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Abstract
In this paper, we analyze the effect of heat transfer on the flow of tangent hyperbolic nanofluid in a ciliated tube (fallopian 
tube where embryo in blood make the development). This study will be beneficial for the researchers and medical experts 
in the field of embryology. The nanoparticles are beneficial to remove the cysts from the fallopian tube where development 
of embryo takes place. To resolves the ciliary flow problems, medical doctors use nanoparticles (drug delivery) that may 
create a temperature gradient. The heat transfer helps to optimize the energy for which the entropy generation is reduced. 
Therefore, in this research we discuss the heat transfer effect on tangent hyperbolic nanofluid and entropy generation due 
to ciliary movement. The governing partial differential equations are solved by HPM and software MATHEMATICA™. 
Effect of viscoelastic parameter, nanoparticles, cilia length and Brinkman number on the velocity, temperature and entropy 
generation has been illustrated with the help of graphs. Graphical results show that thermal conductivity of fluid increases by 
adding nanoparticles. The entropy generation due to nanoparticles will decrease the viscosity near the tube wall and blood 
through tube will flow with normal pressure.
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List of symbols
V  Velocity field vector
U,W   Velocity components in fixed frame
u,w  Velocity components in wave frame
R, Z  Cylindrical coordinates of ciliated tube in fixed 

frame
r, z  Cylindrical coordinates of ciliated tube in wave 

frame
P  Pressure in fixed frame
p  Pressure in wave frame
�  Cauchy stress
S  Shear rate
c  Wave speed
(

�cp
)

nf
  Specific heat capacity of nanofluid

(

�cp
)

f
  Specific heat capacity of base fluid

(

�cp
)

s
  Specific heat capacity of nanoparticles

�  Cilia length
�f  Density of fluid
�nf  Density of nanofluid
�s  Density of nanoparticles
�  Solid volume fraction
knf  Thermal conductivity of nanofluid
kf  Thermal conductivity of base fluid
ks  Thermal conductivity of solid nanoparticles
�  Eccentricity of elliptical path
�∞  Infinite shear rate viscosity
�0  Zero shear rate viscosity
Γ  Time constant
�̇�  Strain rate tensor
�  Second order tensor
�  Wave number
m  Power law index
A1  Rivlin–Erickson tensor
We  Weissenberg number
Q  Volume flow rate
Q  Mean volume flow rate
j  Embedding parameter
T   Temperature profile
T0  Temperature at the center of the tube
T1  Temperature at the ciliated wall
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Re  Reynolds’ number
Br  Brinkman number
Ns  Entropy generation
Be  Bejan number
�  Dimensionless temperature

Introduction

In past few decades, the first law of thermo-dynamics has 
been used to investigate efficiency of heat transfer. However, 
in recent years, scientists have observed the entropy genera-
tion to analyze the irreversible behavior of matter during 
heat transfer. It is evident from the literature that many ther-
mal mechanisms show irreversible behavior as irreversibility 
in a thermal process develops a continuous entropy genera-
tion, which demolish the energy of a system. This energy 
loss is mainly due to heat transfer, viscosity, buoyancy and 
magnetic field, which occurs in different modes. A detailed 
discussion on entropy generation for different flow systems 
was first presented by Bejan [1] who gave the concept of 
entropy generation; according to him, entropy generation 
is due to irreversible nature of heat transfer and viscosity 
effects with the fluid at solid boundaries. Benedetti et al. [2] 
obtained the numerical results for rate of entropy generation 
in a tube. Entropy generation in a pipe due to non-Newto-
nian fluid flow was presented by Pakdemirli et al. [3]. They 
observed that heat transfer rate and fluid friction increase 
with the increase in Brinkman number, and entropy number 
increases. Qasim et al. [4] analyzed the entropy generation 
in fluid flowing through wavy channel by using Maxwell’s 
thermal conductivity model. Rashidi et al. [5] studied the 
entropy generation of a nanofluid flow with slip conditions 
by using effective Prandtl model. Beside these models, dif-
ferent researchers [6–9] presented the convective heat trans-
fer problems with entropy generation in different geometries 
and observed that entropy generation plays an important role 
in the flow field.

Heat transfer enhancement in biological fluids is an 
important area of modern biomechanics and biomedical 
engineering. Heat regulation is essential for all mammals, 
human beings and living organism, therefore in modern bio-
medical engineering [10–14] due to its multifarious applica-
tions, has gained lots of importance.

The study of thermodynamics deals with the properties 
of substances associated with pressure, density, velocity, 
viscosity, nanofluids and their relationship with energy. 
Nanofluids are colloidal suspensions of nanosized solid 

particles in a liquid, which was first studied by Choi [15]. 
More recently conducted experiments have shown that 
nanofluids have substantially higher thermal conductivity 
than base fluids. Among the many advantages of nanoflu-
ids over conventional solid–liquid suspensions, the fol-
lowing are worth mentioning: (i) higher specific surface 
area, (ii) higher stability of the colloidal suspension, (iii) 
lower pumping power required to achieve the equivalent 
heat transfer, (iv) reduced particle clogging compared to 
conventional colloids, (v) higher level of control of the 
thermodynamics and transport properties by varying the 
particle material, (vi) concentration, size, (vii) and shape 
to name a few Neild et.al [16] extended the corresponding 
problems of porous medium. There are lot of nanoparticles 
in blood that are one thousand times smaller than a human 
hair and the presence of these nanoparticles contribute to 
severe diseases such as neutropenia, blood cancer, eosino-
philia, leukocytosis, etc. In many cases, common meth-
ods cannot be used to eliminate these particles. Presently, 
nanotechnology is being used to separate these nanoparti-
cles from plasma [17].

Ciliary movement has been a special subject in the field 
of experimental and theoretical biology. The first compre-
hensive study about cilia was presented by Shack in 1835. 
It look 20 years to explain the complex structure of cilia 
motion, and Cilia causes fluid motion due to its cyclic and 
symmetric movement. To study the fluid motion due to cili-
ary movement, different approaches have been used in the 
literature [18–34] such as Lagrange method [21] and particle 
approach [30] of Lattice Boltzmann method. Cilia are pre-
sent in respiratory tract, sensory organs, male reproductive 
system and in fallopian tube. The fallopian tube is lined with 
the ciliated epithelium where the embryo develops. Block-
age of fallopian tube may resist the embryo development 
which may lead to infertility. The development of embryo 
takes place in an oviduct which is extended laterally from 
the uterus and is approximately 10 cm long. The oviducts 
have two parts: one is wider and longer near the ovaries, and 
other is narrow and smaller near the uterus which facilitates 
the transportation of sperm from uterus to egg in the ovaries. 
The oviducts use the ciliary and peristaltic movement for the 
development of embryo in ovaries. If oviduct shrinks due to 
blockage in wider and narrow part, then the embryo develop-
ment will be badly effected and that may cause abnormalities 
in fetus.

The drug delivery of nanoparticles to the affected part, like 
the blocked portion in the oviduct is a safe way. The nanopar-
ticles help to transfer medicine with high efficiency with no 
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side effects. The drug may damage the fetus growing in the 
ovary, but the drug delivery by nanoparticles helps to protect 
the fetus growing in oviduct. There are different routes that 
can be used to deliver the drugs in human body like through 
the mouth, skin, nose rectum and uterus. The drug delivery 
by nanoparticles can be enhanced by the thermal conductiv-
ity of convective flow which require energy balance. Also, in 
bio-heat transfer, we are interested in maximizing the energy 
which requires the reduction in the entropy generation.

Keeping all above views in mind, this study is designed to 
see the advantages of nanoparticles for drug delivery in the 
flow of tangent hyperbolic fluid during the embryo develop-
ment by reducing the entropy generation. The flow of tangent 
hyperbolic fluid is observed by the law of conservation of mass 
and momentum and reduction in entropy generation is meas-
ured by the law of conservation of energy. The momentum 
equation for tangent hyperbolic fluid is modeled by the envelop 
model approach of ciliary movement. The two-dimensional 
coupled equations are simplified using the assumption of large 
oviduct moving peristaltically (long wavelength) and high vis-
cosity of the blood in oviduct (small Reynolds’ number). The 
resulting equations are solved by analytical method HPM and 
software MATHEMATICA™.

Mathematical modeling

Consider a two-dimensional flow of Tangent hyperbolic cop-
per nanofluid model in a tube of width 2h . Blood is considered 
as base fluid, and copper nanoparticles are immersed in blood. 
Assume that an infinite number of continuously beating cilia 
are present at the inner walls of tube generating a symplectic 
metachronal wave which moves towards positive z-axis with 
wave speed c as mentioned in Fig. 1. 

Governing equations for an incompressible Tangent hyper-
bolic nanofluid are defined as follows

where

(1)∇.V = 0,

and

where V is the velocity components, w is the axial compo-
nent of velocity, u is the radial component of velocity, S is 
the extra stress tensor, d

dt
=

�

�t
+ V.∇ is the total derivative, 

�f is the density of nanofluid, T is the temperature profile and 
L is gradient of velocity.

Here, the appropriate stress tensors for the tangent 
hyperbolic fluid model [35] are as follows

in which � is the Cauchy stress tensor, �0 represents zero 
shear rate viscosity, �∞ is the infinite shear rate viscosity, Γ 
is time constant and m shows the power law index.

where � is second-order tensor. We study the above equation 
for the case where �∞ = 0 and Γ�̇� < 1 . The elements of extra 
stress tensor can be written as

where thermal conductivity of nanofluid is defined as

(2)V = [u, 0,w],

(3)�f
dV

dt
= div� ,

(4)(�c)f
dT

dt
= knf∇

2T + trace(S.L).

(5)� = −pI + S,

(6)S =
[(

𝜂∞ +
(

𝜂0 + 𝜂∞
)

tanh (Γ�̇�)m
)

�̇�i
]

,

(7)
�̇� =

√

1

2
�,

where � = trace
(

gradV + gradVT
)2
,

(8)�̇�i = L + L
T,

(9)
𝜏 = 𝜂0((Γ�̇�)

m
)�̇�i = 𝜂0(1 + Γ�̇� − 1)m�̇�i = 𝜂0(1 + m(Γ�̇� − 1))�̇�i

(10a)�nf = (1 − �)�f + ��s,

(10b)�nf =
�f

(1 − �)
2.5

,

(10c)
(

�cp
)

nf
= (1 − �)

(

�cp
)

f
+ �

(

�cp
)

s
,

(10d)�nf =
knf

(

�cp
)

nf

,

R-Axis

Z-Axis

λ
Nano particles

Wave speed

Fig. 1  Geometry of ciliated tube
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where knf is the thermal conductivity of nanofluid, kf is the 
thermal conductivity of base fluid, ks is the thermal con-
ductivity of solid nanoparticles and � is the solid volume 
fraction. The Mathematical model for geometry of cilia tips 
in the wave frame is

where � is the cilia length parameter, � is the eccentricity of 
elliptic wave and � is the wave number.

The governing equations of motion of tangent hyperbolic 
fluid model in a tube are specified as follows.

where �f is the fluid density, u and w are the radial and axial 
components of velocity, c is the wave speed and �f is the 
apparent viscosity of fluid.

The following non-dimensional parameters can be intro-
duced for further analysis.

where � , a , c symbolize the wavelength, width of velocity 
and wave speed, respectively, Re is the Reynolds’ numbers, 

(10d)knf = kf

(

ks + 2kf − 2�
(

kf − ks
)

ks + 2kf + 2�
(

kf − ks
)

)

(11a)h = 1 + � cos 2�z,

(11b)w(h) = −1 − 2���� cos 2�z.

(12)
�u

�r
+

u

r
+

�w

�z
= 0,

(13)�f

[

u
�w

�r
+ w

�w

�z

]

= −
�p

�z
+

1

r

�

�z

(

rSrz
)

+
�Szz

�z

(14)�f

[

u
�u

�r
+ w

�u

�z

]

= −
�p

�r
+

1

r

�

�r

(

rSrr
)

+
�Szr

�z
,

(15)

(�c)f

[

u
�T

�r
+ w

�T

�z

]

= knf

(

1

r

�

�r

(

r
�T

�r

)

+
�2T

�z2

)

+ Szr
�w

�r
.

(16)

z∗ =
z

�
, r∗ =

r

a
, u∗ =

u

�c
,w∗ =

w

c
, h∗ =

h

a
,

p∗ =
a�

c�f
p, � =

a

�
, Sij

∗ =
a

�fc
Sij, �1 =

c�1

a
,

Re =
�ac

�f
,We =

Γc

a
, �f =

k

(�c)f
, � =

T − T0

T0
,

Br =
a2�f

kfT0
, Pr =

�fcp

kf
, Ec =

c2

cpT0
.

� is the wave number and Da is the Darcy’s number. In terms 
of dimensionless parameters, the momentum equations and 
shear stresses are

Using long wavelength approximation (β → 0) given in 
[36], the governing equations and boundary conditions are as 
follows

Integration of Eq. (17) over the tube width is given as:

where q = 2∫ h

0
rwdr.

Equation (27) can be written as

(17)
�u

�r
+

u

r
+

�w

�z
= 0,

(18)Re�

[

u
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�
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(20)

�(�c)f

[

u
��

�r
+ w

��

�z

]

= knf

(

1

r

�

�r

(

r
��

�r

)

+ �2
�2�

�z2

)

+ Szr
�w

�r
,

(21)Srz =
(
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.
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(
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(
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(25a)
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The relation between q and dimensionless volume flow rate 
Q is given by

The mean volume flow rate for the time period T =
�

c
 is

where � is the wavelength of metachronal wave, c is the wave 
speed and t∗ is the mean average time.

Solution of the problem

To obtain the solution of governing equations, we use 
homotopy perturbation method [37] which is described 
as follows

The linear operator and initial guesses are chosen as

According to homotopy perturbation method,

(28)
�q

�z
= 2h

(

�h

�z
w(h) − u(h)

)

,

(29)Q = 2∫
h

0

RWdR = 2∫
h

0

(w + 1)rdr = q + h2,

(30)
−

Q=
1

T ∫
T

0

Qdt∗ = q + 1 +
�2

2
,

(31)

H(j,w) = (1 − j)
(

L(w) − L
(

w0

))

+ j
(

L(w) −
1

(1 − �)
2.5

�p

�z
+

1

r

�

�r

(

rmWe

(

�w

�r

)2
))

,

(32)

H(j, �) = (1 − j)
(

L(�) − L
(

�0
))

+ j
(

L(�) −
Br

(1 − �)
2.5

kf

knf

(

1 + m
(

We
�w

�r
− 1

))(

�w

�r

)2
)

,

(33)L(w) =
1

r

�

�r

(

r(1 − m)
�

�r

)

,

(34)L(�) =
1

r

�

�r

(

r
�

�r

)

.

(35)w0 =
(1 − �)

2.5

4(1 − m)

dp0

dz

(

r2 − h2
)

+ w(h),

(36)�0 =
r2 − h2

4
.

where j ∈ [0,1] is the homotopy perturbation parameter and 
j = 0 gives initial guess and j = 1 gives the final solution. 
With the help of Eqs. (31)–(37), the second-order solution 
for the velocity and temperature profile are given as follows

And temperature profile can be found in following 
manner

Integrating Eq. (27) using software MATHEMATICA™ 
calculating pressure gradient as

Entropy generation

Entropy generation can be written as

Dimensionless form of Entropy generation can be writ-
ten as

(37a)w = w0 + jw1 + j2w2 … ,

(37b)� = �0 + j�1 + j2�2 … ,

(37c)p = �0 + jp1 + j2p2 … ,

(38)w = w(h) + A1

(

r2 − h2
)

+ A2

(

r3 − h3
)

,

(39)

� =
1

(1 − �)
2.5
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knf

(

A3

16

(

r4 − h4
)

+
A4

25

(

r5 − h5
)

+
A5

36

(

r6 − h6
)

)

+
1

(1 − �)
2.5
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(

A6

49

(

r7 − h7
)

+
A7

64

(

r8 − h8
)

)

.

(40)dp

dz
=

−A9 ±

√

A2
9
− 4A8A10

2A8

.

(41)S���gen =
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∞

(

(

�T

�r

)2

+

(

�T

�r

)2
)

+
1
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�zr

�w

�r
.

(42)

NS =
S���
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S���
G

=

(

��

�r

)2

+ BrΛ
(
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(
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�w

�r
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))(
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�r

)2

(43)S���
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=
kfT

2
0

−

�
2

0
a2

,Λ =

−

�0

T0
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Results and discussion

In this section, the graphical results show the effects of dif-
ferent parameters of interest. The cilia-induced flow of a 
Tangent hyperbolic nanofluid in circular tube is investigated. 
The effect of emerging parameters for the entropy genera-
tion, and stream functions are observed by keeping all other 
parameters fixed as suggested in Ref. [38]

Axial velocity for different values of, cilia length �, power 
law index m and nanoparticle volume fraction of the fluid 
� are observed in Fig. 2a–c. In Fig. 2a, the velocity of fluid 
decreases by increasing cilia length parameter as increase 
in cilia length resist the fluid flow at the centre of tube. Fig-
ure 2b shows that velocity of fluid decreases by increasing 

power law index m because for increasing m fluid behaves 
like a shear thickening fluid which causes the decrease in 
velocity of fluid. Figure 2c shows that velocity increases by 
increasing nanoparticle volume fraction of the fluid because 
when nanoparticles are more in fluid, due to their smaller 
size they will move with high speed.

Temperature profile for different values of nanoparticle 
volume fraction of the fluid � , power law index m and Brick-
man number Br is observed in Fig. 3a–c. It can be seen that 
temperature is maximum at the centre of tube and minimum 
at the ciliated walls where it is effected by ciliated walls. 
Figure 3a illustrates that by increasing nanoparticle volume 
fraction of the fluid � , temperature profile decreases. Graph-
ical results show that nanofluids can increase heat transfer 
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Fig. 2  a–c The effect of cilia length parameter �, power law index m and nanoparticles volume fraction � fraction on axial velocity. 
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rate by decreasing the wall temperature. Also, Fig. 3b shows 
that by increasing power law index m temperature profile 
decreases. Brinkman number is the ratio of viscous heat 
generation to external heating. So by increasing Brinkman 
number viscous heat generation will increase as compared to 
external heating; therefore, temperature will increase.

In Fig. 4a–c, entropy generation for different values of 
nanoparticle volume fraction of the fluid �, power law index 
m and Brinkman number Br are observed. It can be depicted 
from the graphs that entropy generation is maximum at the 
ciliated walls and minimum at the centre of tube.

Bejan number for different values of nanofluid volume 
fraction �, power law index m and Brinckman number Br 
is observed in Fig. 5a–c. Since due to less temperature 

gradient at the centre of tube, heat transfer is small and very 
less resistance occurs at center due to which Bejan num-
ber decreases at center of tube and has maximum values at 
boundaries. Furthermore, by increasing � , Bejan number 
decreases while by increasing Brickman number Br Bejan 
number increases.

Figure 6a, b shows the comparison of symplectic and 
antiplectic wave patterns for different values of nanoparticles 
volume fraction � and power law index m. It can be seen that 
symplectic wave pattern is more efficient than antiplectic 
wave pattern for increasing values of nanoparticles volume 
fraction � and power law index m.
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Fig. 3  a–c The effect of nanoparticles volume fraction �, power law  index m and Brinkman number Br on temperature profile
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Fig. 5  a–c The effect of nanoparticles volume fraction �, power law index m and Brinkman number Br on Bejan number
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Conclusions

In this study, we have developed a mathematical model of 
velocity and temperature profile in the presence of nanopar-
ticles in base fluids. Fluid motion is produced by the peri-
odic beating of ciliated surface. The surface of cilia is con-
sidered as a continuous envelop whose motion is found by 
the metachronal wave formed by the coordinated cilia. The 
boundary conditions are defined at mean radius of cylinder; 
therefore, horizontal and vertical velocities are defined at 
the mean radius (r = a) . The governing differential equa-
tions involve the parameter depend upon, volume fractions 
of nanoparticles. The differential equations are solved by 
homotopy perturbation method (HPM).

• This study helps the treatment of heart patient, when 
clots on blockages have been observed in blood, nano-
particles will help to remove the clot and blockages from 
blood.

• Axial velocity of the fluid increases by inserting nano-
particles.

• Thermal conductivity of fluid increases by adding nano-
particles.

• The entropy generation due to nanoparticles will decrease 
the viscosity on the wall so of tube and blood will flow 
with less/normal pressure.
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