
Vol.:(0123456789)1 3

Journal of Thermal Analysis and Calorimetry (2022) 147:1519–1533 
https://doi.org/10.1007/s10973-020-10384-9

Thermal analysis of a convective–conductive–radiative annular 
porous fin with variable thermal parameters and internal heat 
generation

V. Venkitesh1 · Ashis Mallick1

Received: 3 May 2020 / Accepted: 26 October 2020 / Published online: 21 November 2020 
© Akadémiai Kiadó, Budapest, Hungary 2020

Abstract
The thermal characteristics of annular porous fins with rectangular and hyperbolic cross-sections and internal heat generation 
were comprehensively studied by the homotopy perturbation method (HPM). The convective–conductive–radiative mode of 
heat transfer was considered in the current analysis. All thermal parameters were considered as a function of temperature. 
An approximate closed-form solution was obtained by solving the nonlinear heat transfer equation using HPM. Darcy’s 
model was employed to formulate the governing equation of heat transfer through porous media. Unknown constants were 
the initial approximations of the solution and were evaluated based on the boundary and initial conditions of the problem. 
The effects of pores and different thermal parameters on the dimensionless temperature distribution and the fin efficiency 
were graphically presented. In order to evaluate the accuracy of the closed-form solution, the obtained results (for both 
dimensional and non-dimensional forms) were validated by numerical solutions.

Keywords Axisymmetric porous fin · Variable thermal parameters · Homotopy perturbation method · Semi-exact solution · 
Fin efficiency

Nomenclature
Ac  Cross-sectional area of fin  (m2)
Cp  Specific heat of fluid (J  g−1 K−1)
Da  Darcy Number
e  Co-efficient of linear variation of heat gen-

eration per unit volume  (K−1)
eo  Dimensionless co-efficient for linear varia-

tion of heat generation per unit volume
Gr  Grashof Number
g  Gravitational constant (9.81 m s−2)
h  Convective heat transfer coefficient (W 

 m−2 K−1)
ho  Convective heat transfer coefficient at fin 

base temperature Tb (W  m−2 K−1)
ks, kf  Thermal conductivity of solid, fluid (W 

 m−1 K−1)
keff  Effective thermal conductivity of porous 

matrix (W  m−1 K−1)

kr  Ratio of thermal conductivity of solid to 
that of fluid at ambient temperature Ta

ko
s
, ko

f
  Thermal conductivity of solid and fluid at 

temperature Ta (W  m−1 K−1)
ko
eff

  Effective thermal conductivity of porous 
matrix at temperature Ta (W  m−1 K−1)

m  Exponent for variation of thickness of fin
ṁ  Mass flow rate of fluid (kg  s–1)
n  Exponent of variable convective heat trans-

fer coefficient
Nc  Non-dimensional convection parameter
Ncc  Non-dimensional conduction–convection 

parameter
Nr  Non-dimensional radiation parameter
Pr  Prandtl Number
P  Perimeter enclosing the cross-sectional 

area of the fin (m)
q  Heat flow from base to tip of the fin (W)
qo  Internal heat generation at Ta (W  m−3)
Q*  Non-dimensional heat generation parameter
Ra  Rayleigh Number
R  Dimensionless radius
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ri, ro, tb  Inner radius, outer radius and thickness of 
the fin at the base (m)

Tb, Ta and Ts  Base temperature of fin, ambient tempera-
ture and radiation sink temperature (K)

Greek symbols
αf  Thermal diffusivity  (m2  s–1)
β  Co-efficient of volumetric thermal expan-

sion of fin  (K−1)
ε  Surface emissivity of the fin
εo  Surface emissivity at the sink temperature 

Ts
η  Efficiency of the fin
θ  Dimensionless temperature
θa  Dimensionless ambient temperature
θs  Dimensionless radiation sink temperature
κ  Permeability of porous media  (m2)
κ1, κ2  Co-efficient of thermal conductivity of 

solid and fluid  (K−1)
λ  Co-efficient of linear variation of emissiv-

ity  (K−1)
λo  Dimensionless co-efficient for linear varia-

tion of emissivity
νf  Kinematic viscosity of fluid  (m2s–1)
ρ  Density of fluid (kg  m−3)
σ  Stefan–Boltzmann Constant 

(5.67 × 10–8 W m–2 K–4)
ϕ  Porosity of the fin
τw  Variable thermal conductivity parameter 

for solid–fluid interaction

Introduction

Mechanical processes result in heat generation, and different 
cooling processes are required to release this heat. A fin is 
an extended surface that is primarily used to enhance heat 
dissipation from the equipment surface to the surrounding 
fluid [1–3]. Fins are generally used in automobile compo-
nents, air conditioning and refrigeration systems, internal 
combustion engines, space vehicles, electric transformers, 
micro-electronic components, and photovoltaic panels [4, 
5]. Sheikholeslami et al. [6] investigated the effects of fin 
length and shape as well as nanoparticle size on the perfor-
mance of a nanoparticle-enhanced phase-change material 
(NEPCM)-based heat exchanger. Selimefendigil et al. [7] 
used a fuzzy-based model to predict heat transfer through a 
square cavity in the presence of an adiabatic thin fin. They 
further performed a numerical study to investigate the effects 
of an adiabatic thin fin mounted on an upper wall [8]. The fin 
was subjected to laminar forced convection over a backward-
facing step in a channel. Selimefendigil et al. [9] employed 
a numerical model to study the fluid–structure interaction 
in a vertical lid-driven cavity field under a magnetic field. 

A fin was attached to the cavity to analyze the flow mixing 
and heat transfer behavior in the cavity. Fins are generally 
made of metals or alloys with high thermal conductivity, and 
porous fins have attracted considerable attention for effective 
energy utilization.

The concept of porous fins was first proposed by Kiwan 
and Al-Nimr [10] in 2001. Kahalerras and Targui [11] used 
porous fins to enhance heat transfer in a double-pipe heat 
exchanger, and the obtained numerical results based on the 
finite volume method revealed improved heat transfer due to 
a substantial alteration of the flow pattern in the presence of 
porous fins. Kiwan et al. [12, 13] employed Darcy’s model 
to analyze the fluid-flow pattern across a porous medium. 
Sheikholesmami [14] used a non-Darcy model to analyze 
the interaction between iron oxide–water nanofluid and a 
porous encloser. He studied the effects of an external mag-
netic field and temperature on the viscosity of ferrofluid 
by a control volume-based finite element method. Saedo-
din and Sadeghi [15] investigated the heat transfer through 
a cylindrical porous fin by the fourth-order Runge–Kutta 
method and observed that the heat loss rate in a porous 
fin was higher than that in a non-porous fin. Talukdar and 
Mishra [16] reported that the heat transfer rate was signifi-
cantly improved in a flow channel between two isothermal 
plates with a solid porous matrix. Selimefendigil et al. [17] 
found that the use of porous fins greatly enhanced the per-
formance of a solar photovoltaic (PV) module. Hatami and 
Ganji [18] assessed the performance of a convective–radia-
tive circular porous fin with different geometric profiles and 
used the least-square method coupled with the fourth-order 
Runge–Kutta method to solve the governing equations of 
heat transfer through porous media. The exponential-shaped 
fin made of silicon nitride led to greater heat dissipation as 
compared to the triangular and rectangular fins made of the 
same material. Moreover, in comparison to the solid fin, a 
significant improvement in heat transfer through the porous 
fin was also reported in their analysis. Moradi et al. [19] used 
the differential transformation method (DTM) to obtain the 
temperature field in a triangular convective–radiative porous 
fin. In this study, the performance of the fin was discussed 
in terms of the porosity factor, and it was observed that the 
fin efficiency was improved with the increasing porosity. 
Ullmann and Kalman [20] performed a comprehensive study 
of convective–conductive annular fins with rectangular, tri-
angular, parabolic, and hyperbolic profiles and estimated 
their optimal dimensions and efficiencies. Gorla and Bak-
ier [21] analyzed the natural convection and radiation in a 
rectangular porous fin and found that the radiative energy 
directly influenced the transfer of more heat. Therefore, the 
incorporation of radiative parameters in the governing equa-
tions of heat transfer is essential to predict the actual heat 
transfer through a fin. Darvishi and Gorla [22] performed 
the unsteady thermal analysis of porous rectangular fins of 
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infinite and finite lengths. Heat transfer equations based on 
Darcy’s model were formulated considering an insulated fin 
tip and a tip with a known convective heat transfer coeffi-
cient. It was noticed that the presence of pores altered the 
non-steady heat transfer rate and temperature distribution.

Ma et al. [23] predicted the performance of a longitudinal 
porous fin by the spectral collocation method and reported 
that the heat transfer coefficient, the surface emissivity, 
and heat generation parameters varied with the local tem-
perature. A homogeneous isotropic porous medium with a 
single-phase fluid was considered in their analysis. Cuce and 
Cuce [24] developed the expressions of efficiency, effective-
ness, and heat transfer rate for a longitudinal rectangular 
porous fin and compared the results with those of a solid fin. 
Kundu and Lee [25] developed an analytical model to pre-
dict the temperature distribution in a moving porous annular 
fin with a stepped profile. The optimization analysis revealed 
that for the same mass, the porous fin transferred more heat 
than its solid counterparts at optimum conditions. Das [26] 
inversely estimated the thermal parameters, porosity, solid 
thermal conductivity, emissivity, permeability, and thick-
ness of a porous annular fin by the hybrid evolutionary algo-
rithm. In this analysis, the heat transfer equation without 
considering heat generation and the convective heat transfer 
coefficient were solved numerically. Mosayebidorcheh et al. 
[27] employed the least-square method (LSM) to analyze 
the temperature fields in longitudinal fins of different cross-
sections and performed an optimization study to select the 
best fin material in terms of heat transfer rate, effective-
ness, and efficiency. Mesgarpour et al. [28] investigated 
the effect of a sintered porous fin on heat transfer and fluid 
flow through a channel. They employed CFD simulations 
to evaluate the effect of sintered balls on the porosity of a 
contact model. Turkyilmazoglu [29] studied the effects of 
temperature and humidity ratio on a wet porous fin. Hoshyar 
et al. [30] and Cuce et al. [24] employed the homotopy per-
turbation method (HPM) to predict the heat transfer through 
a longitudinal conductive–convective porous fin; however, 
the main drawback of their analysis was that radiation was 
not incorporated in the governing equation of heat transfer.

The best of our open literature search (Books, peered 
reviewed journal etc.) reveals that no experimental studies 
have yet been carried out for annular porous fins. Stark et al. 
[31] experimentally investigated the thermal characteristics 
of a porous fin with a square block structure. The thermal 
behavior obtained from the semi-analytical solution was 
compared with the results obtained from the experiment. 
In their paper, they only addressed numerical and analytical 
solutions for an axisymmetric annular porous fin.

The selection of proper conductive–convective param-
eters is crucial to achieving the best fin design. Considering 
variable parameters and all types of losses, it is generally 
found that the thermal properties of fins change significantly 

at high temperatures. No studies have been performed to 
obtain the closed-form solution of heat transfer through an 
annular porous fin with multiple variable thermal param-
eters, such as conduction, convection, radiation, and heat 
generation. In comparison to existing mathematical tech-
niques for solving nonlinear heat transfer equations, HPM is 
relatively simple and does not require many terms to obtain 
the approximate closed-form solution. Cuce et al. [24] pre-
sented a complete overview of recent works on heat transfer 
through porous fins. Hoseinzadeh et al. [32] compared the 
numerical and analytical results for the thermal properties 
of a longitudinal porous fin.

The present paper aimed at disclosing the closed-form 
solutions of nonlinear heat transfer equations for an annular 
porous fin with multiple variable thermal parameters. The 
novelty lies in incorporating the temperature variation in the 
physical heat transfer parameters such as the surface emis-
sivity, thermal conductivity of solid and fluid. The works 
also include the external convection from the solid matrix 
and the heat generation parameter as functions of tempera-
ture for a more realistic modeling of the phenomenon. The 
governing equations with multiple nonlinear parameters 
were solved by HPM. The thermal behavior of a rectangu-
lar fin was compared with that of a hyperbolic fin in terms 
of their temperature distributions, efficiencies, effectiveness, 
and heat transfer rates. The fluid velocity field across the 
porous matrix was simulated by Darcy’s model. The closed-
form solution of the problem was compared with the numeri-
cal solution obtained by the finite difference method. The 
obtained temperature distribution was further validated by 
modeling the fin in Comsol-Multiphysics software.

Physical model and mathematical 
formulation

Physical model

In the present analysis, rectangular and hyperbolic porous 
annular fins with an inner radius of rb and an outer radius 
of ro were considered (Fig. 1). In addition, the following 
assumptions and simplifications were made in the present 
analysis:

• A steady-state heat transfer was considered.
• The fin base was maintained at a constant temperature, 

and the contact resistance was neglected.
• Darcy’s law governed the fluid flow across the porosity 

of the fins.
• The porous medium was saturated with a homogenous 

single-phase isotropic fluid.
• Temperature varied along the radial direction only.
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• The surface porosity of the fins was equal to the volumet-
ric porosity.

• All thermal parameters were a function of temperature.

Thermal losses in the fins occurred by convection and 
radiation from the solid surface of the fins and the convec-
tion loss between the solid matrix and the fluid flowing 
through pores. Thus, a suitable multiplication factor was 
introduced to calculate the surface area of the solid matrix 
through which convection and radiation occurred.

Mathematical formulation

Considering heat flow along the radial direction of an annu-
lar porous fin, the steady-state energy balance equation for 
heat transfer can be expressed as

where q is heat flow at a radial distance r from the center, ε is 
the emissivity of the solid matrix, σ is the Stefan-Boltzmann 
constant, Ts is the radiation sink temperature, Ta is ambi-
ent temperature, h is the convective heat transfer coefficient 
from the solid matrix to the external atmosphere, ṁ is the 
mass flow rate, Cp is the specific heat capacity of the fluid, 
q* is the heat generation per unit volume, t is the thickness 
of the fin at a radial distance r, and ϕ is porosity.

In Eq. 1, the first term of the right-hand side signifies 
the loss due to radiation from the fin to the atmosphere, the 
second term implies the loss due to convective heat transfer 
between the solid matrix and the external fluid flow over 
it, the third term signifies the energy absorbed by the fluid 
flowing internally through pores of the fin, and the last term 
implies the heat generated in the given element. The mass 

(1)

qr − qr+dr =2𝜀𝜎𝜋(1 − 𝜙)
(
T4 − T4

s

)
rdr + 2𝜋hr(1 − 𝜙)(T − Ta)dr

+ ṁCp(T − Ta) − 2𝜋q∗trdr

flow rate of a homogenous single-phase isotropic fluid across 
the porous fin can be represented as

The fluid velocity (v) was obtained based on Darcy’s 
model for fluid flow through a porous medium [33].

Now, substituting Eqs. 2 and 3 into Eq. 1,

Fourier’s law of conductive heat flux can be expressed as

Fins generally operate at high temperatures; thus, thermal 
parameters were considered as a linear function of tempera-
ture. The variations of different thermal parameters, such 
as convective heat transfer coefficient (h), emissivity (ε), 
conductivity of the solid matrix (ks), conductivity of the 
cooling fluid (kf), and heat generation coefficient (q), with 
temperature are presented below.

(2)ṁ = 2𝜋𝜌vrdr

(3)v =
g��

�

(
T − Ta

)

(4)
−
dq

dr
=2���(1 − �)

(
T4 − T4

s

)
r + 2�hr(1 − �)(T − Ta)

+
2����gCp(T − Ta)

2r

�
+ 2�q∗tr

(5)q = −keffAc

dT

dr

(6)

h = h0

(
T − Ta

Tb − Ta

)n

; � = �0
[
1 + �(T − Ts)

]
;

q∗ = q0
[
1 + a(T − Ta)

]
; kf = k0

f

[
1 + �1(T − Ta)

]

and ks = k0
s

[
1 + �2(T − Ta)

]

Porous Media

q radiation + q conduction 

q conduction dr

rt

tb

rb

Fig. 1  Geometry of annular porous fin
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The relationship between the fin thickness and the radial 
distance was also considered in the present analysis.

where t is the thickness of the fin and rb is the base radius of 
the fin. The parameters m = 0 and m = −1 correspond to uni-
form and hyperbolic fins, respectively. The cross-sectional 
area (Ac) and the effective thermal conductivity of the porous 
matrix of the fin can be expressed as

Now, substituting Eqs. 5 and 8 into Eq. 4,

Further, in order to simplify the analysis, the following 
non-dimensional parameters were introduced.

The aforesaid non-dimensional parameters are described 
in the nomenclature. After carrying out non-dimensional 
transformations and substituting the previously stated 
variable parameters, the energy balance equation can be 
expressed in the following non-dimensional form.

where τw = τ1 + τ2 represents the variable thermal conductiv-
ity parameter for solid–fluid interactions.

(7)t(r) = tb

(
r

rb

)m

(8)Ac = 2�rtdr and keff = �kf + (1 − �)ks

(9)

(
��1 + kr(1 − �)�2

)
t
(
dT

dr

)2

+ (m + 1)
t

r

keff

k0
f

dT

dr
+

keff

k0
f

t
d2T

dr2

= 2(1 − �)�
�

k0
f

{
1 −

(
T − Ts

)
�
}(

T4 − T4
s

)

+ 2
h0

k0
f

(
T − Ta

Tb − Ta

)n

(1 − �)
(
T − Ta

)
+

���gCp

(
T − Ta

)2
r

k0
f
�f

− q0
t

k0
f

{
1 + e

(
T − Ta

)}

(10)

R =
r

rb
, � =

T

Tb
, �s =

Ts

Tb
, �a =

Ta

Tb
, �1 =

��1Tb

� + kr(1 − �)
, �2 =

kr(1 − �)�2Tb

� + kr(1 − �)
,

Q∗ =
q0r

2
b

(� + kr(1 − �))k0
f
Tb

, �w = �1 + �2, Nr =
2(1 − �)��T3

b
rb

(� + kr(1 − �))k0
f
Tbtb

,

Nc =
2h0r

2
b
(1 − �)

(� + kr(1 − �))k0
f
tb
, Ncc =

���gCpTbr
2
b

(� + kr(1 − �))k0
f
�ftb

, �Tb = �0, eTb = e0

(11)

�wR
m
(
d�

dR

)2

+(m + 1)Rm−1
[
� + �w(� − �a) + kr(1 − �)

] d�
dR

+
[
f + �w(� − �a) + kr(1 − f )

]
Rm d2�

dR2
= Nc

[
(� − �a)

n+1

(1 − �a)
n

]

+Ncc(� − �a)
2 + Nr

{
1 + �0(� − �s)

}(
�4 − �4

s

)
− Q∗

{
1 + e0(� − �a)

}
Rm

Boundary conditions

For a finite-length fin with a constant base temperature and 
a well-insulated tip (no heat transfer from the fin tip), the 
following boundary conditions were considered.

The non-dimensional forms of these boundary conditions 
can be expressed as

Solution strategy

The nonlinear non-dimensional steady-state heat transfer 
equation with temperature-dependent thermal parameters 
was solved by the homotopy perturbation method (HPM), 
which has the advantages of both regular homotopy and the 
traditional perturbation method. In this method, the approxi-
mate analytical solution of linear and nonlinear partial dif-
ferential equations can be obtained by introducing a small 
embedding parameter. This method is very powerful in 
solving nonlinear differential equations of multiple orders 

and does not require tedious calculations. In addition, the 
solutions converge after a few iterations. The core theory of 
HPM can be formulated as

with the specified boundary condition of

(12)Tr=rb = Tb and
dT

dr

|
|
|
|r=r0

= 0

(13)�R=1 = 1 and
d�

dR

|
|
|
|R=�

= 0

(14)L(�) + N(�) − f (r) = 0 for r ∈ �

(15)B
(
�,

��

�n

)
= 0 for r ∈ Ω
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where L (θ) and N (θ) are linear and nonlinear differential 
operators, respectively, f (r) is an analytical function, B is 
a boundary operator, and ψ represents the boundary of the 
domain Ω. Now, an artificial parameter p is introduced to 
construct a homotopy.

where L =
d2

d�2
 and θo are initial approximations that satisfy 

the boundary conditions. The embedding parameter p ∈ [0, 
1] monotonically changes from 0 to 1; thus Eq. (16) becomes

As p varies from 0 to unity, H(θ, p) simultaneously 
changes from θo to θ(r). With the help of the perturbation 
technique and considering smaller values of p, the solution 
of the above equation can be expressed as

As p approaches unity, an approximate solution is 
obtained.

Fin efficiency

The fin efficiency is defined as the ratio of the heat trans-
ferred from the fin material to the surrounding fluid in actual 
working conditions to the heat transferred in ideal operat-
ing conditions [34]. The actual heat transferred from a fin 
(considering conductive, convective, and radiative losses) is 
equal to the heat conducted from the base.

where Ac is the cross-sectional area at the base of the fin. 
The heat transferred from a fin in ideal operating conditions 
can be expressed as

where P is the perimeter of area Ac. Hence, the fin efficiency 
can be expressed as

(16)
H(�, p) = (1 − p)

[
L(�) − L(�o)

]
+ p

[
L(�) + N(�) − f (r)

]
= 0

(17)
p = 0 ∶ L(�) = L(�o)

p = 1 ∶ L(�) + N(�) − f (r) = 0

(18)� = �0 + p�1 + p2�2 + p3�3 + p4�4 +⋯

(19)� = �0 + �1 + �2 + �3 + �4 +⋯

(20)Qactual = −keffAc

dT

dr

|||
|r=rb

(21)Qideal =

rt

∫
rb

P
[
h0
(
Tb − Ta

)
+ �

(
Tb
)
�
(
T4
b
− T4

s

)]
dr

(22)� =

−keffAc
dT

dr

|||r=rb
rt∫
rb

P
[
h0
(
Tb − Ta

)
+ �

(
Tb
)
�
(
T4
b
− T4

s

)]
dr

The fin efficiencies for different values of the convection 
parameter (NC) were compared with the results given by 
Cuce et al. [24], and the comparison is presented in Fig. 3b.

Experimental study

It is evident that no experimental works for an annular 
porous fin have yet been conducted. Stark et al. [31] recently 
carried out an experimental analysis for a porous fin with a 
square block structure. In their study, aluminum metal foam 
with high porosity of about 0.941 was used as the fin mate-
rial and was connected with a copper wick. The thermal 
characteristics measured from the semi-analytical solution 
were compared with the results obtained from experimental 
measurements. The experiment proposed by Stark et al. [31] 
can be modified and used for the experimental study of an 
axisymmetric annular fin in a porous media.

Results and discussion

The current section describes the results obtained from the 
approximate closed-form solution of heat transfer for an 
annular fin in a porous media, and the solution was obtained 
by solving the nonlinear governing equation of heat trans-
fer by HPM. The effects of different temperature-dependent 
thermal parameters were presented. In order to examine the 
accuracy of the HPM-based solution, the obtained results 
were validated by numerical solutions and available experi-
mental data.

Validation

Numerical solutions were presented to validate HPM-
based closed-form solutions for rectangular and hyperbolic 
porous fins. The temperature fields of the fins in the dimen-
sional form were verified by FEM in Comsol Multiphys-
ics software (v5.2a), where the corresponding non-dimen-
sional results were verified by the finite difference method 
(FDM). The fins were made of Al–204 alloy (solid), and 
the fluid flowing across the porous matrix was considered 
to be air (fluid). The thermophysical properties at ambi-
ent temperature are taken from online data [35] and the 
recent published work [26] (ho = 25 W m−2 K−1, εo = 0.702, 
ϕ = 0.4, k0

s
 = 123.13 W m−1 K−1, k0

f
 = 0.026 W m−1 K−1, 

g = 9.81  m  s−2, ρ = 1.24  kg  m−3, Cp = 1.005  J  g−1  K−1, 
β = 3.5 × 10–3 K, κ = 5.1274 × 10–8  m2, and ν = 1.568 × 10–5 
 m2 s−1). The thickness and base temperature of the fins were 
t = 0.003 m and Tb = 600 K, respectively. The dimensionless 
parameters, NC, NCC, NR, and Q, were estimated using the 
same parameters mentioned above. In Table 1, HPM-based 
solutions for the temperature variation along the fin length 
are presented and compared with FEM results. The contours 
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of temperature profiles for the rectangular and hyperbolic 
porous fins obtained from the FEM analysis are illustrated 
in Fig. 2, and the non-dimensional results for temperature 
fields are compared with FDM solutions in Table 2. In both 
dimensional and non-dimensional analyses, the maximum 
errors at the fin tip for the rectangular and hyperbolic pro-
files were less than 1% and 2%, respectively. The hyper-
bolic fin dissipated more heat to the surrounding, resulting 
in lower tip temperature as compared to the rectangular one. 
Furthermore, the temperature distribution for a set of differ-
ent non-dimensional parameters is exhibited in Table 3. In 
both dimensional and non-dimensional analyses, the HPM 
analysis yielded a maximum error of 1.29% and 2.95% at the 
fin tip for the rectangular and hyperbolic profiles, respec-
tively. It indicates that the percentage of error was dependent 
on parametric values. The error could be further reduced by 
considering higher-order terms in the assumed solution of 
Eq. 18. In Fig. 3a, the obtained temperature distribution is 
compared with the published work of Das [26]. The non-
dimensional parameters that are common in the governing 
equation were used for comparison, and the remaining terms 
were set to zero. The fin efficiency obtained from Eq. (22) is 
compared with the result of Cuce and Cuce [24] in Fig. 3b. 
In order to maintain the equivalency of the results, the addi-
tional terms (radiation parameters) in the present formula-
tion were neglected, and a good agreement was obtained. 
Therefore, it can be inferred that the proposed HPM-based 
closed-form solution yielded almost accurate results in both 
dimensional and non-dimensional forms.

Effect of the convection parameter (Nc)

It was assumed that a certain portion of heat was dissipated 
from the solid matrix of the fin to the external far-field 
through convection. The temperature-dependent convective 
heat transfer coefficient was assumed to be a function of 
temperature. The power index of the heat transfer coefficient 
(n) denotes the heat transfer mode. The n values of  −0.25, 
0.25, and 2 represent laminar film boiling, laminar natural 
convection, and nucleate boiling, respectively. In the pre-
sent study, natural convection with the laminar fluid flow 

was considered as the mode of heat transfer from the fins 
to the surrounding. Natural convection occurred at two dif-
ferent solid–fluid interaction boundaries (a) solid surface 
of the porous matrix to the surrounding air flowing outside 
the fin along the surface and (b) solid porous matrix to the 

Table 1  Dimensional analysis 
of HPM and FDM solutions for 
temperature distribution

The material properties of the fin were taken as to those of Al-204 alloy.

S. No. R (m) Rectangular profile (m = 0) Hyperbolic profile (m = −1)

HPM Comsol %error HPM Comsol %error

1 0.06 600 600 0 600 600 0
2 0.066 580.38 580.5670 0.0322 579.4800 579.0021 0.0829
3 0.072 569.1 565.4674 0.6501 564.9000 561.0034 0.6903
4 0.078 560.7 556.9041 0.5350 555.3000 546.4575 1.6207
5 0.084 556.02 551.8141 0.7194 549.8400 536.9300 2.3461
6 0.09 554.58 549.9501 0.8114 540.6000 533.1884 1.2963

Contour: Temperature/K

Contour: Temperature/K
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Fig. 2  Temperature contour obtained using Comsol Multiphys-
ics 5.2a, along the radius of a rectangular and b hyperbolic fins for 
the aforementioned thermo-physical (properties h = 25  Wm−2  K−1, 
ε = 0.702, ϕ = 0.4, ks = 123.13  Wm−1 K−1, kf = 0.026  Wm−1 K−1, and 
ρ = 1.24 kg/m3, Cp = 1.005 kJ/kgK)
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air flowing across pores. The natural convection phenom-
enon occurred due to the first interaction was denoted by 
the parameter NC, and the parameter NCC signifies the natu-
ral convection between the fluid inside pores and the solid 
porous matrix. The parameter NCC was a function of Dar-
cy’s number and varied with the permeability of the porous 
media. Heat transfer from the solid porous matrix to the fluid 
inside pores was dependent on the orientation and shape of 
the pores. Figure 4 illustrates the effects of the parameter 
Nc on the non-dimensional temperature distributions of the 
porous rectangular and hyperbolic fins. It is evident that the 
gradients of the temperature curves became steeper with the 
increase of Nc. Hence, in both profiles, the tip temperature 
had a greater depression for a larger value of Nc, it indicates 
that the parameter Nc increased the convective heat transfer 
rate from the solid porous matrix to the surrounding. For 
the same values of NC, lower tip temperatures were detected 
for the hyperbolic profile as compared to the rectangular 
profile. The hyperbolic profile has a larger surface area than 
the rectangular profile and dissipated more heat from the 
fin surface to the surrounding. An interesting observation 
is that the reduction in the fin tip temperature is much more 
pronounced at higher values of NC in case of both the geom-
etries. This highlights the prominence of external convection 
in the heat dissipation from the fin irrespective of the cross-
section of the fin.

Effect of the conduction–convection parameter (Ncc)

The parameter Ncc was a function of Darcy’s number and 
Rayleigh number. Figure 5 presents the effect of Ncc on the 

temperature distributions of the rectangular and hyperbolic 
fins. The increase of Darcy’s number reduced the hindrance 
to the fluid flow across pores and effectively enhanced the 
convective cooling of the fins. The Rayleigh number is a 
function of the Grashof number, which increased the con-
ductive–convective parameter. The Grashof number is an 
approximate ratio of the buoyancy force and the viscous 
force acting on a fluid. Natural convection is a buoyancy-
driven phenomenon; hence, a larger buoyancy force 
increased the convective cooling of the solid matrix by circu-
lating fluid inside pores of the porous matrix. Consequently, 
the effect of the parameter Ncc increased with the increase 
of the buoyancy force acting on the fluid. Therefore, the 
temperature along the fin length dropped greatly for a larger 
value of Ncc for both cross-sectional profiles (Fig. 4). For 
the same values of Ncc, the hyperbolic profile had lower tip 
temperatures due to its larger surface area. However, the 
drop in the fin tip temperature is less prominent with greater 
values of NCC (NCC ~ 4). The reason for this behavior can 
be attributed to the fact that the natural convection inside 
the pores is affected by the flow of the fluid. The ease of 
flow of the fluid and hence its circulation has been plateaued 
by the maximum permeability the porous fin can achieve. 
When compared with the effect the increasing value of NC 
had on the temperature distribution it can be proposed that 
at optimal values of the parameters NC and NCC should be 
maintained for enhancing the heat dissipation from the fins.

Table 2  Non-dimensional 
analysis of HPM and FDM 
solutions for temperature 
distribution considering 
dimensionless parameters 
Nr = 0.5, Nc = 0.7, Ncc = 1.5, 
Q* = 0.04, e = 0.3, λ = 0.2, 
Tw = 0.03

S. No. R = r/rb Rectangular profile (m = 0) Hyperbolic profile (m = −1)

HPM FDM %error HPM FDM %error

1 1 1 1 0 1 1 0
2 1.1 0.9587 0.9547 0.417 0.9707 0.9635 0.7417
3 1.2 0.9313 0.9229 0.966 0.9511 0.9347 1.7243
4 1.3 0.9144 0.9120 0.2624 0.9389 0.9238 1.6082
5 1.4 0.9056 0.9002 0.5962 0.9324 0.9180 1.5444
6 1.5 0.9029 0.8965 0.7088 0.9304 0.9120 1.9776

Table 3  Non-dimensional 
analysis of HPM and FDM 
solutions for temperature 
distribution considering 
dimensionless parameters 
Nr = 1, Nc = 1, Ncc = 0.5, 
Q* = 0.04, e = 0.3, λ = 0.2, 
Tw = 0.03

S. No. R = r/rb Rectangular profile (m = 0) Hyperbolic profile (m = −1)

HPM FDM %error HPM FDM %error

1 1 1 1 0 1 1 0
2 1.1 0.9483 0.9466 0.17926 0.9653 0.96 0.54905
3 1.2 0.9183 0.9094 0.96918 0.9411 0.9317 0.99883
4 1.3 0.9028 0.8849 1.98272 0.9254 0.9219 0.37821
5 1.4 0.8961 0.8712 2.77870 0.9169 0.9023 1.59232
6 1.5 0.8944 0.868 2.95169 0.9142 0.8989 1.67359
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Effect of porosity

The effect of porosity was investigated for different values of 
ϕ, and the values of NC, NCC, NR, and other non-dimensional 
parameters were evaluated for a specific value of ϕ. It was 
observed that an increase in porosity of the porous medium 
caused a reduction of the fin tip temperature for both uni-
form and hyperbolic profiles (Fig. 6). The increase in poros-
ity implies that a large amount of fluid was present per unit 
volume of the fins. Generally, the conductivity of the fluid 
was less than that of the solid matrix. The increase in poros-
ity caused a decrease in the effective conductivity of the 
porous media; hence, less amount of heat dissipated along 
the fin length due to an increase of the thermal resistance. 
The domination of convective heat transfer over conductive 

heat transfer caused a decrease of the fin tip temperature. 
The presence of the term (1 − ϕ) in the numerator of term 
NC and its absence in case of the term NCC signifies the 
reduction in the external convection to the ambient and 
the increase in the internal natural convection inside the 
pores; with larger pore size the internal convection will be 
enhanced comparatively.

Effect of the internal heat generation parameter

Internal heat generation generally occurs inside a fin due to 
chemical interactions between the fluid and the solid matrix 
or the presence of any heat source, such as electric current. 
In the present study, the temperature difference between the 
fin base and the tip was considerably large; therefore, the 
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heat generation parameter was considered as a function of 
temperature. The effect of the heat generation parameter 
on the dimensionless temperature distributions of the rec-
tangular and hyperbolic fins is displayed in Fig. 7. It can 
be observed that an increase in the heat generation param-
eter (Q*) caused an increase in the local temperature of the 
porous fins.

Effect of the variable thermal conductivity 
parameter

It is already stated that the temperature difference between 
the fin base and the ambient generally remains high; hence, 
it will be a more realistic approach to consider the thermal 

conductivity of the fluid and the solid as a function of tem-
perature. In the present analysis, the thermal conductiv-
ity parameter was dependent on the thermal conductivity 
coefficients of the solid and the fluid and varied linearly 
with the temperatures of the solid and the fluid. Generally, 
the thermal conductivity coefficient of fluid is very small 
as compared to that of a solid. The conductivity of pure 
metals decreases with temperature, whereas that of some 
materials increases with temperature. Therefore, the variable 
conductivity parameter for solid–fluid interactions (τw) can 
be positive or negative. The effect of τw on the dimension-
less temperature distributions of the rectangular and hyper-
bolic fins is exhibited in Fig. 8. The dotted line shows the 
temperature distribution for the Al-204 alloy used in the 
dimensional study. Higher fin tip temperatures were detected 
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for positive τw values, whereas an increase of the negative τw 
value caused a large decrease in the fin tip temperature. The 
thermal conductivity increased with the local temperature 
when τw was positive; hence, more heat dissipated from the 
fin base to the tip. The decrease in conductive resistance 
accelerated heat transfer through the solid matrix. The nega-
tive τw value restricted heat dissipation from the fin base and 
resulted in lower tip temperatures.

Fin efficiency

The fin parameters, Nr = 0.5, Nc = 0.7, Ncc = 1.5, Q* = 0.04, 
e = 0.3, λ = 0.2, τw = 0.03, were considered to calculate the 
fin efficiency. Figure 9 compares the efficiencies of the 
rectangular and hyperbolic fins. It is clear that for all val-
ues of Nc, the hyperbolic fin exhibited a higher efficiency. 

The variation of the fin efficiency with the parameter Nc 
for different values of τw is illustrated in Fig. 10. The fin 
efficiency monotonically decreased with the increase of Nc 
for both rectangular and hyperbolic profiles, and a lower τw 
value resulted in a lower fin efficiency. It indicates that the 
conductive heat transfer through the solid matrix of the fin 
got restricted, resulting in lower efficiency. In comparison 
to the rectangular fin, the hyperbolic fin manifested higher 
efficiencies for positive τw values and lower efficiencies for 
negative τw values. The fin efficiency was affected by the 
effective conductivity of the porous matrix and the external 
convection from the solid part of the porous fin. The drop in 
the fin efficiency with an increase of the parameter Nc could 
be compensated with a higher value of τw.
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The effect of emissivity on the fin efficiency for uniform 
and hyperbolic cross-sections is presented in Fig. 11. The 
surface to surface radiation inside the porous matrix was 
neglected in the present analysis. It was observed that the 
fin efficiency for a given value of Nc was reduced with the 
increasing surface emissivity of the fin material. Hence, for 
higher surface emissivity, the amount of heat radiated by the 
fin surface was larger. The increasing radiative heat transfer 
to the surrounding lowered the local fin temperature, and the 
large temperature variation along the fin length reduced the 
fin efficiency. The efficiency of the hyperbolic fin was not 
affected significantly by low Nc values, whereas the effect 
was prominent at higher values of the convection parameter. 
For a rectangular and hyperbolic profile, a distinct difference 
of the effect of emissivity on the variation of fin efficien-
cies as function of NC can be seen. From the analysis of 
Figs. 9–11, it can be concluded that the fin efficiency can 
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attain optimal values by choosing materials having a high 
coefficient of thermal conductivity. However, the surface 
properties which affect the external convection and the emis-
sivity the play a balancing role in the reducing the fin tip 
temperature and therefore the fin efficiency.Fig. 11  Fin efficien-
cies of a rectangular and b hyperbolic fins as a function of convection 
parameter NC for different values of emissivity

Outlook and future perspectives

The work presented in this article has drawn an attention on 
the application of porous fin and its thermal analysis. A closed 
form solution targeting for temperature distribution in a hyper-
bolic and rectangular porous fin was established. This work 
further suggests us several research directions for the develop-
ment of porous fins and their applications. A continuous effort 
is still required to choose the suitable materials with appropri-
ate thermo-physical characteristics that can enhance the heat 
transfer from the hot body to the environment. The adequate 
knowledge of the various thermo-geometrical parameters for 
convective, conductive and radiative heat transfer through the 
fin in porous media may be the primary concern. For achiev-
ing the desired solution for heat transfer, an efficient approach 
for integrating various nonlinear parameters may be the prime 
importance. The non-dimensional thermo-geometrical param-
eters would be chosen in the correct form as they are flexible 
for alteration and refurbishment of the conventional fin. Fur-
ther, the optimization of the thermo-geometrical parameters 
is essential for successful fin design for heat transfer. In this 
context, an inverse analysis [36] may be promising to select 
the right combination of thermo-geometrical parameters. The 
aspects of failure study due to thermal loading such as exces-
sive thermal stresses, creep behavior and other mechanical 
demolition, need to be properly investigated [37] for the long-
term and widely use of porous fin. The long-term thermal 
response, efficiency, effectiveness and stability of a porous 
fin need to be evaluated experimentally. Information on these 
aspects of the porous fin is currently limited in the literature. 
Furthermore, an inadequate heat transfer during energy recov-
ery is another barrier that is hindering the development of 
thermal equipment. Efforts are still in demand at this point.

Conclusions

The afore-discussed research presented the heat transfer 
equations for porous annular fins with rectangular and hyper-
bolic cross-sections. The governing equations with differ-
ent nonlinear thermal parameters were solved by HPM. The 
proposed closed-form solution was validated dimensionally 
and non-dimensionally by the results of FEM and FDM. 
The main inferences of the present study are depicted below.

(1) A good agreement between the results obtained from 
the HPM-based semi-analytical approach and numeri-
cal simulations was noticed. The proposed HPM solu-
tion had distinct advantages over other closed-form 
solutions. HPM allowed the direct estimation of tem-
perature fields to obtain accurate solutions of nonlinear 
heat transfer equations for porous fins.

(2) In most cases, the annular fin with a hyperbolic cross-
sectional profile was found to be more efficient than the 
fin with a uniform cross-section because the increased 
surface area of the hyperbolic fin resulted in a more 
substantial heat loss due to external convection.

(3) The fin efficiency was greatly affected by the thermal con-
ductivity coefficient of the fin material. The material with 
a positive thermal conductivity coefficient significantly 
improved the fin efficiency as compared to the material 
with a negative thermal conductivity coefficient.

(4) Heat transfer from the base to the tip of the fin was 
greatly dependent on the pore volume fraction. Per-
meability also affected the heat transfer along the fin; 
however, the effects of porous parameters were reduced 
with the increase of permeability.
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Appendix

The solution of the governing equation is assumed to be of 
the form

It is assumed that θ0 = 1.
The co-efficient of p is obtained by solving the differential 

equation

which is solved subjected to boundary conditions
θ1 = 0 at R = 1 and θ1

′ = 0 at R = RT.

where
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Similarly, the co-efficient of p2 is obtained by solving the 
differential equation

Subjected to boundary conditions
θ2 = 0 at R = 1 and θ2

′ = 0 at R = RT

where

C1 =Q(1 + e0(�0 − �a))R −
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−m+2

(1 − m)(2 − m)
−

Q1R
2

2

]

+ C1[R lnR − R] + C3R + C4

A1 =NCC(1 − �a)
2 + NC(1 − �a) + NR(1 + �0(1 − �s))

(
1 − �4

s

)

Q1 =Q(1 + e0(�0 − �a))

B1 =(�W(1 − �a) + 1)

A2 =NC(1 + n) + NR

{
�0
(
1 − �4

s

)
+ 4(1 + �0(1 − �s))

}
+ 2NCC(1 − �a)

Q2 =Qe0

C3 =�W(1 − �a)

[
A1R

−m+1

(1 − m)
− Q1R

]

+ B1(m + 1)

[
A1R

−m +1

(1 − m)2
− Q1R + C1 lnR

]

+ Q2

[
A1R

−m +3

(3 − m)(1 − m)(2 − m)
−

Q1R
3

6
+

C1R
2

2
+ C2R

]

− A2

[
A1R

−2m +3

(3 − 2m)(1 − m)(2 − m)
−

Q1R
−m +3

2(3 − m)
+

C1R
−m +2

(2 − m)
+

C2R
−m +1

(1 − m)

]

C4 =�W(1 − �a)

[
A1

(2 − m)(1 − m)
−

Q1

2

]

+ B1

[
A1

(2 − m)(1 − m)2
−

Q1

2
+ C1

]

+ Q2

[
A1

(4 − m)(3 − m)(1 − m)(2 − m)
−

Q1

24
+

C1

6
+

C2

2

]

− C3

− A2

[
A1

(4 − m)(3 − m)(1 − m)(2 − m)
−

Q1

2(4 − m)(3 − m)
+

C1

(3 − m)(2 − m)
−

C2

(2 − m)(1 − m)

]
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