

�y�2

]

+ �B2
0
(u

�

+ c)2 + �E2
0
+

�u�

�x�
�xx +

(

�v�

�x�
+

�u�

�y�

)

�xy +
�v�

�y�
�yy,

(16)u�
�n

�

±

�x�
+ v�

�n
�

±

�y�
= D

[

�2n
�

±

�x
�2

+
�2n

�

±

�y
�2

]

±
Dez

KBTav

(

�

�x�

(

n
�

±

�E�

�x�

)

+
�

�y�

(

n
�

±

�E�

�y�

))

,

(17)E =
E�

�
, u =

u�

c
, v =

v�

c
, x =

x�

�
, y =

y�

d
, p =

p�d2

�c�
, n± =

n
�

±

n0
, � =

T − T0

T1 − T0
,� =

a

d
, �

�

ij
=

d�ij

c�
, � =

d

�
.

(18)�
�u

�x
+

�v

�y
= 0,

(19)Re

[

�u
�u

�x
+ v

�u

�y

]

= −
�p

�x
+

[

�
��

�

xx

�x
+

��
�

xy

�y

]

+ k2UHSE − Ha2(u + 1) + Gr�,

(20)Re�

[

u�
�v

�x
+ v

�v

�y

]

= −
�p

�y
+

[

�2
��

�

yx

�x
+

��
�.
yy

�y

]

,

(21)Re Pr

[

u�
��

�x
+ v

��

�y

]

=

[

�2
�2�

�x2
+

�2�

�y2

]

+ � + BrHa2(u + 1)2 + Br

[

�
�u

�x
�

�

xx
+

(

�
�v

�x
+

�u

�y

)

�
�

xy
+

�v

�y
�

�

yy

]

,

(22)Pe

(

�u
�n±

�x
+ v

�n±

�y�

)

=

(

�2
�2n±

�x
�2

+
�2n±

�y
�2

)

±
ezD�

KBT

(

�2
�

�x

(

n±
�E

�x

)

+
�

�y

(

n±
�E

�y

))

,
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�
′

xx
 , � ′

yy
 and � �

yx
= �

�

xy
 are the normal and shear components 

of extra stress tensor in dimensionless form, M =
1

��c1
 and 

K =
Mc2

6c1
2d2

 are the Eyring–Powell fluid parameters, Pe = c�

D
 

represents the Peclet number, Ha = B0d
√

�

�
 represents the 

Hartman number, Pr = �cp

k1
 denotes the Prandtl number, 

Br =
�c2

(T1−T0)d
 represents the Brinkman number, � =

�dE0
2

T1−T0
 is 

the Joule heating parameter, R e = �cd

�
 represents the Reyn-

olds number, � =
d

�
 , is the wave number, UHS = −

∈∈0KBTE0

�ze
 

represents the Helmholtz–Smoluchowski velocity and 
Gr =

�g�1d
2(T1−T0)
�c

 represent the thermal Grashof number. In 
order to facilitate the solution of the above equation using 
low Peclet number and long wavelength approximation in 
Eq. (22),

with the boundary condition

where the different types of ions, positive ( n+ ) and negative 
( n− ), are described as:

where n0 represents the number of positive and negative 
ions. The net charge density of the unit volume of fluid 
Eq. (8) is considered as:

(23)
�2n±

�y2
±

ezD�

KBT

�

�y

(

n±
�E

�y

)

= 0,

(24)
n± = 1 atE = 0

�n±

�y
= 0 at

�E

�y
= 0,

n± = n0 exp

[

∓
ezE�

KBTav

]

,

After using the dimensionless variables

where � represents the ionic charge density and �D represents 
the Debye length

with the conditions

Assuming that electrical potential is small compared with 
the thermal energy of the ions, so for further simplifications, 
we follow [32, 33] and apply the Debye–Huckel linearization 
approximation (sinh� ≈ �). Solving Eq. (25) by applying 
the conditions described in Eq. (26) to obtain the potential 
parameter, i.e.,

where k is the electro-osmotic parameter defined as 
k = d∕�D . Using the lubrication (long wave length approxi-
mation) approach along with Re ≪ 1 , the stream functions 
u = ��∕�y and v = −��∕�x in term velocity components 
using and Eq. (27) in (18–21); then, Eq. (18) is satisfied 
identically, and the remaining equations can be written in 
the form:

�e = −2n0ez sinh

(

ezE

kBTav

)

,

(25)
d2E

dy2
=

d2

�2
D

sinh (�E),

� =
ez�

kBTav
, �D = (ez)−1

(

∈∈0 kBTav

2n0

)
1

2

(26)
dE

dy
= 0 at y = 0

E = 1 at y = h.

(27)E =
cosh (ky)

cosh (kh)
,

(28)�p

�x
= (1 +M)

�3Ψ

�y3
− 3K

(

�2Ψ

�y2

)2
�3Ψ

�y3
− Ha2

(

�Ψ

�y
+ 1

)

+ k2UHS

cosh (ky)

cosh (kh)
+ Gr�

}

,

(29)
�p

�y
= 0,

(30)�2�

�y2
+ � + BrHa2

(

�Ψ

�y
+ 1

)2

+ Br

[

(1 +M)

(

�2Ψ

�y2

)2

− K

(

�2Ψ

�y2

)4
]

= 0.
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In order to eliminate �p
�x

 from Eq. (28), we differentiate it 
with respect to ‘y’ and we get

with appropriate conditions described by Jayavel et  al. 
(2019)

where F = Q + 1 −
�

2
− h.

Entropy generation analysis

The irreversibility of heat transfer results in entropy genera-
tion. After determining the temperature and velocity fields, 
we can obtain volumetric entropy generation of the fluid 
under study by Arikoglu et al. [47]

(31)(1 +M)
�4Ψ

�y4
− 3K

(

�2Ψ

�y2

)2
�4Ψ

�y4
− 6K

(

�3Ψ

�y3

)2(

�2Ψ

�y2

)

− Ha2
�2Ψ

�y2
+ k3UHS

sinh (ky)

cosh (kh)
+ Gr

��

�y
= 0,

(32)

��

�y
= −1,� =

F

2
, � = 0 at y = −h = −1 + � cos2 (�(x))

��

�y
= −1,� = −

F

2
, � = 1 at y = h = 1 − � cos2 (�(x)),

where ΔT  represents the temperature gradient, k1 repre-
sents the thermal conductivity, � represents the viscosity of 
the fluid, T2 represents reference temperature, J represents 
the electric current, Q represents the charge density, E is rep-
resents the electric field, B is represents the magnetic field, V  
denotes the velocity field, and � represents the viscous dissi-
pation. Here, J = �(E + V × B) , as J ≫ QV , we can neglect 
QV  , where the electric and magnetic fields are defined as 
E =

(

E0, 0, 0
)

 and B =
(

0, 0,B0

)

 . The above expression takes 
the form

(33)SG =
k1

T2
w

[ΔT]2 +
�

T2
w

� +
1

T2
w

(J − QV)(E ⋅ V × B),

(34)

SG =
k

T2
w

[

(

�T

�x�

)2

+

(

�T

�y�

)2
]

+
�

T2
w

� +
1

T2
w

(J − QV)(E ⋅ V × B),

Fig. 2   Velocity profile for 
a thermal Grashof number 
(Gr) when Ha = 0.5 and b 
Hartman number (Ha) when 
Gr = 0.1. Other parameters 
are k = 1.0, � = 2.0,M = 1.0,

x = 0.5,� = 0.2,Q = 1.5 and 
Br = 0.5
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Using the dimensionless variables and lubrication 
approach with Re ≪ 1, the above equation takes the form

Using Eqs. (2.34) and (2.36) in Eq. (1.8) takes the form:

The characteristic entropy generation is given by

(35)(J − QV)(E ⋅ V × B) = �E2
0
− �B2

0
(U

�2 + V
�2).

(36)(J − QV)(E ⋅ V × B) = � − BrHa2(u + 1)2.

(37)SG =
q2k

Tw

(

��

�y

)2

+
�

Tw

[

(1 +M)

(

�u

�y

)2

− K

(

�u

�y

)4

+ � + BrHa2(u + 1)2

]

.

Fig. 4   Velocity profile for a 
Eyring–Powell fluid parameter 
(M) when K = 0.1 and Q = 2.0 
and b Eyring–Powell fluid 
parameter (K) when M = 1 and 
Q = 1.5. Other parameters are 
k = 1.0, Gr = Ha = 0.1, � = 2.0,

x = 0.5,� = 0.2 and Br = 0.5.
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The relation for dimensionless entropy generation num-
ber is

(38)SG0
=

k

d2T2
W

(

qd

k

)2

.

After using the stream function, the above equation 
becomes

(39)NS =
SG

SG0

,

(40)NS =

(

��

�y

)2

+
1

∧

[

(1 +M)

(

�u

�y

)2

− K

(

�u

�y

)4

+ � + BrHa2(u + 1)2

]

.

(41)NS =

(

��

�y

)2

+
1

∧

[

(1 +M)

(

�2Ψ

�y2

)2

− K

(

�2Ψ

�y2

)4

+ � + BrHa2
(

�Ψ

�y
+ 1

)2
]

,
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where the parameter Λ is defined as ∧ =
qd

kTw
.

The Bejan number in the present study is

Numerical method

The systems (29) and (30) subject to (31) show a nonlinear-
ity nature, and it seems to be difficult to find the closed form 
for the considered problem. Hence, the solution is computed 
numerically by Keller box method. The detail of the method 
can be found in Abbasi and Farooq [48] and Mustafa et al. 
[49]. The governing coupled system of nonlinear system of 
equations is also simulated by built-in sub-routine in com-
putational software MATLAB which is commonly known as 
bvp4c. For this, first we reduce the corresponding equations 
into the first-order equations.

Let � = y(1)

(42)Be =

(

��

�y

)2

(

��

�y

)2

+
1

∧

[

(1 +M)
(

�2Ψ

�y2

)2

− K
(

�2Ψ

�y2

)4

+ � + BrHa2
(

�Ψ

�y
+ 1

)2
] .

(43)� � = y(2), The associated boundary conditions takes the form:

(44)� �� = y(3),

(45)� ��� = y(4),

(46)� = y(5),

(47)�� = y(6),

(48)

y(4)
�

=
1

(1 +M) − 3K(y(3))2

(

6K(y(4))2y(3) + Ha2y(3)

−k3UHS
sinh (ky)

cosh (kh)
− Gry(6)

)

,

(49)
y(6)

�

= −BrHa2(y(2) + 1)2 − Br
(

(1 +M)y(3)2 − K(y(3))4
)

− � .

Fig. 6   Temperature profile 
for a electro-osmotic param-
eter (k) when � = 2.0 , b Joule 
heating parameter (�) when 
k = 1.0. Other parameters are 
Ha = 1.0, Gr = 1.0,M = 1.0,

K = 0.1, x = 0.5,� = 0.2 and 
Br = 2.0.
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The graphical results are compared through several 
graphs for velocity and temperature and also with the pub-
lished results by Ramesh and Prakash [50]. The essential 
characteristics of various parameters on velocity profile, 
temperature distribution entropy and Bejan number are rep-
resented graphically.

Results and discussion

In this section, the effects of various parameters like Hart-
mann number ( Ha ), Grashof number ( Gr ), Joule heating 
parameter ( �) and Eyring–Powell fluid parameters M and 
K on velocity profile, temperature distribution and Entropy 
generation for some different values of Helmholtz–Smolu-
chowski velocity UHS are presented graphically and dis-
cussed in detail.

Figure  2a is plotted to observe the consequences of 
variation in the thermal Grashof number Gr on the axial 
velocity distribution. The graph is plotted for various val-
ues of maximum electro-osmotic velocity also known as 
Helmholtz–Smoluchowski velocity ( UHS ), i.e., for UHS > 0 
and UHS < 0 . It is observed that the Grashof number shows 
different behavior at vicinity of the walls. Velocity profile 

(50)
ya(1) −

F

2
, yb(1) +

F

2
1 + ya(2)1 + yb(2)ya(5) − 0yb(5) − 1.

after half region of the channel is enhanced by thermal Gra-
shof number. We have noticed a significant increase in the 
velocity profile for the increasing value of Gr around the 
right boundary of the plane. The consequence of variation 
in the Hartmann number Ha on the axial velocity distri-
bution is observed in Fig. 2b for different values of UHS. 
The parameter is basically a magnetic parameter, and this 
behavior is because of the magnetic field that exists in an 
electrically conducting flow through which a force named 
Lorentz force is introduced. As we assign greater values to 
Ha, there is a decrease in the velocity profile at the central 
region of the channel, but this behavior is different around 
the boundary for several values of UHS. Figure 3a shows 
the behavior of different values of electro-osmotic param-
eter k on the axial velocity distribution. The effects are dis-
cussed for the negative as well as positive values of UHS. 
From the graph, it is clear that the electro-osmotic param-
eter shows maximum velocity for the positive values of UHS 
as compared to the negative values of UHS as the values 
of electro-osmotic parameter k increases. At the central 
line, the velocity of the fluid decreases against the increas-
ing values of k when UHS = −2.0, while opposite trend is 
noticed when the electric field is applied opposite to the 
flow, i.e., UHS = 2.0. The different behavior is due to the 
presence of electric double layer which act as an agent to 
provide resistivity. In Fig. 3b, the impacts of Joule heating 
parameter � on the axial velocity are observed. For greater 

Fig. 8   Effects of electro-
osmotic parameter on stream 
lines a k = 0.1

(

UHS = 3.0
)

 , 
b k = 3.0

(

UHS = 3.0
)

 , c 
k = 0.1

(

UHS = −3.0
)

 and 
d k = 3.0

(

UHS = −3.0
)

. 
Other parameters are 
Ha = 0.1, Gr = 0.2,M = 1.0,

K = 0.1, � = 2,� = 0.8,Q = −0.1 
and Br = 1.0.
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Fig. 9   Effects of electro-
osmotic parameter on isother-
mal lines a k = 0.1

(

UHS = 4.0
)

, 
b k = 1.0

(

UHS = 4.0
)

 , c 
k = 0.1

(

UHS = −4.0
)

 and 
d k = 1.0

(

UHS = −4.0
)

. 
Other parameters are 
Ha = 0.1, Gr = 1.0,M = 1.0,

K = 0.1, � = 1,� = 0.8,Q = −0.1 
and Br = 2.0.
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values of � , the velocity is greater as compared to the smaller 
values of � , but this behavior gradually changes until the 
smaller values of � show the maximum velocity. The veloc-
ity profile increases for the increasing value of � at central 
line of the channel, it is also noticed that the parameter � 
shows opposite behavior near the boundary and the effect 
of � gradually becomes smaller, and hence, it is negligible 
at the wall of the channel. Electric field will exert a force 
which will accelerate a charged particle. If a positive charge 
is moving in the same direction, it will increase the veloc-
ity, and if it is moving in the opposite direction, then it will 
decrease the velocity. In Fig. 4a, axial velocity u(y) is plotted 
for increasing values of non-Newtonian fluid parameter (M) 
for several values of UHS. It is important to noticed that the 
axial velocity is increasing function of non-Newtonian fluid 
parameter when electro-kinetic pumping is in flow direction, 
i.e., UHS =  − 2.0. Moreover, when electro-kinetic pumping 
is opposite to flow, i.e., UHS = 2.0, the velocity of the fluid 
at the central line decreases. Actually, this is significant of 
the electro-kinetic pumping which increases the velocity by 
changing the rheology of the fluid. Furthermore, the differ-
ence in the magnitude exists with the direction of applica-
tion of electro-osmotic forces. From Fig. 4b, it is clear that 
the axial velocity decreases by increasing Eyring–Powell 
fluid parameter (K) for various values of maximum electro-
osmotic velocity also known as Helmholtz–Smoluchowski 
velocity (UHS), i.e., for UHS > 0 and UHS < 0.

The temperature profile increases by enhancing the ther-
mal Grashof number, and increasing trend can be observed 
in the presence of electro-kinetic pumping. Furthermore, 
the rise in temperature against the thermal Grashof number 
is large in case of positive electro-kinetic pumping. The 
effects of Hartman number Ha on temperature distribution 
are presented in Fig. 5b; for the increasing value of Ha, the 

temperature rapidly increases. The behavior is observed for 
the positive and negative values of UHS. The temperature is 
higher for the positive values of Helmholtz–Smoluchowski 
velocity; it tends to increase as larger values are assigned. 
Figure 6a is plotted to observe the variation of axial temper-
ature against the raising values of electro-osmotic parameter 
(k) for both negative and positive electro-kinetic pumping. 
The temperature is an increasing function of increasing val-
ues of electro-osmotic parameter when the electro-kinetic 
pumping is against the flow direction. As we know that 
electro-osmotic force is a resistive force to the flow of liq-
uid, it increases the collision between the particles of the 
fluid. The increase in collision causes the increase in the 
internal kinetic energy of the rushing particles in the flow 
direction, and as a result, increase in temperature can be 
observed for the raising trend of electro-kinetic parameter. 
Furthermore, the temperature decreases when the electric 
pumping is in the flow direction for the increasing values 
of k. From Fig. 6b, it is clear that Joule heating parameter 
enhances the temperature field for various values of UHS, 
i.e., at UHS > 0 and UHS < 0. In Fig. 7a and b, the effects 
of Eyring–Powell fluid parameters are discussed. In these 
graphs, the behavior of M and K is examined for different 
values of UHS, i.e., at UHS > 0 and UHS < 0. The fluid param-
eters M and K show opposite behavior. We have noticed that 
the parameter K has the opposite effect on the temperature 
profile; the temperature of the fluid throughout the plane 
decreases with the increasing values of K, whereas for the 
increasing values of M, the temperature of the fluid through-
out the plane increases. The effect for the positive values of 
UHS is greater than the negative values of UHS.

Figure 8 illustrates the impact of electro-osmotic parame-
ter k on the streamlines for both opposing and assisting elec-
tro-kinetic pumping. The rise in the value of electro-osmotic 
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parameter increases the resistance to the flow which rises the 
size of trapping bolus. For opposing pumping, this increase 
in size can be seen in the left half of the channel, while 
for assisting pumping, it can be observed in the right half 
of the channel. In Fig. 9, the response of isothermal lines 
against electro-osmotic parameter is reported for both posi-
tive electro-kinetic pumping and negative electro-kinetic 
pumping. For opposing pumping, the lateral expansion 
and vertical compression are noticed in the micro-channel 
with increasing k. Furthermore, it is noticed that the size 
and number of isothermal contour also increase by rising 
the electro-osmotic parameter. For assisting pumping, the 
number of bolus decreases by increasing k and therefore, it 
is significant that heat transfer characteristics are familiar 
in the micro-channel for positive electro-kinetic pumping. 
The isothermal lines by varying Joule heating parameter in 
micro-channel are plotted and discussed for UHS =  ± 3.0, 
i.e., opposing electro-kinetic pumping and negative electro-
kinetic pumping. The increase in Joule heating parameter 
also increases the number of isothermal contours, and this 
means that increase in Joule heating parameter also assists 
the heat transfer phenomena (Fig. 10).

The response of entropy generation number Ns and 
Bejan number Be against the increasing values of ther-
mal Grashof number Gr, electro-osmotic parameter k, and 
Hartman number Ha for both positive and negative electro-
kinetic pumping, i.e., ± UHS, is in Figs. 11, 12 and 13. It is 
observed that entropy generation number Ns rises against 
Gr, but in the neighborhood of left wall Ns decreases for 
both types of pumping. It is noted that for the entropy gen-
eration in the decreasing region the magnitude is small for 
UHS = 3.0; it means that when electric field is in opposite 
direction, the entropy decreases and these results can be 
used in the thermal management of many micro-pumps 
and microchips in bioengineering. The response of Bejan 
number is totally opposite to the entropy generation num-
ber due to irreversibility domination. From Fig. 12, it is 
clear that both entropy generation number Ns and Bejan 
number Be increase with rising the electro-kinetic pumping 
in opposing flow direction, while both quantities decrease 
with enhancing k for assisting electro-kinetic pumping. 
From this effective response, we conclude that for the better 
thermal management of biomedical instruments, the flow 
and electric field are in the same direction. The effects of 
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Hartman number Ha on entropy generation number Ns and 
Bejan number Be are illustrated in Fig. 13. The effects of 
positive values of UHS are much greater as compared to 
its negative values. As we assign a positive value to UHS 
and then assign different values to Hartman number Ha, 
we can observe that the entropy increases at a very high 
rate as compared to UHS < 0. Furthermore, the response of 
Bejan number in the vicinity of the channel is decreasing 
by increasing the magnetic forces for both positive electro-
kinetic pumping and negative electro-kinetic pumping.

Validation of numerical results

Figure 14 is plotted to compare the present results obtained 
by Keller box method and bvp4c. Figure 14 shows that both 
temperature and axial velocity show good agreement by 
assigning fixed values of involved parameters. The numerical 

results in the present study under certain restrictions show 
a good agreement with Ramesh and Prakash [50] (Fig. 15).

Conclusions

A numerical study by employing implicit finite difference 
scheme has been carried out to compute the entropy gen-
eration for the electro-osmosis-modulated peristaltic flow of 
Eyring–Powell fluid in a deformable symmetric channel. Effects 
of perpendicular magnetic field, Joule heating and thickness of 
electric double layer are also computed for several features of 
peristalsis. In order to solve the dimensionless conservation 
laws, we use implicit finite difference after lubrication approach 
and low zeta positional approximation. Graphical results are 
presented and discussed to analyze axial velocity, temperature 
and heat transfer coefficient. Bejan number distribution and 
average entropy generation rate are obtained for several values 
of electro-osmotic velocity and Joule heating parameter. Also 
the tabular results are presented to validate the numerical results 
by implicit finite difference scheme and numerical results by 
bvp4c. The transport and entropy generation characteristics are 
also presented through tabular data for Newtonian and non-
Newtonian fluid for some values of Ohmic heating parameter. 
The computation can be summarized as follows:

•	 The Eyring–Powell fluid parameter M assists the veloc-
ity at the heart of the channel for negative electro-
kinetic pumping while respond if reverse for positive 
electro-kinetic pumping.

•	 The velocity of the fluid increases by increasing joule 
heating parameter (γ), Hartman number (Ha) and 
Eyring–Powell fluid parameter for all values of electro-
kinetic pumping.

•	 The electro-osmotic parameter assists the axial velocity 
for the negative electro-kinetic pumping while resisting 
positive electro-kinetic pumping near the walls of channel.

•	 The increase in M, K, Ha and Gr increases the effect of 
heat transfer phenomena.
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•	 The size of streamlines as well as isothermal trapping 
increases by increasing k.

•	 The Joule heating parameter also increases the size and 
number of isothermal bolus.

•	 The entropy of the system can be controlled for assist-
ing pumping, i.e., UHS < 0.

•	 The entropy generation decreases with k for UHS < 0 
while increasing with k for UHS > 0.

•	 Hartman number and thermal Grashof number increase 
entropy at the heart of the channel.
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