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Abstract
Hybrid nanofluids are of great importance in the field of industry due to high effective thermal conductivity which causes 
high rates of heat transfer. The current article investigates the impact of variable magnetic field and chemical reaction of 
MWCNT/Fe3O4–water hybrid nanofluid over an exponentially shrinking porous sheet with slip boundary conditions. Suit‑
able transformations convert the governing equations into coupled nonlinear ordinary differential equations. Further, these 
equations are solved by the help of shooting technique. The influences of operating parameters on the flow domain as well 
as force coefficients and rates of heat and mass transfers are computed and shown through graphs and tables. It is found that 
hybridity augments the temperature and concentration profiles. Further, suction/injection parameter enriches the skin friction 
coefficient, but reverse trend is observed for velocity slip parameter.

Keywords MWCNT/Fe3O4 nanoparticles · Variable magnetic field · Exponential shrinking sheet · Variable heat source/
sink · Chemical reaction

Abbreviations
x, y  Cartesian coordinate system (m)
u, v  Velocity components along x, y directions, 

respectively (m s−1)
�hnf  Viscosity of the hybrid nanofluid (kg m−1 s−1)
�hnf  Kinetic velocity of the hybrid nanofluid  (m2 s−1)
�f  Kinematic viscosity of the base fluid  (m2 s−1)(
�cp

)
hnf

  Specific heat capacitance of the hybrid nano‑
fluid (J kg−1 K−1)(

�cp
)
f
  Heat capacity of foundation liquid (J kg−1 K−1)

khnf  Thermal conductivity of the nanofluid  (m2 s−1)
kf  Thermal conductivity of the base fluid  (m2 s−1)

Kp*  Permeability of the porous medium
ks  Thermal conductivity of the solid nanoparticle 

 (m2 s−1)
�nf  Density of nanofluid (kg m−3)
�f  Density of base fluid (kg m−3)
�s  Density of solid nanoparticle (kg m−3)
Q0  Positive constant
Pr  Prandtl number
Kc∗  Reaction rate of the solute
Kc  Chemical reaction parameter
q  Heat source/sink coefficient
Sc  Schmidt number
R  Radiation parameter
DB  Brownian motion coefficient  (m2 s−1)
S  Suction/injection parameter
B  Velocity slip parameter
D  Thermal slip parameter
E  Solutal slip parameter
T   Temperature (°C)
Tw  Variable temperature at the sheet
T∞  Free stream temperature (°C)
C  Concentration
Kp  Permeability parameter
�  Dimensionless nanoparticle volume fraction
Cw  Variable concentration at the sheet
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C∞  Free stream concentration
f   Dimensionless velocity
�  Dimensionless temperature
�  Dimensionless concentration
Cf  Local skin friction coefficient
Nux  Local Nusselt number
Shx  Local Sherwood number

Introduction

Significant applications are made on shrinking sheet in man‑
ufacturing and technological processes. Fang and Zhang [1] 
found the particular solution for the flow over a shrinking 
sheet. Bhattacharyya [2] and Mukhopadhyay [3] established 
the dual solutions past an exponentially shrinking sheet. 
Nadeem et al. [4] have examined the flow behavior of water‑
based nanofluid. Swain et al. [5] have studied the viscoelas‑
tic nanofluid flow over an elongating sheet. Numerical simu‑
lation was made by Motsumi and Makinde [6] to study the 
dissipation on chemically reactive nanofluid. Naramgari and 
Sulochana [7] illustrated a numerical solution to study the 
impact of suction/injection on MHD nanofluid flow over a 
permeable elongating/shrinking sheet. The slip flow investi‑
gation on stretching sheet was carried out by Swain et al. [8].

Nanofluid is used to augment the heat transfer rate of 
base fluids. The nanoparticles are emerged in base fluid to 
enhance the thermal conductivity which allows more heat 
transfer. Hady et al. [9] have considered the nanofluid over 
a non‑linearly extending sheet. Sheikholeslami et al. [10] 
obtained a numerical simulation of MHD nanofluid flow 
considering viscous dissipation. Mahanthesh et al. [11] 
explored the three dimensional flow of nanofluid over a 
non‑linearly elongating sheet by taking water as base fluid. 
Ghosh and Mukhopadhyay [12] studied the slip flow analysis 
of two kinds of nanofluids over an exponentially enlarging 
sheet. Mebarek‑Oudina [13] examined the nanofluid flow 
using different base fluids. Kolsi et al. [14] have numeri‑
cal investigated the aggregation effects on MWCNT–water 
nanofluid. Ghosh and Mukhopadhyay [15] have obtained 
a stability analysis for nanofluid flow with slip boundary 
conditions. Various recent researches are carried out using 
analytical and numerical methods to treat heat transfer and 
nanofluids in thermal and energy systems [16–26].

Hybrid nanofluid is a mixture of two types of nanoparti‑
cles suspended in regular fluid and applied in all fields of heat 
transfer such as manufacturing, electro‑ and biosensors, and 
acoustics. Hayat and Nadeem [27] have studied the impact 
of heat transfer of Ag–CuO/water hybrid nanofluid over an 
extending sheet. Ghadikolaei et al. [28] have considered nano‑
particles shape factor to study the behavior of  TiO2–CuO/eth‑
ylene glycol–water hybrid nanofluid over rotating cone. Waini 
et al. [29] have numerically examined the hybrid nanofluid 

flow over a nonlinear permeable enlarging/shrinking sheet. 
Bagheri et al. [30] have analyzed the sensitive analysis of 
hybrid nanofluids with consideration of heat flux. The effect 
of viscous dissipation on Cu–Al2O3–H2O hybrid nanofluid 
over a shrinking surface with stability analysis is considered 
by Lund et al. [31]. Aziz et al. [32] and Lund et al. [33] have 
investigated the hybrid nanofluid over a widening sheet. Some 
related investigations can be found in the articles [34–40].

Sundar et al. [41] studied the heat transfer and friction 
factor of MWCNT–Fe3O4/water hybrid nanofluids. Sohail 
et al. [42, 43] have studied the 3D flow of nanofluid over 
a stretching sheet with thermal radiation. Further, Sohail 
et al. [44–46] examined the flow of nanofluid by using differ‑
ent fluid model in the presence of bio‑convective gyrotactic 
microorganisms and variable thermal conductivity. Shah 
et al. [47] studied the effect of Lorentz force on solidifica‑
tion of NEPCM. Moreover, Shah et al. [48] and Wakif [49] 
investigated the influences of chemical reaction on MHD 
Casson nanofluid over a stretching sheet. Shah et al. [50, 51] 
studied the micropolar Casson fluid over a stretching/shrink‑
ing sheet and between two rotating parallel plates, respec‑
tively. Deebani et al. [52] examined the Hall current effect on 
radiative Casson fluid with chemical reaction. Senapati et al. 
[53] numerical studied the three‑dimensional flow of Casson 
nanofluid past an exponentially stretching sheet. Wakif et al. 
[54, 55] studied the influence of uniform transverse magnetic 
field on water‑based nanofluids with metallic nanoparticles 
using Buongiorno’s model. Further, Wakif et al. [56] exam‑
ined the dissipative flow of Stokes second problem. Wakif 
et al. [57] carried out the numerical solution of unsteady 
Couette nanofluid flow in the existence of thermal radiation.

To the authors information, no studies have been done 
for flow, heat, and mass transfer characteristics of MWCNT/
Fe3O4–water hybrid nanofluid over an exponentially shrink‑
ing in presence of porous matrix with slip boundary condi‑
tions. Further, the influences of thermal radiation and heat 
generation on chemically reactive species hybrid nanofluid 
are highly affected with heat transfer development theory. 
The efficient shooting technique is applied to solve the non‑
linear ordinary differential equations (ODEs). The effects 
of various relevant parameters are shown through graphs 
and tables. It is concluded that the external new parameters 
such as slip parameters, Schmidt number, chemical reaction, 
Prandtl number, and thermal radiation make a significant 
impact on the hybridity which improves the temperature and 
concentration profiles.

Mathematical formulation

Consider two dimensional (2D) flow of MWCNT/Fe3O4–water 
hybrid nanoliquid over an exponentially shrinking sheet 
embedded in a porous matrix. The plate is placed along x‑axis, 
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and a variable magnetic field B = B0e
x

L is induced in the flow 
(Fig. 1). The gravitational effect and viscous dissipative heat 
are also neglected. The leading equations of flow, heat, and 
mass transport following Ghosh and Mukhopadhyay [15] and 
Waini et al. [59] are written as

(1)
�u

�x
+

�u

�y
= 0,

(2)u
�u

�x
+ v

�u

�y
= �hnf

�2u

�y2
−

�hnfB
2u

�hnf
−

�hnfu

�hnfKp
∗
,

(3)

u
�T

�x
+ v

�T

�y
=

khnf(
�cp

)
hnf

�2T

�y2
+

16�∗T3
∞

3k∗
(
�cp

)
hnf

�2T

�y2
+

Q(
�cp

)
hnf

(
T − T∞

)
,

with the corresponding boundary conditions as:

where UW = −ce
x

L is the shrinking velocity with shrink‑
ing constant c > 0 , and vw = v0e

x

2L where v0 is a constant 
( v0 > 0 indicates suction and v0 < 0 indicates injection), 
Tw = T∞ + T0e

x

2L ( T0 is a constant), Cw = C∞ + C0e
x

2L ( C0 is 
a constant), Q = Q0e

x

L are, respectively, the variable temper‑
ature, concentration and heat source/sink. Here B� = B1e

−
x

2L , 
D� = D1e

−
x

2L , and E� = E1e
−

x

2L are the velocity, thermal, and 
solutal slip factors, respectively.

The effective nanofluid properties are given by

where � is the solid volume fraction, �f and �hnf are the 
dynamic viscosities, �f and �hnf are the kinematic viscosities, 
�f and �hnf are the densities, 

(
�cp

)
f
 and 

(
�cp

)
hnf

 are the heat 
capacitances, kf and khnf are the thermal conductivities, and 
�f and �hnf are the electrically conductivities of the base fluid 
and hybrid nanofluid, respectively.

(4)u
�C

�x
+ v

�C

�y
= DB

�2C
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− Kc∗

(
C − C∞

)
,

(5)

u = −Uw + B��f
�u

�y
, v = −vw = −v0e

x

2L ,
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�y
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Fig. 1  Flow geometry
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Similarity transformations

Consider the following similarity transformation

In view of (6), Eqs. (1)–(5) become

where

The surface conditions of practical interest such as the 
skin friction coefficient (Cf) , Nusselt number 

(
Nux

)
 , and 

Sherwood number 
(
Shx

)
 are given by

(6)

� =
√
2�fcLe

x

2L f (�), � = y

�
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e
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.
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Numerical solution

The nonlinear ODEs (7)–(10) are solved numerically by 
employing Runge–Kutta fourth‑order method along with 
shooting technique. In this process, boundary value prob‑
lem (BVP) is transformed to initial value problem (IVP). At 
first, the highest order terms can be written in the remaining 
lower‑order terms as follows:

Then, the governing equations are transformed to a set 
of following first ODEs by presenting the new variables as:

Let y =
[
f f � f �� � �� � ��

]T which gives

(11)f ��� =
1

�1�2

[
−ff �� + 2f �2 + �2�3Mf � + �1�2Kpf

�
]
,

(12)
��� =

−Pr

�4

{
khnf

kf
+

4

3
R
}[

f �� − f �� + �4q�
]
,

(13)��� = −Sc
[
f�� − f �� − Kc�

]
.

(14)
f = y1, f

� = y2, f
�� = y3, � = y4, �

� = y5,� = y6, �
� = y7.
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(15)

d

d�

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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�
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�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

subject to the initial conditions

with some initial guess values of l1, l2, and l3 , we apply 
Runge–Kutta method of fourth order to solve the above IVP. 
There is an inbuilt self‑corrective procedure in the MAT‑
LAB coding to correct the unknown guess values. Once the 
corrected values are attended, then the step‑by‑step integra‑
tion by Runge–Kutta scheme is executed and the solution 
is attained within the prescribed error limit. The reduced 
Nusselt number 

{
−��(0)

}
 is compared with the works of 

Devi and Devi [58] and Waini et al. [59] in the absence of 
nanoparticles for different values of Pr, and results are in 
good agreement as shown in Table 1. 

Numerical results and discussion

The system of nonlinear ODEs (7)–(10) are solved numeri‑
cally using the bvp4c scheme from MATLAB software 
to observe the influences of the related operating param‑
eters in the flow domain. The impacts of such parameters 
are depicted clearly in Figs. 2–11. Table 2 provides the 

(16)

y1(0) = S, y2(0) = −1 + By3(0), y2(∞) → 0, y3(0) = l1,

y4(0) = 1 + Dy5, y4(∞) → 0, y5(0) = l2,

y6(0) = 1 + Ey7, y6(∞) → 0, y7(0) = l3,

Table 1  Comparison 
of −��(0) for base fluid (
�MWCNT = 0,�Fe3O4

= 0
)
 for 

various values of Pr

Pr Devi and Devi [46] Waini et al. [47] Present study % error [46] % error [47]

2 0.91135 0.911357 0.91138216 0.00387 0.00276
6.13 1.75968 1.759682 1.75969204 0.00068 0.00057
7 1.89540 1.895400 1.89543144 0.00165 0.00165
20 3.35390 3.353893 3.35393720 0.00110 0.00131
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thermo‑physical properties of base fluid and nanofluid at 
25 °C. In the present study, we consider �1 = �2 = 0 for 
base fluid and �1 = �2 = 0.05 for hybrid nanofluid. During 
numerical simulations, we fixed the values of the parameters 
as M = q = B = D = E = 0.1, Pr = 6.2, Sc = 0.6, Kp = R = Kc = 0.5 and 
S = 3 , unless otherwise the values are mentioned.          

Figure 2 depicts the effects of magnetic parameter (M) 
and velocity slip parameter (B). It is seen that the velocity 
profiles 

(
f �(�)

)
 increase due to rise in M and B. Therefore, 

the velocity boundary layer thickness declines. Figure 3 pre‑
sents the comparison of f �(�) for H2O, MWCNT–water and 
MWCNT‑Fe3O4/water for various values of suction param‑
eter (S) . It is observed that f �(�) increases for all types of 
fluids taken into consideration because suction reduces the 
drag on bodies in an external flow. Moreover, in a porous 
medium, the continuous suction is more effective than in 

a non‑porous medium. This is the practical importance of 
combined effect of suction and porous medium. Further, it 
is seen that velocity of MWCNT‑Fe3O4/water is lower than 
MWCNT‑water and H2O. Figure 4 depicts the comparison 
of velocity profiles due to absence and presence of mag‑
netic parameter (M). When M = 0, the velocity of the all 
fluids is less than that of M = 1. Close analysis reveals that 
the velocity of the hybrid nanofluid is less than other fluids 
when M = 0. Figure 5 displays the effect of resistive force 
caused by the porous medium. A comparison study is made 
to analyze the effect of permeability parameter (Kp) on f �(�) 
for H2O, MWCNT–water and MWCNT‑Fe3O4/water. It is per‑
ceived that f �(�) of hybrid nanofluid is less in the absence 
of porous matrix.
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Figure  6 represents the comparison of temperature 
profiles �(�) between hybrid nanofluid (MWCNT‑Fe3O4/
water), nanofluid (MWCNT–water) and base fluid (water) 
by the inspiration of radiation parameter (R). It is per‑
ceived that under same conditions, the hybrid nanofluid 
achieves higher temperature than nanofluid and regular 
fluid. In general, �(�) is an increasing function of R . For 
higher values of R (i.e., thermal radiation is dominate 
over conduction), an excessive amount of heat energy is 
released due to radiation which increases �(�) . Figure 7 
reveals that heat source/sink parameter (q) enhances 
�(�) . From Fig. 8, it is found that the thermal slip param‑
eter (D) causes a decline in �(�) . Moreover, temperature 
of MWCNT–Fe3O4/water is more higher than that of 
MWCNT–water and water.

Figure 9 shows the effect of Schmidt number (Sc) on 
concentration distribution �(�) . Since Sc is the ratio of 
momentum diffusivity and mass diffusivity, heavier spe‑
cies leads to reduce �(�) . Further,�(�) for hybrid nanofluid 
(MWCNT–Fe3O4/water), nanofluid (MWCNT/water) and 
base fluid (water) are almost same. Figure 10 depicts the 
effects of Kc on concentration profiles �(�) . Here Kc > 0 
relates to constructive and Kc < 0 for destructive chemical 
reaction. It is seen that higher values of Kc diminish the 

Sc = 0.6, 1, 2

MWCNT-Fe3O4/water
MWCNT-water
Pure water

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 40.5 1 2 31.5 2.5 3.5 4.5 5

η

Φ
η /

Fig. 9  Variation in �(�) with Sc
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Table 2  Thermo‑physical properties of MWCNT and Fe3O4 [29]

Properties �∕kgm−3 cp∕kg
−1 K−1 k∕WmK−1 �∕sm−1

Water 
(
H2O

)
997.1 4179 0.613 5.5 × 10−6

MWCNT 2100 711 3000 10−7

Fe3O4 5810 670 6 25,000

Table 3  Computation of f ��(0) for nanofluid (MWCNT–water) and 
hybrid nanofluid (MWCNT‑Fe3O4/water) when D = E = q = 0.1, 
Pr = 6.2, Sc= 0.6, R = Kc = 0.5

M Kp B S 1

(1−�MWCNT)
2.5 f

��(0)
1(

1−�MWCNT−�Fe3O4

)2.5 f
��(0)

0 0 0.1 3 1.92854350 1.54161210
0.5 0 0.1 3 2.10840999 1.75307917
1 0 0.1 3 2.25471041 1.92321203
1 0.5 0.1 3 2.37695138 2.06342649
1 1 0.1 3 2.48409754 2.18560075
1 1 0.3 3 1.76097100 1.67726982
1 1 0.5 3 1.35381381 1.34804675
1 1 0.5 5 1.57245114 1.60778222
1 1 0.5 7 1.71096993 1.78428674



1568 K. Swain et al.

1 3

concentration level in all the layers. Figure 11 shows the 
effect of solutal slip parameter (E) on �(�) . It is observed 
that the higher values of E decrease �(�) for both nanofluid 
and hybrid nanofluid.

Table 3 is computed to observe the impact of M, Kp, B 
and S on skin friction coefficients for nanofluid (MWCNT/
water) and hybrid nanofluid (MWCNT–Fe3O4/water). It is 
seen that M, Kp and S enhance the skin friction coeffi‑
cients, but reverse effect is seen for B . Table 4 is calculated 
to get the impact of operating parameters such as D, E, Pr, 
R, Sc, and Kc on local Nusselt number and local Sherwood 
number for nanofluid and hybrid nanofluid. It is perceived 
that D, Pr, and R are responsible for heat transfer rate, 
whereas E, Sc, and Kc are responsible for mass transfer. 
Greater values of Pr and R boost the local Nusselt number, 
but D reduces it. In similar way, Sc and Kc increase the 
local Sherwood number and E decreases it. It is interesting 
to note that E, Sc, and Kc have no impact on local Nus‑
selt number and D, Pr, and R have no inspiration on local 
Sherwood number.

Conclusions

The key findings of the current study are:

• Hybridity enhances the temperature profiles as well as 
concentration profiles.

• Slip parameters are responsible to decrease their 
respective profiles.

• Sc and Kc boost the mass transfer rate, whereas Pr and 
R enhance the heat transfer rate.

• There is an improvement in shearing stress at the wall 
by augmenting the values of M, Kp, and S.

Finally, it is concluded that the external new parameters 
such as Slip parameters, Schmidt number, chemical reac‑
tion, Prandtl number, and radiation make a significant 
impact on the hybridity which enriches the temperature 
and concentration profiles.
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