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Abstract
Beta-lapachone (βlap) is a naphthoquinone derived from Lapachol, a substance extracted from the Bignoniaceae family 
of trees, genus Tabebuia; found in the Northern and Northeastern regions of Brazil. βlap shows excellent pharmacological 
activity as an antiparasitic, antitumor, and anti-inflammatory drug, but its water solubility is low, which decreases its bio-
availability. This work aims to evaluate the solubility and dissolution rate of βlap from solid dispersions obtained by the Spray 
Drying technique and compare them with the physical mixture (PM) of compounds. βlap solid dispersions were prepared 
with polyethylene glycol (PEG 6000) and polyvinylpyrrolidone (PVP K30) at 1: 2 (w/w) ratio and characterized by thermal 
analysis [differential scanning calorimetry (DSC)], X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR), 
Scanning electron microscopy (SEM), solubility tests, dissolution profile assays and analyzed by mathematical models to 
link to the system properties. βlap/PVP solid dispersion provided a 15-fold increase in dissolution rate compared to pristine 
βlap in the first 5 min. The release constants obtained from Korsmeyer–Peppas and Weibull models demonstrate that βlap is 
released more rapidly from the PVP system produced by Spray Drying than by PM. The thermal analysis suggests that the 
βlap was successfully encapsulated into spherical shape and uniform size distribution microparticles produced by SD/PVP, 
as shown by the SEM technique. In addition, it afforded about 9-fold higher solubility than the free βlap. The results of DSC 
and XRD showed a tendency of the βlap crystallinity to decrease. FTIR showed intermolecular interaction between drug 
and polymer molecules (PVP and PEG). Thus, the results suggest that βlap/PVP-based solid dispersions can be successfully 
applied in pharmaceutical formulations.
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Introduction

β-Lapachone (βlap) (Fig. 1) is antiparasitic, antitumor and 
anti-inflammatory drug with potential application in several 
areas of medicine [1–4]. However, its low water solubil-
ity limits systemic administration and clinical applications 

in vivo. As a consequence, some methods have been pur-
posed to increase the solubility and dissolution rate of βlap 
in aqueous systems like the use of cyclodextrins [5, 6], 
hydrogels [7], or liposomes [8].

The formation of solid dispersions (SD) is a simple and 
widely used process, consisting of a mixture of two or more 
components. In general, there are a hydrophilic (crystalline 
or amorphous) matrix and a hydrophobic drug, which may 
be molecularly dispersed or in the amorphous state [9, 10]. 
Among the hydrophilic polymers most used in the prepara-
tion of SD are polyethylene glycol (PEG) and polyvinylpyr-
rolidone (PVP K30) due to their ability to retard and inhibit 
drug crystallization, thus favoring increased dissolution rate 
[11, 12].

Solid dispersions are commonly prepared by melting, 
solvent, melt-solvent, spray drying, among others [13]. 
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The spray drying technique is widely used to prepare SD. 
This technique consists on the dissolution of both drug and 
carrier in a suitable solvent, followed by the spray drying 
process to produce solid particles [14, 15]. Spray Drying 
is a method that allows the production of small spherical 
particles, allowing the increase in the particle’s contact area 
in solution, which increases the dissolution rate of the drug 
and improves solubility [16, 17]. In this context, this work’s 
aim is to prepare solid dispersions of βlap with different 
polymers (PEG and PVP) by the Spray Drying technique 
and evaluate drug solubility and dissolution rate in aqueous 
medium.

Materials and methods

Materials

βlap (7,8-benzo-2,2-dimethyl-3,4-dihydro-5,6-oxo-
2H-chromene) was obtained by acid cyclization of lapachol 
isolated from the bark of the lapachol tree (Tabebuia avel-
lanedae). Polyethylene glycol (PEG 6000), polyvinylpyr-
rolidone (PVP) type Kollidon K30 and ethanol were from 
Synth (São Paulo, Brazil). The dihydrogen and monohydro-
gen potassium phosphate salts were purchased by ISOFAR 
(Rio de Janeiro, Brazil). All reagents used were of analytical 
grade.

Methods

Production of physical mixtures (PMs) and microparticles

The PMs of βlap with two different polymers, PVP and PEG, 
were prepared in the ratio 1: 2 (w/w). Drug and polymer 
were weighed, mixed using mortar and pestle, and stored in 
a desiccator. The SD were prepared from binary blends of 
the βlap with PVP or PEG polymers in the ratio 1: 2 (w/w) in 
a water–ethanol solution (30/70%, v/v). Finally, the solutions 
were dried in the Dried Yamato Spray (Model ADL 311S, 
Yamato Scientific America Inc. California, USA), under the 
following operating conditions: inlet and outlet temperatures 
75 °C and 60 °C, respectively, for the SD of βlap/PEG; inlet 
and outlet temperatures 145 °C and 80 °C, respectively, for 
the βlap/PVP solid dispersion; feed rate of 1.5 cm3 min−1 
and atomizing air pressure of 0.1 MPa, in both cases.

Physicochemical characterization

Thermal analysis  The differential scanning calorimetry 
(DSC) analyses were performed using 4 mg of each sample 
in an alumina crucible with the temperature in the range of 
25–525 °C at 10 °C min−1 heating rate. DSC assays were 
performed by TA Instruments SDTQ600 DSC equipment 
(New Castle, USA) under a nitrogen atmosphere and flow 
rate of 50 cm3 min−1.

Wide‑angle X‑ray diffraction  X-ray powder diffraction 
(XRPD) was performed using a RIGAKU Mini Flex II dif-
fractometer (Mini Flex II, Rigaku, Massachusetts, USA), Cu 
Kα radiation at 30 mA and 45 kV with scan rate of 5 min−1 
and diffraction angles (2θ) in the range of 5–50°.

Fourier transform infrared (FTIR)  FTIR spectra were 
obtained using a Shimadzu FTIR (Shimadzu, Kyoto, Japan, 
IRAffinity-1) spectrometer equipped with attenuated total 
reflectance (ATR) accessory. Spectra acquisition was per-
formed in the spectral region from 4000 to 700 cm−1 using 
4 cm−1 resolution and 32 scans for each spectrum.

Microscopic analyses  Particle morphology and size results 
by scanning electron microscopy (SEM) were obtained by 
using a Shimadzu SSX-550 Superscan microscope (Kyoto, 
Japan). The samples were dispersed in double-sided carbon 
tape and coated with gold plating. The particle size dis-
tribution was obtained through SEM images based on the 
200-particle count using the computer program ImageJ soft-
ware (National Institute of Mental Health, Bethesda, Mary-
land, USA).

Solubility study  βlap amounts equivalent to 10 mg of the 
drug from PMs and SDs were added to 10 cm3 of potassium 
phosphate buffer solution at 0.020  mol  L−1 (pH 7.4). All 
samples were kept under stirring in a homogenizer for 48 h 
at room temperature. The samples were filtered through a 
250 mm sieve and analyzed in triplicate by UV spectropho-
tometry at 257 nm (Evolution 300, Thermo Scientific, USA) 
[18]. The same procedure was performed using 0.1 mol L−1 
hydrochloric acid solution (pH 1.2).

Dissolution study  To obtain the in vitro dissolution pro-
files of samples containing PVP, 10 mg of free βlap and 
equivalent amounts of PMs and SDs were added in 450 cm3 
of 0.020 mol L−1 potassium phosphate buffer solution (pH 
7.4) and 0.1 mol L−1 hydrochloric acid solution (pH 1.2). 
The tests were performed in a SOTAX dissolution appa-
ratus (model AT7, Switzerland) at 37 ± 0.5  °C using the 
paddle method at a rotation speed of 75 rpm. At predeter-
mined time intervals (5, 10, 20, 30, 45, 90, and 120 min), 
the samples were collected, filtered, and diluted for drug 

Fig. 1   The chemical structure 
of βlap
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quantification. The assays were carried out in triplicate 
with the dissolution medium’s replacement, and the drug 
content released was determined by UV spectrophotom-
etry at 257 nm (Evolution 300, Thermo Scientific, USA).

Mathematical modeling of βlap release

The drug release profile is linked to the system properties 
and determines the amount of drug available for absorp-
tion. Aspects related to drug absorption, biodistribution, 
metabolism, and elimination (the so-called ADME pro-
cesses) are of great relevance for predicting delivery sys-
tems’ efficiency. The release profiles are influenced by the 
type of drug and matrix, polymorphic form, crystallinity, 
particle size, and drug solubility [19, 20].

The data were fitted using mathematical models to 
understand the release mechanism of βlap/PVP SD [21, 
22]. The best-fitted models, Weibull and Korsmeyer–Pep-
pas, were applied to the experimental release curves to 
characterize the mechanism of βlap release in the different 
formulations with PEG and PVP.

The Weibull model (Eq.  1), an empirical model, is 
based on drug cumulative fraction in solution and is con-
sidered as a function of time t.

where “α” defines the timescale of the process, “Ti” is the 
time interval before the start of the release process (zero in 
most cases), and “β” is a shape parameter that characterizes 
the exponential curve, as follows: β = 1, first-order kinetics; 
β > 1, sigmoid; and β < 1, satellite [22].

The Korsmeyer–Peppas model, a semi-empirical model, 
exponentially correlates drug release with time (Eq. 2):

where “a” is a constant associated with the dosage form’s 
structural and geometric characteristics. The “n” value is 
the release exponent that indicates the mechanism of drug 
release. The “ft” is the fractional drug release at time “t,” 
being Mt/M∞. “Mt” is the amount of drug released at time 
t, and M∞ is the amount of drug released at the infinite time 
(corresponding to the total amount in the system).

According to the “n” value, it is possible to describe 
the release exponent by three different mechanisms: (1) 
n < 0.43—a classical Fickian diffusion mechanism; (2) 
n > 0.85—governed by Type II transport, involving poly-
mer swelling and relaxation of the polymeric matrix, and 
(3) 0.43 > n > 0.85—anomalous transport kinetics, com-
bining the two diffusion mechanisms and Type II transport.

(1)log [− ln (1 − m)] = � log (t − Ti) − log �

(2)ft = atn

These two models explain how the drug is released from 
systems by determining parameter values (k, n, β) of each 
model and the linear correlation coefficient [23, 24].

Results and discussion

Figure 2a, b shows the DSC curves of βlap, polymers, PMs, 
and SDs. Endothermic peaks at approximately 156 °C and 
66 °C are observed and correspond to βlap [6] and PEG’s 
[10] melting temperature. Although PVP is an amorphous 
polymer with well-defined glass transition and absence of 
melting peak, no transition is observed in Fig. 2b, probably 
due to experimental conditions. The broad endothermic peak 
ranging from 45 to 142 °C is related to water loss due to its 
extremely hygroscopic nature [16].

The endothermic peak at 156 °C, attributed to the βlap 
melting, was suppressed by PM and SD of βlap/PEG in both 
samples, indicating βlap to be molecularly dispersed in these 
samples. In contrast, PEG’s endothermic peak is maintained 
in both curves with shifts to lower temperatures (62 and 
64 °C).

On the other hand, PM and SD prepared with βlap/PVP 
exhibit a small endothermic peak of the drug, which shifts to 
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142 and 145 °C, respectively. Further, the endothermic peak 
related to PVP tends to decrease in PM and SD. In general, 
the reduction or disappearance of the drug’s endothermic 
peak can be attributed to the lack of crystallinity of the drug 
in the sample or solubility of the drug in the polymer, which 
suggests the amorphous nature of the materials obtained 
[25]. In a previous study [18] we observed similar results 
for SD at different βlap/PVP concentrations obtained by the 
solvent evaporation method. According to Vo & Lee, 2016, 
drug molecules can be distributed in the matrix, forming a 
solid dispersion in three different ways: (1) by the formation 
of eutectic systems (mixing two compounds) with a single 
melting point, which is lower than the melting point of indi-
vidual components; (2) by the formation of solid solutions 
(substitutional, interstitial, or amorphous solid solutions); 
and (3) by the formation of microfine crystalline dispersions 
with drugs in the carrier matrix [26].

Diffractograms (XRPD) of pristine compounds (βlap, pol-
ymers), PMs, and SDs are presented in Fig. 3. Based on the 
results, βlap is present in its crystalline form, exhibiting the 
main peak at 9.5° and secondary peaks at 13.0°, 15.4°, 19.5°, 
24.7°, 25.4°, 26.4°, and 27.0° [6]. The PEG has two main 
peaks at 19.3° and 23.5°, showing its semi-crystalline char-
acter [27]. The XRPD pattern of PVP indicates the absence 
of reflections due to its amorphous nature [28].

The PM of βlap/PEG and βlap/PVP shows similar diffrac-
tion patterns with the reduction of the drug crystalline state 
and superposition of the pristine materials’ main reflections 
without new peaks or displacements, suggesting that no new 
interactions occurred. The samples obtained by SDs reveal 
a slightly lower relative intensity of the βlap peak than the 
PMs. This demonstrates a typical loss of drug crystallinity 
in the solid dispersions obtained, evidencing a tendency to 
the amorphous state as shown in the DSC curves (Fig. 2). 
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These results agree with studies found in the literature using 
PEG and PVP [29–31].

The FTIR spectra of βlap, polymers, PMs, and SDs, are 
shown in Fig. 4a, b. The spectra of βlap indicate the pres-
ence of characteristic absorption bands at 2978 cm−1 (C–H 
aromatic), 1694 cm−1 (C=O stretch), 1590, and 1567 cm−1 
(C–C aromatic), and 1312 and 1115 cm−1 (C–O–C stretch) 
[6]. The bands ascribed to PEG were observed at 2882 cm−1 
(C–H stretch) and 1095 cm−1 (C–O stretch) [32]. The FTIR 
spectra of PVP indicate the presence of a band at 3415 cm−1 
(O–H stretch) associated with the presence of water, con-
firming the broad endothermic peak detected in the DSC 
curve. In addition, PVP shows other bands at 2919 cm−1 
(C–H stretch), 1648 cm−1 (C=O stretch), and 1282 cm−1 
(C–N stretch) [33].

In SD of βlap/PEG, the C–O band’s relative intensity 
at around 1100  cm−1 and C=O stretches at 1694  cm−1 

decreases compared to pristine βlap and polymer, indicat-
ing the hydrogen bond formation between hydroxyl groups 
of PEG and carbonyl groups of βlap, which are hydrogen 
bond acceptors. Regarding the PVP, the main fingerprint 
regions of polymer and βlap overlap, making it challeng-
ing to identify the displacements observed in PMs and SDs. 
However, relevant changes between the two binary prod-
ucts obtained are observed, such as the suppression of the 
CH stretch band of the βlap aromatic ring by 2978 cm−1, 
simultaneous with the reduction of the intensity of the bands 
below 1800 cm−1, including C=O (1648 cm−1) referring to 
the polymer in SDs. Such changes suggest the formation 
of hydrogen bonds between chemical species, as the main 
mechanism of interaction in the SDs prepared from PEG and 
PVP, according to the literature [33–35].

Figure  5 shows SEM images of pristine material 
(Fig. 5a–c), PMs (Fig. 5d, e), and SDs (Fig. 5f, g). The 

 βlap  PEG  PVP(a)

(d) (e)

(b) (c)

 PM βlap/PEG

(f) SD βlap/PEG (g) SD βlap/PVP
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Fig. 5   SEM image of βlap (a), PEG (b), PVP (c), PMs (d PM of βlap/PEG and e PM βlap/PVP) and SDs (f SD βlap/PEG and g SD of βlap/PVP)
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micrographs reveal that the βlap (Fig. 5a) has a well-defined 
acicular crystal structure, PEG (Fig. 5b) with irregularly 
sized crystalline particles, whereas amorphous spherical 
particles form PVP (Fig. 5c). For PM of βlap/PEG and 
βlap/PVP (Fig. 5d, e respectively), the SEM images show 
the presence of drug crystals and particles of the polymers 
mixed [8, 31].

Figure 5f shows SEM images of the SD of βlap/PEG sam-
ples as agglomerates of non-spherical particles of varying 
sizes. Similar results were found in the literature using PEG 
SDs [36, 37]. In contrast, the SD of βlap/PVP shows the for-
mation of well-defined spherical particles (Fig. 5g), indicat-
ing that the drug is incorporated in the polymer matrix [16].

Figure 6 shows the particle size distribution for the SD 
of βlap/PVP. The results indicate an average particle size 
of approximately 2.0 μm in diameter. The shape and the 
reduction of the particle size have an important influence on 
the solubility since they increase its contact area, making it 
more soluble [38, 39].

The results for the solubility study of βlap, PMs, and SDs is 
shown in Table 1. In both pH values, no increase in solubility 
of the PM and SD of βlap/PEG was observed compared to the 
drug. On the other hand, SD of βlap/PVP revealed a solubility 
approximately 7 and 9 times higher at pH 1.2 and 7.4, respec-
tively. Further, for these samples, comparison verified that no 
significant difference exists between the results obtained in pH 
1.2 and 7.4. This is because the chemical stability of the βlap in 
the aqueous medium is more significantly affected under basic 

conditions than under acidic and neutral conditions since the 
drug undergoes alkaline hydrolysis [40].

The dissolution profiles and solubility at different pH values 
of βlap, PMs, and SDs are shown in Fig. 7a, b and Table 1, 
respectively. In fact, the dissolution tests were performed at 
physiological conditions (at 37 °C; 1.2 and 7.4 pH) for oral 
drug delivery. This study used different pHs to simulate acidic 
and neutral conditions (as found in stomach and small intes-
tine, respectively) after a possible oral administration of the 
solid dispersion. At pH 7.4 a pronounced increase in the disso-
lution rate of βlap for SD is observed. However, within 5 min 
of the assay, SD of βlap/PVP revealed the drug’s rapid release, 
indicating an approximately 19- and 15-fold increase in the 
dissolution rate at pH 1.2 and 7.4, respectively (Table 1).

The SD of βlap/PVP sample, at pH 7.4, reaches a max-
imum release of about 80% in 30 min, while the drug dis-
solves only 20% in this same time interval. Cunha-Filho et al. 
[41] obtained values around 89 and 92% of the dissolution 
efficiency at 30 min with βlap entrapped in Hydroxypropyl 
methylcellulose particles prepared using a solvent change 
precipitation process, the authors did not refer to the pH of 
the experiment. Cavalcanti et al. [8] encapsulated the βlap/
hydroxypropyl-β-cyclodexdrin (HP β-CD) inclusion complex 
in liposomes and obtained drug release of about 70% in 24 h 
at pH 7.4.

The dissolution profile of SD βlap/PEG wasn’t carried out 
due to the solubility data obtained showed low values. This 
was one of the determining factors for selecting the sample. In 
addition, the microphotographs obtained by SEM for SD βlap/
PEG showed samples without defined morphology and aggre-
gates of crystals of drugs and polymers. In contrast, the SD of 
βlap/PVP sample presented well-defined shapes in the order 
of few micrometers and a significant increase in the solubility 
of βlap in an aqueous medium.

This result shows the efficacy of the method proposed in 
this work since it shows a rapid drug release. The kinetic 
parameters obtained from in vitro release data applying the 
mathematical models are shown in Table 2 and Fig. 8a–d.

The drug release processes in vitro and in vivo can be 
evaluated using mathematical models extensively described 
in the literature. This work uses different mathematical models 
to determine the best mathematical fit and characterize the 
matrix’s βlap release mechanism. Specifically, mathematical 
models also make it possible to determine parameters related 
to physical–chemical phenomena (such as the drug diffusion 
coefficient) and the drug dissolution rate. Further, the data 
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Table 1   Solubility of βlap at 
different pH values

Mean ± SD, n = 3

Solubility/mg mL−1 βlap PM βlap/PEG SD βlap/PEG PM βlap/PVP SD βlap/PVP

HCl pH 1.2 0.052 ± 0.002 0.043 ± 0.001 0.048 ± 0.002 0.034 ± 0.001 0.383 ± 0,011
Phosphate buffer pH 7.4 0.042 ± 0.003 0.039 ± 0.001 0.048 ± 0.001 0.037 ± 0.002 0.385 ± 0.005
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obtained can be translated as dissolution behaviors that can 
vary and pharmacokinetic parameters.

Weibull and Korsmeyer–Peppas’ model show adjusted R2 
values between 0.80 and 0.99.

According to Table  2, the release exponent value 
(n < 0.43) extracted from the equations proposed by Kors-
meyer–Peppas applied to the SD of βlap/PVP profiles at pH 
1.2 and 7.4 suggests that release is governed by classical 
Fickian diffusion, as shown in all the formulations. Regard-
ing release constants (k, from KP model) and the time scale 
of the process (α from W model), SD samples resemble 
PM samples in both pHs. Additionally, the values found for 
release constants k increase, and α decrease, demonstrating 
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Table 2   Kinetic model fitting for the drug release data

Release constants (k), correlation coefficient (r), and diffusion expo-
nent (n) obtained by adjusting the curves of the release kinetics of 
samples in PMs and SDs with different pH and mass ratios
k: Release constant, R2: Correlation coefficient, n: Diffusion expo-
nent, α: Defines the time scale of the process, β: Indicates the mecha-
nism of transport of the drug in the system

pH 1.2 pH 7.4

PM βlap/
PVP

SD βlap/
PVP

PM βlap/
PVP

SD βlap/
PVP

Korsmeyer–Peppas
 n 0.462 0.170 0.591 0.136
 k (min−1) 5.29 36.11 3.48 46.72
 R2 0.92 0.80 0.98 0.90

Weibull
 α 24.796 2.607 34.332 1.875
 β 0.592 0.285 0.700 0.280
 R2 0.96 0.84 0.99 0.94
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that βlap is released more rapidly from the PVP system pro-
duced by Spray Drying technique than in a simple PM.

However, in pH 1.2, the values of release constant k 
were lower than to SD samples in pH 7.4; this difference 
can be due to the viscous diffusion layer that significantly 
influenced the βlap inside the dispersing medium to impart 
slower diffusion of βlap.

Although many papers show that PVP forms a viscous 
diffusion layer in the dispersing medium, which can impart 
slower diffusion to βlap through this layer, SD produces 
amorphous compounds that favor βlap dissolution in aque-
ous medium at pH 7.4, i.e., crystallinity is reduced. Addi-
tionally, the particles’ size and low polydispersity promoted 
by the Spray Drying technique significantly increase disso-
lution [42]. According to the Weibull equation, the β value 
indicates the mechanism of transport of the βlap in the slow 
kinetics system, as shown in all samples (Table 2).

Conclusions

In this work, solid dispersions, based on PEG and PVP, 
were prepared and characterized with great success using 
the spray drying technique. The results indicate that PVP 
greatly increases the solubility and rate of release of βlap in 
an aqueous medium. Also, samples with PVP show a rapid 
release of the drug and act as a carrier more efficiently than 
PEG. Based on these findings, we conclude that SD βlap/
PVP can be applied as a satisfactory delivery system capable 
of improving the oral bioavailability of βlap.

Funding  Funding was provided by Coordination for the Improvement 
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