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Abstract
We investigate, in this analysis, the entropy generation characteristics associated with the transport of nanofluid in a micro-
fluidic channel under the combined influences of applied pressure gradient and electrical forcing. In our study, the nanofluid 
is subjected to an asymmetric cooling at the channel walls, while the conductive transport of heat through the channel walls 
is also taken into account. We show that the underlying thermo-electro-hydrodynamics of nanofluids in the channel lead 
to entropy generation, attributed to the irreversibilities associated with heat transfer, viscous dissipation, and Joule heating 
effects. We establish that a non-trivial interplay among these irreversibilities gives rise to an optimum value of the geometrical 
parameter, viz. the channel wall thickness ( � ), and the thermophysical parameters, viz. the thermal conductivity of the wall 
(�) , Biot number (Bi), and the modified Peclet number ( Pe ), leading to a minimum entropy generation rate of the system. 
Also, we unveil through this study that changes in the electroosmotic parameter 𝜅̄ (representative of the EDL thickness) or 
the composition of the fluid ( � , the volume fraction of nanoparticles agglomerates) non trivially alter the optimum values 
of these parameters. Inferences drawn from this analysis may have consequences in the optimum design of thermal systems/
devices, typically used for thermal management in micro-heat exchangers, micro-reactors, and micro heat pipes.
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List of symbols
Bi	� Biot number
Br	� Brinkman number
Cp	� Specific heat at constant pressure ( J kg−1 K−1)
d	� Channel wall thickness (m)
e	� Elementary electronic charge 

(= 1.6022 × 10−19C)
Ex	� Applied electric field strength ( = Vm−1)
G	� Dimensionless axial temperature gradient 

(= ��∕�x)

H	� Half height of the channel (m)
h	� External convective heat transfer coefficient 

( = Wm−2K−1)
J	� Dimensionless Joule heating parameter

kB	� Boltzmann constant
k	� Thermal conductivity ( Wm−1 s−1)
k̄	� Thermal conductivity ratio ( = knf∕kf)
L	� Channel length (m)
n∞	� Bulk concentration of ions
p	� Pressure (Pa)
Pe	� Peclet number⟨
Ṡ
⟩
	� Dimensionless volumetric entropy generation 

rate
T 	� Temperature (K)
u	� Axial velocity ( m s−1)
ū	� Dimensionless axial velocity
UHS	� Helmholtz-Smoluchowski velocity ( m s−1)
W	� Channel width (m)
x, y	� Dimensional axial and transverse coordinates, 

respectively (m)
z	� Ionic valence

Greek symbols
γ	� Dimensionless thermal conductivity of wall
�	� Dimensionless channel wall thickness
�	� Dielectric constant of electrolyte ( = Fm−1)
�	� Dimensionless temperature
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κ	� Reciprocal of the characteristic EDL thickness 
( = m−1)

𝜅̄	� Dimensionless Debye–Hückel parameter
�D	� EDL thickness (m)
�	� Dynamics viscosity ( kg m−1 s−1)
𝜇̄	� Fluid viscosity ratio ( = �nf∕�f)
ρ	� Density ( kgm−3)
�e	� Total ionic charge density inside the EDL 

( = Cm−3)
ϕ	� Nanoparticle volume fraction
�	� Electrostatic potential inside EDL

Subscripts
a	� Ambient
f	� Base fluid
i (= 1, 2)	� Lower and upper wall
nf	� Nanofluid
np	� Nanoparticle
opt	� Optimum
s	� Wall

Introduction

One branch of microfluidics shows prodigious promise 
for potential applications in cooling in microscale thermal 
management systems/devices, in particular, in the micro-
electromechanical system (MEMS). With the advancement 
of technology, several effective ways of cooling of the micro-
devices/systems have been proposed by the researchers in 
recent years [1–6]. One of the available methods relies on 
the use of nanoparticles in the base fluid as a coolant [5–12]. 
These small particles have high-thermal conductivity and 
consequently, increase the heat transfer rate in the associ-
ated process [8, 11, 13, 14]. It is important to mention here 
that the addition of nanoparticles to the base fluid makes 
it inhomogeneous, which at times alters the underlying 
thermo-hydrodynamics non-trivially [12, 15, 16]. It is need-
less to mention that the higher thermodynamic irreversibility 
generated in the underlying process destroys the exergetic 
efficiency of the system [17]. The analysis of entropy gen-
eration therefore appears to be a convenient tool to assess 
the intrinsic irreversibilities associated with a microfluidic 
system and to determine the optimized operating conditions 
leading to minimum dissipation.

Albeit intuitive, we would like to mention here that sev-
eral inevitable factors involved with the underlying thermo-
electro-hydrodynamics like heat transfer due to finite tem-
perature difference, dissipative effect, and Joule heating 
effect invite thermodynamic irreversibility in the process 
and results in irreversible losses of the available energy 
[18–22]. In the paradigm of microscale transport, flow actua-
tion by applied pressure gradients many a time encounters 

difficulties owing to miniaturization of the platform, and at 
times, the dissipative effects become significant on account 
of significant frictional losses [2, 22–26]. On the contrary, 
manipulation of flows in a microfluidic channel using an 
external electric field has gained humongous popularity 
owing to a few important encouraging characters like noise-
free operation, ease in manipulation, finer controllability, 
etc. [27, 28]. However, it is important to note that the inevi-
table Joule heating effect associated with the purely electri-
cally actuated transport leads to entropy generation appre-
ciably. It deteriorates the exergetic efficiency by destroying 
the available work in the process [3, 4, 29]. Taking a note 
on these aspects, researchers have considered the combined 
effects of applied pressure gradient and electrokinetic influ-
ence to manipulate flows in the microfluidic environment, 
essentially to keep the Joule heating and dissipation effects 
within a manageable limit [3, 30, 31].

It may be mentioned here that several issues associ-
ated with the underlying thermo-hydrodynamics as well as 
thermo-electro-hydrodynamics of nanofluids (nanoparticles 
mixed with a base fluid) in microscale thermal management 
systems/devices have been reported by numerous researchers 
[5–7, 22, 23, 32–37]. In these published works, researchers 
have shown the promising potential of nanofluids in recover-
ing higher heat as compared to the other coolants. Note that 
all the systems/devices used for convective transport of heat 
even in the miniaturized platform have a finite thickness. 
The conductive transport of heat through bounding surfaces 
becomes, many times, indispensable to be taken into account 
on the underlying microscale thermo-hydrodynamics. 
Simultaneous effects of heat conduction through the bound-
ing surfaces in tandem with the convection of heat through 
the fluid layer (often called as conjugate heat transfer) bear 
a significant impact on the thermodynamic efficiency of the 
microsystems/devices [2, 31, 38, 39]. Paying attention to all 
these aspects, efforts have been directed at the minimization 
of system entropy generation towards the optimization of 
design parameters (both geometric as well as thermophysi-
cal) for which thermodynamic performance becomes maxi-
mum [21, 39–44]. To the best of authors’ knowledge, this 
aspect has not been explored in the literature to date.

Here, we investigate the transport of a nanofluid through 
an asymmetrically heated microfluidic channel having finite 
wall thickness. We consider the combined influences of 
applied pressure gradient and applied electric field strength 
for the transportation of the nanofluid through the channel. 
Considering the effects of viscous dissipation, Joule heating, 
and conjugate transport of heat, we focus on the entropy 
generation minimization of this system. Through this analy-
sis, we have shown that the global entropy generation rate 
of the system displays minimum values when explored as a 
function of the design parameters, viz. channel wall thick-
ness ratio, Biot number, wall to fluid thermal conductivity 
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ratio, and Peclet number. Thus, there exist specific condi-
tions for the geometrical and thermophysical parameters 
which must be taken care of in the design of heat transfer 
devices for their optimum performance. These parameters 
determine the optimal working conditions in the sense that 
the intrinsic irreversibilities become minimum consistent 
with the physical restrictions of the system and leads to the 
maximum exergetic efficiency of the system.

Mathematical formulation

Problem description

We consider here, the combined pressure and electroosmoti-
cally driven thermofluidic transport of a nanofluid compris-
ing of alumina ( Al2O3 ) as the nanoparticle and ionic aque-
ous solution (aqueous electrolyte) as the base fluid. This 
steady, unidirectional flow u = (u(y), 0, 0) , is taking place 
through a microfluidic channel formed between two parallel 
plates. The length, width, and height of the channel are L , 
W and 2H , respectively, such that L ≫ W > 2H as shown in 
Fig. 1. This assumption ensures a unidirectional flow under 

the applied external forcings. The underlying transport pro-
cess is considered to be fully developed, both thermally and 
hydro dynamically. Taking a note on the practical relevance 
of this study, we consider different but finite thickness for 
each plate: d1 for the bottom plate and d2 for the top one. In 
this transport process, since an ionic solution is exposed to 
the solid plates, the surface of each plate becomes charged 
following an electrostatic interaction between the charged 
surface and electrolytic solution, and thus, a thin layer of 
counter ions forms in the interfacial region. This layer is 
referred to as the electrical double layer (EDL) [45–47]. In 
this study, we consider the EDLs to be thin and non-over-
lapping. However, the effect of the Joule heating, invariably 
present with the EOF of colloidal suspensions, is considered 
for the current thermofluidic transport process.

Thermophysical properties of nanofluid

We here make an effort to discuss the effective thermo-
physical properties of nanofluids. Several studies reported 
in the literature have attempted to discuss the mechanism 
of enhanced transport of nanoscale colloidal suspensions 
from the perspective of continuum-based formulation of the 

Ta
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qw2

qw1

y

x

H
Nanofluid transport
(water + alumina)

eρ Ex + px

d1

Fig. 1   Schematic depicting the combined pressure driven and elec-
troosmotically actuated thermofluidic transport of a nanofluid through 
a microchannel formed between two asymmetrically cooled parallel 

plates, for which L is the length, W is the width, and 2H is the height 
of the channel
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thermophysical properties of nanofluids [9]. To be precise, 
most of the studies have reported that factors like particle 
clustering, Brownian motion of the particles, and molecu-
lar layering at the fluid-particle interface enhance transport, 
accounting alteration of the effective thermophysical proper-
ties of nanofluid [8, 10]. In addition to these factors, there are 
several other issues like complex hydrodynamic interactions 
at small scale and the interparticle interactions, which need 
to be put in perspective for calculating the effective rheologi-
cal behaviour and thermophysical properties of nanofluids. 
These factors stimulate the aggregation of nanoparticles sus-
pended in the base fluid and allow the cluster formation. In 
this study, we calculate the effective properties of nanofluids 
from the perspective of continuum-based approach, where 
the effective viscosity and density of the nanofluid are given 
by the following relations as written below [16–18]. Also, 
for the expression of effective density and heat capacitance, 
we are using the model [32] which can be expressed as:

where � is the density ( kgm−3 ), Cp is the specific heat at con-
stant pressure ( kJ kg−1K−1 ), and � is the nanoparticle volume 
fraction. To describe the effective viscosity of the nanofluid, 
we consider the Brinkman model [11] and following which, 
the effective dynamic viscosity can be written as:

where �nf is the viscosity of nanofluid, �f is the viscosity of 
the base fluid, and � is the volume fraction. The effective 
thermal conductivity of the nanofluid is approximated by 
the Maxwell–Garnett’s model and given by [21]:

These thermophysical properties are assumed to remain 
invariant of temperature in this analysis.

Governing equations for electro‑hydrodynamics

For the problem under present consideration, the gov-
erning transport equations are the continuity equation, 
Navier–Stokes equation for the velocity field, and the Pois-
son-Boltzmann equation for the electrostatic charge distribu-
tion [38, 48, 49].

Continuity equation:

Momentum equation:

(1)(�Cp)nf = (1 − �)
(
�Cp

)
f + �

(
�Cp

)
np

(2)�nf = �f(1 − �)−5∕ 2

(3)
knf

kf
=

(
knp + 2kf

)
− 2�

(
kf − knp

)
(
knp + 2kf

)
+ �

(
kf − knp

)

(4)
du

dx
= 0

Considering the assumptions pertaining to this analysis, 
the momentum transport equation can be written in the fol-
lowing form:

where �e is the total ionic charge density inside the electric 
double layer (EDL) [45] and Ex is the applied electric field 
[29, 45, 50]. The EDL charge density �e can be obtained 
from the Poisson-Boltzmann equation [45] as:

where � is the electrostatic potential within the EDL and � is 
the dielectric constant of electrolyte. Now, for a z:z symmet-
ric electrolyte, the net ionic charge density is given by [45] 

here n+ and n− are the densities of positive and negative 
ions, respectively. For the low Reynolds number flow, we 
can neglect the convection of ions in the microchannel. In 
this case, we appeal to the Boltzmann distribution to obtain 
ionic densities for both positive and negative ions, given by 
[45, 51–54]:

where n∞ is the bulk concentration of ions, z is the ionic 
valence, e is the electric charge, T is the absolute temperature 
of the system, and kB is the Boltzmann constant. The follow-
ing two assumptions are now considered for this analysis: 
(a) the zeta potential is temperature independent and (b) the 
value of zeta potential is less than 25 mV [45, 55–57]. On 
the basis of the abovementioned assumptions, we can now 
apply the Debye–Hückel approximation [38, 58], which lin-
earizes the exponential form of the Boltzmann distribution. 
Thus, Eq. (6) now takes the form:

where �D is the EDL thickness and �
(
= 1∕�D

)
 is the 

Debye–Hückel parameter. It may be mentioned in this con-
text that the magnitude of electroosmotic body force for a 
given magnitude of applied electric field acting on the fluid 
mass will depend upon � [45]. Below we write the boundary 
conditions employed in this analysis to solve the transport 
Eqs. (5) and (9).

For the velocity field

(5)−
dp

dx
+ �eff

d2u

dy2
+ �eEx = 0

(6)�e = −�
d2�

dy2

(7)�e = ze
(
n+ − n−

)

(8)n± = n∞ exp
[
∓(ze�)∕kBT

]

(9)
d2�

dy2
=

(
1

�D

)2

� = �2�
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For the electric potential

After imposing the boundary condition as delineated in 
Eq. (11) on Eq. (9) and considering the ionic charge density 
from Eq. (8), we can rewrite the Eq. (5) as:

Nondimensionalization of momentum equation

Equation (12) can be non-dimensionalized using the follow-
ing dimensionless parameters: ȳ = y∕H , ū = u

/
UHS , and 

𝜅̄ = 𝜅H
(
= H∕𝜆D

)
 . Note that UHS is the Helmholtz-Smolu-

chowski velocity and is expressed as UHS

(
= −�Ex�w

/
�f

)
 . 

𝜅̄ is the non-dimensional Debye–Hückel parameter. Also, 
we define a parameter that relates the relative strength of 
the applied pressure gradient to the electroosmotic exci-
tation strength as px = −H2(dp∕dx)

/
�fUHS . Using these 

non-dimensional parameters, the dimensionless transport 
equation reads as:

where 𝜇̄ = 𝜇eff∕𝜇f is the fluid viscosity ratio or rela-
tive viscosity of nanofluid and carrier fluid [24], and 
p̄x = px𝜇f

/(
𝜇eff

)
 is the modified pressure gradient 

parameter.
The boundary condition for velocity in dimensionless 

form

Utilizing the boundary conditions given in Eqs. (14)–(15), 
we can find the non-dimensional velocity profile solving 
Eq. (13). The expression for dimensionless flow velocity 
reads:

(10)
No slip condition at thewalls ∶ u|y=±H = 0

Symmetry at the centre line ∶ du∕dy|y=0 = 0

}

(11)
At the symmetric plane ∶ d�∕dy|y=0 = 0

Specified potential at wall ∶ �|y=±H = �w

}

(12)−
dp

dx
+ �eff

d2u

dy2
−
(
�Ex�w�

2
) cosh (�y)
cosh (�H)

= 0.

(13)d2ū

dȳ2
+

�
𝜅̄√

𝜇eff∕𝜇f

�2

cosh (𝜅̄ȳ)

cosh (𝜅̄)
+ p̄x = 0

(14)
No slip boundary condition at the channel walls ∶ ū|ȳ=±1 = 0

(15)
Maximumvelocity at the centre line due to symmetry ∶ dū∕ dȳ|ȳ=0 = 0

(16)ū =
1

𝜇̄

[
1 −

cosh (𝜅̄ȳ)

cosh (𝜅̄)

]
+

p̄x

2

(
1 − ȳ2

)

For the brevity in presentation, we recast Eq. (16) in the 
following form:

w h e r e  g1 = (−sech(𝜅̄)∕ 𝜇̄)  ,  g2 =
(
−p̄x∕2

)
 a n d 

g3 =
[
(1∕ 𝜇̄) +

(
p̄x∕2

)]
.

Governing equation for temperature distribution

The governing equation describing the thermal energy trans-
port associated with the flow of nanofluid inside the micro-
channel (considering axial conduction, viscous dissipation, 
and volumetric heat generation terms) can be expressed as:

where �nf is the density of nanofluid, Ex is the applied elec-
tric field, and � is the charge density. Note that, the second 
and third terms on the right-hand side of Eq. (18) take into 
account the viscous dissipation and Joule heating effects, 
respectively. Furthermore, to take the effect of conjugate 
heat transfer into the underlying analysis, we consider the 
following energy equation for both the walls of the channel:

where Tsi is the wall temperature (i = 1, 2 indicate the lower 
and upper walls, respectively). To solve the energy transport 
equations in the solid walls as well as in the flow field, we 
consider the following set of boundary conditions [31]:Tem-
perature continuity at the fluid-wall interface:

Heat flux continuity at the fluid–wall interface:

where ks1 and ks2 are the thermal conductivities of the lower 
and upper walls, respectively.

Convective boundary conditions at the outer surface of 
upper and lower walls:

(17)ū = g1 cosh (𝜅̄ȳ) + g2ȳ
2 + g3

(18)
(
�Cp

)
nf
u
�T

�x
= keff

(
�2T

�y2

)
+ �eff

(
du

dy

)2

+ �E2
x

(19)
d2Tsi

dy2
= 0

(20)
T|y=−H = Ts1

T|y=+H = Ts2

}

(21)
keff(dT∕dy)

||y=−H = ks1
(
dTs1∕dy

)

keff(dT∕dy)
||y=+H = ks2

(
dTs2

/
dy
)
}

(22)
ks1

�
dTs1∕dy

����y=−(H+d1) = h 1

�
Ts1 − Ta

�

ks2
�
dTs2∕dy

����y=+(H+d2) = h 2

�
Ts2 − Ta

�
⎫⎪⎬⎪⎭
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where h 1 and h 2 are the heat transfer coefficient of the ambi-
ent fluid at the lower and upper wall of the microchannel, 
respectively.

Non‑dimensionalisation of energy equations

To non-dimensionalize the energy Eqs. (18) and (19), we 
consider the following dimensionless parameters: x̄ = x∕H, 
ȳ = y∕H, ū = u

/
UHS, �si =

(
T − Ta

)/
ΔTj, �a = Ta

/
ΔTj , 

�1 = d1∕H  , and �2 = d2∕H  , where ΔTj =
(
�E2

x
H2

/
keff

)
 

is the characteristics change in temperature due to Joule 
heating effect. � is the dimensionless fluid temperature, 
�si (i = 1, 2) is the dimensionless wall temperature, and �a 
is the dimensionless ambient temperature. Substituting these 
dimensionless parameters into Eqs. (18) and (19), we get 
the dimensionless energy equation in the flow field as [38]:

To mention, the dimensionless energy equation in solid 
walls reads as [38]:

A few dimensionless parameters appearing in Eq. (23) are 
desc r ibed  as  fo l lows :  The  Pec le t  number : 
Pe =

(
HUHS

(
�Cp

)
f

)/
kf  ,  B r i n k m a n  n u m b e r : 

Br =
(
�fU

2
HS

/
kfΔTj

)
 ,  Jou le  hea t ing  pa ramete r : 

J =
(
�H2E2

x

)/
kfΔTj and k̄ = keff∕kf is the thermal conduc-

tivity ratio. Also, we define the following modified param-
eters pertinent to this analysis as: Pe = Pe

(
𝜌Cp

)
nf

/
k̄
(
𝜌Cp

)
f
 

is the modified Peclet number, Br = Br
/(

k̄
/
𝜇̄
)
 is the modi-

fied Brinkman number, and J̄ = J
/
k̄ is the modified Joule 

heating parameter. The dimensionless counterpart of the 
boundary conditions delineated in Eqs. (20)–(22) can be 
written in the following form:

Temperature continuity at the fluid–wall interface:

Heat flux continuity at the fluid–wall interface:

where the wall thermal conductivity ratio �i =
(
ksi∕keff

)
 is 

the ratio between the thermal conductivities of wall and 
nanofluid, (here i = 1, 2 stands for the lower and upper wall, 
respectively).

(23)Pe ū
𝜕𝛩

𝜕x̄
=

𝜕2𝛩

𝜕ȳ2
+ Br

(
dū

dȳ

)2

+ J̄

(24)
d2𝛩si

dȳ2
= 0

(25)
𝛩|ȳ=−1 = 𝛩s1

𝛩|ȳ=+1 = 𝛩s2

(26)
(d𝛩∕dȳ)|y=−1 = 𝛾1

(
d𝛩s1

/
dȳ
)

(d𝛩∕dȳ)|y=+1 = 𝛾2
(
d𝛩s2

/
dȳ
)
}

Convective boundary conditions at the outer surface of 
the channel walls

Note that Bii
(
= hiH∕ksi

)
 in Eq. (27) is the Biot number and 

signifies the ratio of heat convection at the surface of the 
microchannel to heat conduction in the walls of the channel. 
As mentioned earlier, our attention in this investigation is 
centered on the thermally fully developed transport under 
steady but unequal heat flux boundary conditions. Consider-
ing this aspect, we can compose the dimensionless tempera-
ture in the accompanying forms [59]:

It is important to mention here that G in Eq. (28) signifies the 
axial temperature gradient and considered to remain constant 
in this analysis. Now, solving the energy transport Eq. (23) 
using the temperature profile given in Eq. (28), we get the 
temperature distribution in the flow field. Below we write 
the dimensionless temperature distribution in the flow field 
as:

where C1 and C2 are the constants yet to be determined. 
The mathematical expressions for the coefficients g4 − g8 
appearing in Eq.  (29) are written below for the sake of 
completeness.

g7 =
[(

PeGg3

/
2
)
+
(
BrX1

/
4
)
−
(
J̄
/
2
)]

;

(27)

�
d𝛩s1∕dȳ

����ȳ=−(1+δ1) = Bi1
�
𝛩s1 − 𝛩a

�
�
d𝛩s2∕dȳ

����ȳ=+(1+δ2) = Bi2
�
𝛩s2 − 𝛩a

�
⎫
⎪⎬⎪⎭

(28)𝛩 = Gx̄ + 𝜃(ȳ)

(29)
𝜃 = g

4
cosh (𝜅̄ȳ) − g

5
cosh (2𝜅̄ȳ) + g

6
ȳ
4 + g

7
ȳ
2

− g
8
ȳ sinh (𝜅̄ȳ) + C

1
ȳ + C

2

g4 =
[(

PeGg1

/
𝜅̄2
)
+
(
2BrX3

/
𝜅̄3
)]

g5 =
(
BrX1

/
8𝜅̄2

)

g6 =
[(

PeGg2

/
12
)
−
(
BrX2

/
12
)]

g8 =
(
BrX3

/
𝜅̄2
)

X1 =
(
g1𝜅̄

)2

X2 =
(
2g2

)2

X3 =
(
4g1g2𝜅̄

)
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Now, solving Eq. (24), for the wall temperatures, we get

where C3 − C6 are the constants. Using the boundary condi-
tions mentioned in Eqs. (26)–(28), we evaluate the constants 
C1 − C6 appearing in Eqs. (29), (30) as follows:

where

The aforementioned constants are used to obtain the tem-
perature distribution for this conjugate heat transfer problem.

The entropy generation rate of the system

Entropy generation of a system is calculated by measuring 
its thermodynamic irreversibilities. Note that the thermal 
systems/devices encounter thermodynamic irreversibility 
largely stemming from the momentum and energy exchange 
phenomena involved with the underlying thermo-fluidic 
transport. For any thermodynamic framework, the minimi-
zation of the entropy generation is essential for obtaining the 
best exergetic efficiency. To mention, for the problem under 
the present consideration, the irreversible losses emerge 
from the following three sources, to be specific, heat transfer 
because of the finite temperature difference, inevitable Joule 
heating effect due to electroosmotic effect and the viscous 
dissipation [20]. The general articulation for the volumetric 

(30)
𝛩s1 = C3ȳ + C4

𝛩s2 = C5ȳ + C6

}

C1 =
X4

[
�2Bi2

(
1 + �1Bi1

)
− �1Bi1

(
1 + �2Bi2

)]
(
4�1�2Bi1Bi2

)
+ 2�2Bi2

(
1 + �1Bi1

)
+ 2�1Bi1

(
1 + �2Bi2

)
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(
−X4Bi1

)(
1 + �2Bi2 + �2Bi2

)
(
2�1�2Bi1Bi2

)
+ �2Bi2

(
1 + �1Bi1

)
+ �1Bi1

(
1 + �2Bi2

)
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−X4

(
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)(
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)
(
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)
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(
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)
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(
1 + �1Bi1

) + �a

C5 =
X4Bi2

(
1 + �1Bi1 + �1Bi1

)
(
2�1�2Bi1Bi2

)
+ �1Bi1

(
1 + �2Bi2

)
+ �2Bi2

(
1 + �1Bi1

)

C6 =
−X4

(
1 + �1Bi1 + �1Bi1

)(
1 + Bi2 + �2Bi2

)
(
2�1�2Bi1Bi2

)
+ �1Bi1

(
1 + �2Bi2

)
+ �2Bi2

(
1 + �1Bi1

) + �a

C2 = C1 − C3 + C4 + X5

(31)X4 = 2𝜅̄g4 sinh (𝜅̄) − 4𝜅̄g5 sinh (2𝜅̄) + 8g6 + 4g7 − 2g9[𝜅̄ cosh (𝜅̄) + sinh (𝜅̄)]

X5 = g4 cosh (𝜅̄) − g5 cosh (2𝜅̄) + g6 + g7 − g8 sinh (𝜅̄)

}

entropy generation rate [19] in the dimensional structure can 
be composed as [18, 40, 49, 60–64]:

In this expression, it can be seen that four different factors 
are responsible for entropy generation in the present prob-
lem. The first-term in the above equation brings up the tem-
perature gradient in the nanofluid. In contrast, the second 
and third terms are also showing the effect of temperature 
gradient but in the lower and upper walls of the microchan-
nel, respectively. The fourth term in Eq. (32) represents the 
volumetric viscous dissipation in the microchannel, while 
the final term takes care of the irreversibility associated with 
the Joule heating effect. Below we write the dimensionless 
form of Eq. (32) that reads as:

here Ṡ = SgH
2
/
keff is the non-dimensional volumetric 

entropy generation rate. For the evaluation of the optimum 
value of system parameters, which is the prime objective 
of this study, the overall entropy generation rate in the sys-

tem is required. Accordingly, we have made an effort in this 
analysis to achieve the overall entropy generation rate per 
unit length in the axial direction, i.e. 

⟨
Ṡ
⟩
 . In doing so, we 

perform numerical integration of the expression, delineated 
in Eq. (33), within the system volume.

Model Validation

In this section, we make an effort to validate our theoreti-
cal model by comparing the results with the experimental 
results of electroosmotic transport in a microfluidic chan-
nel. In doing so, we show in Fig. 2, the velocity distribu-
tion in the transverse direction of the channel. Note that the 
results obtained from our theoretical analysis (shown by a 
solid line) are compared with the reported experimental 
results (indicated by ‘o’ marker) of Hsieh and Yang [65]. 
Having a closer look at Fig. 2, it can be inferred that our 
analytical results match well with the experimental results 

(32)

Sg =
keff

T2

[(
�T

�x

)2

+

(
�T

�y

)2
]
+

ks1

T2
s1

(
�Ts1

�y

)2

+
ks2

T2
s2

(
�Ts2

�y

)2

+
�eff

T

(
du

dy

)2

+
�E2

x

T

(33)
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reported by Hsieh and Yang [65]. This supports the efficacy 
of our theoretical model uses in this analysis. Note that the 
other parameters considered for plotting Fig. 2 confirm to 
those as reported in Ref. [65]. Also, we show in Fig. 2b, 
the variation of flow velocity for four different values of 
𝜅̄(= 15, 20, 25 and 35) . As seen in Fig. 2b, the flow veloc-
ity as well as its gradient increases inside the EDL with an 
increasing value of 𝜅̄ . With increasing 𝜅̄ , the EDL becomes 
thinner, and this layer squeezes more number of counter ions 
(ionic density in the EDL becomes higher). Upon interact-
ing with the external electric field, these ions experience 
relatively stronger electroosmotic body force. Thus, the elec-
troosmotic body force, which is acting on the fluid mass in 
the EDL, becomes higher for a higher value of 𝜅̄ , leading 
to an enhancement in flow velocity, as seen from Fig. 2b.

Results and discussion

Selection of parameters

In this section, we analyze the consequences of conjugate 
transport of heat, Joule heating effect, and viscous dissipa-
tion on the entropy generation rate associated with the field-
driven transport of nanofluid in a microfluidic channel. As 
such, to get insights about the entropy generation rate in the 
system considered in the present analysis, we depict some 
parametric variations which include the thermophysical 

as well as geometrical parameters such as Peclet number 
( Pe ), lower wall thermal conductivity ratio ( �1 ), lower wall 
thickness ratio ( �1 ), and lower wall Biot number ( Bi1 ). In 
this analysis, since the interfacial electro-chemistry enacts 
a crucial role in the underlying transport, we aspire for the 
variation for different values of Debye–Hückel parameter 
( ̄𝜅 ), the volume fraction of nanoparticle ( � ), and Joule heat-
ing parameter ( J ), respectively. Complying with the prime 
focus of this analysis, we look at the optimum value of the 
aforementioned parameters (both geometrical and thermo-
physical) to ensure a minimum entropy generation rate in the 
system. Also, unless specified otherwise, we have considered 
the following set of parameters in this analysis as follows: 
�a = 5 (dimensionless ambient temperature), �1 = �2 = 0.1 , 
px = 1 , Br = 0.1 , J = 1 , Bi1 = 1 , Bi2 = 5 , Pe = 0.1 , �1 = 1 , 
�2 = 1 , and G = 1 (axial temperature gradient). Note that 
the considered value of the aforementioned parameters is 
typical to microscale transport and has been reported in the 
literature [65].

Entropy generation

Effect of lower wall thickness ratio (ı
1
) on the system 

irreversibility

In Fig. 3a, b, we depict the variation of normalized global 
entropy generation 

⟨
Ṡ
⟩/⟨

Ṡ
⟩|||δ1=0 against lower wall thick-
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Fig. 2   a Validation: plot showing the variation of axial velocity in 
the transverse direction of the channel. The plot shown by the solid 
line is obtained from the present theoretical analysis, while the vari-
ation indicated by marker ‘o’ indicates the results reported by Hsieh 
and Yang [65]. The other parameters considered for this plotting 
are: E
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Pa s , and H = 100 �m ; b plot of velocity distri-

bution in the channel, obtained for four different values of 𝜅̄ . The 
other parameters considered for this plotting are: � = 1% , 𝜇̄ = 1.025 , 
p
x
= 0 . With the increasing value of 𝜅̄ , both the flow velocity and its 

gradient becomes higher in the EDL
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ness ratio (�1) , obtained for two different parameters, viz. the 
Debye–Hückel parameter (𝜅̄) and volume fraction of nano-
fluid (�) , respectively. For the variation depicted in Fig. 3a, 
we have considered three different values of 𝜅̄ keeping nano-
particle volume fraction (�) constant, while for Fig. 3b nano-
particle volume fraction is varied for a given 𝜅̄ . The other 
parameters have been mentioned in the caption.

Figure 3a depicts the effect of 𝜅̄ on the entropy genera-
tion rate of the system. Before going to discuss the varia-
tion at hand, we would like to mention here that with an 
increase in 𝜅̄ the EDL becomes thinner. Thinner the EDL, 
higher will be the electroosmotic body force being applied 
on the fluid mass in EDL. Now, experiencing a relatively 
higher magnitude of electroosmotic body force for higher 
𝜅̄ , the flow velocity will increase in the region close to the 
walls (which is EDL) as confirmed in Fig. 2b. To mention, 
this phenomenon will lead to an increase in both the mag-
nitude of velocity as well as its gradient inside the EDL 
(see Fig. 2b). As a result, the viscous dissipation, which is 
directly proportional to the velocity gradient, will increase 
near the wall. Notably, this higher dissipation will lead to 
an increment in the temperature of the system through vis-
cous heating. However, the increment in temperature of 
the system lowers the irreversibility associated with vis-
cous dissipation effects due to its inverse relationship with 
the fluid temperature (see Eq. 33). Having a closer look 
at Fig. 3a, b, one can find that entropy generation behav-
iour follows a trend as discussed next. Entropy generation 
rate shows an initial decreasing trend with wall thickness 
and leaving a minimum value; it increases further as wall 
thickness increases further. Initial decrement of the global 

entropy generation rate with increasing 𝛿1
(
0 < 𝛿1 ≤ 𝛿1,opt

)
 

can be explained as follows: with increasing �1 in the range 
of 0 < 𝛿1 ≤ 𝛿1,opt , the conductive transport of heat from the 
lower plate decreases and results in a simultaneous rise in 
fluid temperature and drop in entropy generation rate. How-
ever, with a further increasing �1 in the range of 𝛿1 > 𝛿1,opt , a 
rise in temperature aggravates the transport of heat through 
the upper wall and stimulates the system entropy genera-
tion rate as can be seen from Fig. 3a. This typical variation 
leads to an optimum wall thickness for which system entropy 
generation becomes minimum. From the previous discus-
sion, it can be inferred that the effect of heat conduction 
through lower wall together with the other auxiliary effects 
like viscous dissipation and Joule heating take a dominat-
ing role for the system entropy generation for �1 ≤ �1,opt . 
On the other hand, cumulative effects to upper wall heat 
conduction and convection of heat from therein become the 
dominating factor in dictating the system entropy genera-
tion rate as the Joule heating and viscous dissipation effects 
are remaining almost unaffected. The definitive outcome of 
this effect eventually diminishes the net entropy generation 
rate of the system for higher values of 𝜅̄ . A critical look 
at Fig. 3a further restores that with an increase in 𝜅̄ , the 
global entropy generation decreases and the value of �1,opt 
also gets increased. As mentioned, higher 𝜅̄ indicates thinner 
EDL, and consequently for this higher value of 𝜅̄ , the veloc-
ity gradient will increase in the EDL. The higher velocity 
gradient stimulates the dissipative heat, which in turn, will 
lower the fluid viscosity. For the relatively higher value of 
𝜅̄ , thermodynamic irreversibility associated with the viscous 
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dissipation of the present system becomes important as real-
ized by a decrement in global entropy generation in Fig. 4. 
We attribute this decrement to a drop in fluid viscosity. A 
little increment in �1,opt with the increasing value of 𝜅̄ as seen 
from Fig. 3a as well as to offset the enormous decline in 
entropy generation associated with viscous dissipation (with 
increasing 𝜅̄ , drop in fluid temperature results in a decrease 
in dissipation effect appreciably) with increase in the same 
in the present scenario.

Figure 3b describes the effect of nanoparticle volume 
fraction (�) on the entropy generation rate of the system. It 
can be noted that with increasing � , albeit convective trans-
port of heat increases, the entropy generation of the system 
increases for every value of �1 . Note that with an increasing 
value of the nanoparticle volume fraction, the effective value 
of keff and �eff increases. This increment in effective thermo-
physical properties leads to an enhancement in the entropy 
generation rate of the system following augmented convec-
tive heat transport and the viscous dissipation effect. In 
Fig. 3b, it has been noted that 

⟨
Ṡ
⟩/⟨

Ṡ
⟩|||δ1=0 first decreases 

up to �1,opt , attain the lowest value and then increases further 
as �1 increases beyond �1,opt . This observation holds good for 
all the values of � under consideration. We here make an 
effort to figure out the physical reasoning behind this obser-
vation as follows: with the increasing magnitude of �1 , the 
temperature of the fluid and its gradient gets redesigned due 
to the increased resistance to the conductive transport of heat 
through the lower wall. In particular, this effect leads to a 
decrease in the entropy generation rate related to heat 

transfer through the lower wall. Regardless, an increase in 
temperature of the liquid and its gradient builds the heat 
transfer rate between the liquid and upper wall hence 
increasing 

⟨
Ṡ
⟩
 is the consequential effect, as seen from 

Fig. 3b. Up to a specific value of �1
(
∼ �1,opt

)
 , the decreasing 

rate of entropy generation dominates over the expansion of ⟨
Ṡ
⟩
 due to the augmented transport of heat in the fluid and 

upper wall. This results in a net decrease in entropy genera-
tion of the structure up to a point �1,opt , after which 

⟨
Ṡ
⟩
 

increases on account of the increase in the irreversibility 
related to the heat transfer through the liquid and upper wall.

From Eq. (33), it is seen that the global entropy genera-
tion of the present system depends upon several factors, viz. 
convective heat transfer, conductive transport through walls, 
viscous dissipation, and the Joule heating effects. Now to 
establish their effects through a quantitative manner, we 
depict Fig. 4, which shows the contribution of individual 
effect on the global entropy generation rate. Figure 4 shows 
that with the increasing value of �1 , the entropy generation 
of the system related to the convective heat transfer through 
the liquid 

(⟨
Ṡ
⟩
Convec.

)
 and conductive heat transfer through 

the upper wall 
(
< Ṡ >w2

)
 increases, while entropy genera-

tion related to the conductive heat transfer through the lower 
wall 

(⟨
Ṡ
⟩
w1

)
 decreases. With the increasing value of �1 , the 

temperature of the fluid and its gradient becomes higher due 
to the reduction in the entropy generation related to the heat 
transfer through the lower wall. In any case, an increase in 
temperature of the fluid and its gradient builds the convec-
tive heat transfer rate through the fluid and upper wall, as 
confirmed in Fig. 4. Also, a reduction in heat conduction 
through the lower wall promotes the conductive transport of 
heat through the upper wall, as witnessed in Fig. 4. Hence-
forth, we can presume that in the range 0 < 𝛿1 < 𝛿1,opt , the 
fluid temperature controls the entropy generation rate of 
the system, while for the range 𝛿1 > 𝛿1,opt , the temperature 
gradient plays a significant role in deciding the net entropy 
generation of the present system.

Effect of thermal conductivity ratio 
(


1

)
 on the system 

irreversibility

In Fig. 5a, b, we illustrate the variation of normalized global 
entropy generation 

⟨
Ṡ
⟩/⟨

Ṡ
⟩|||γ1=0 versus the lower wall to 

nanofluid thermal conductivity ratio (�1) for three distinct 
parameters, viz. the Debye–Hückel parameter (𝜅̄) and vol-
ume fraction of nanofluid (�) . Figure 6 portrays the contri-
bution of different terms on the global entropy generation 
with increasing value of �1 . The other parameters considered 
for plotting the figures have been mentioned in the caption. 
Next, we discuss the underlying physical reasoning behind 
the variations as observed from Fig. 5a. Also, to support our 
argument in explaining the trend, as seen in Fig.  5a, b 
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through quantitative assessment, we appeal to the variation 
delineated in Fig. 6.

Figure 5a demonstrates the effect of 𝜅̄ on the global 
entropy generation rate of the present system. Here, also, the 
variation of net entropy generation shows a decreasing-
increasing pattern with �1 . With an increase in �1 , the entropy 
generation due to heat conduction through lower wall 
increases as confirmed by the increase in irreversibility 

⟨
Ṡ
⟩
w1

 with �1 in Fig. 6. An increase in conductive transport 
of heat with increasing �1 results in a reduction in heat trans-
fer associated with the fluid (convective transport) and the 
upper wall (conductive transport) as witnessed by the 
decreasing trend of 

⟨
Ṡ
⟩
convec.

and
⟨
Ṡ
⟩
w2

 in Fig. 6. Important 
to mention, in the regime of 0 < 𝛾1 ≤ 𝛾1,opt , the combined 
influences of convective heat transport through fluid and 
conductive transport through the upper wall take a lead role 
in dictating the global entropy generation in the system as 

witnessed by the decreasing trend of 
⟨
Ṡ
⟩/ ⟨

Ṡ
⟩|||γ1=0 in 

Fig. 5a, b. However, in the range of 𝛾1 > 𝛾1,opt , a significant 
increment in conductive transport of heat through lower wall (⟨
Ṡ
⟩
w1

)
 together with the favourable effects of nanoparticle 

driven alteration in viscous dissipation effect and Joule heat-
ing (increasing trend of 

⟨
Ṡ
⟩
v.d.

 and 
⟨
Ṡ
⟩
J
 in Fig. 6) leads to a 

rise in the system entropy generation rate. This observation 

is realized by an increasing trend of 
⟨
Ṡ
⟩/ ⟨

Ṡ
⟩|||γ1=0 in 

Fig. 5a, b). Thus, we can conclude that in this regime of 
𝛾1 > 𝛾1,opt , conductive transport of heat becomes crucial in 
dictating the system entropy generation rate. Because of this 
typical phenomenon of system entropy generation as gov-
erned by several influencing factors in different regimes of 
�1 , we observe a decreasing-increasing trend of global 
entropy generation rate in Fig. 5a, b. It is worth adding here 
that this decreasing-increasing trend yields an optimum 
value of �1

(
�1,opt

)
 as seen from Fig. 5a, b.

From Fig.  5a, it can be noticed that with increasing 
𝜅̄ , the global entropy generation of the system becomes 
lesser for all values of �1 . Note that with increasing 𝜅̄ , the 
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electroosmotic body force acting on the fluid mass increases, 
leading to a rise in velocity gradient in the flow field. This 
higher velocity gradient increases the dissipative heating and 
results in a reduction in the temperature gradient between 
the fluid and walls of the microchannel. The overall phe-
nomenon leads to a reduction in conductive transport of 
heat, and consequently, the system irreversibility reduces. 
As discussed before, an increase in � is responsible for an 
increase in both effective thermal conductivity and effective 
viscosity of nanofluid. Thus, for a higher volume fraction of 
nanoparticle (�) , the dissipative heat, as well as Joule heat-
ing produced becomes higher and results in an increment 
in fluid temperature. Note that this higher fluid temperature 
weakens the temperature gradient between the fluid and the 
walls of the channel. Precisely, a decrease in temperature 
gradient reduces the heat transfer through the walls and cul-
minating in a reduction in system entropy generation rate, as 
seen in Fig. 5b. A closer look at Fig. 5b further reveals that 
with increasing the magnitude of � , the optimum value of 
�1
(
�1,opt

)
 increases. This is because of the fact that for higher 

values of � , the enhancement in viscous dissipation and heat 
transfer irreversibility at the lower wall counterbalances the 
reduction in < Ṡ > associated with heat transfer associated 
irreversibility through the fluid (convective transport) and 
the upper wall (conductive transport) for a relatively lower 
value of �1.

Effect of modified Peclet number 
(
Pe

)
 on the system 

irreversibility

We show in Fig. 7a, b, the variation of normalized global 
entropy generation 

(⟨
Ṡ
⟩/⟨

Ṡ
⟩|||Pe=0

)
(normalized with its 

value when Pe = 0) rate versus modified Peclet number 
(
Pe
)
 

for two distinct parameters, viz. the Debye–Hückel param-
eter (𝜅̄) and volume fraction of nanoparticle (�) . Note that 
to obtain the plots depicted in Fig. 7a, we have considered 
three different 𝜅̄(= 15, 25 and 35) . From the Fig. 7a, b, we 
observe that with an increase in Pe from 0 to 1.5, the varia-
tion of entropy generation shows a decreasing-increasing 
trend irrespective of the value of 𝜅̄ and � considered. As 
such, this typical variation indicates the existence of opti-
mum Pe for all the cases at which the system entropy genera-
tion reaches a minimum value.

Also, to figure out the contribution of each term in 
Eq. (33) on the net entropy generation rate of the system as 
obtained with a change in Pe , is depicted in Fig. 8.

Before we started discussing the variation of global 
entropy generation in the system as seen in Fig. 7a, b, we 
would like to recall the physical significance of the Peclet 
numbers defined in this analysis. Note that the Peclet number 
signifies the proportion between the convective heat transfer 
and diffusive heat transfer rates. Accordingly, an increase in 
the magnitude of Pe signifies either an increment in the con-
vective transport of heat or decrement in the conductive heat 
transfer through the fluid. With an increasing value of the Pe 
in the range 0 < Pe < Peopt , the convective heat transport 
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Fig. 7   Disparity of the normalized global entropy generation rate as a 
function of dimensionless Peclet number of nanofluid 
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through the fluid will increase, and fluid temperature will 
decrease. Because of this decrease in the fluid temperature, 
heat conduction through the walls of the channel will 
decrease, and the overall effect will results in a reduction in 
system entropy generation as confirmed by the decreasing 
trend of 

(⟨
Ṡ
⟩/⟨

Ṡ
⟩|||Pe=0

)
 in Fig. 7a, b for 0 < Pe < Peopt . 

Also, a reduction in 
⟨
Ṡ
⟩
w1

 and 
⟨
Ṡ
⟩
w2

 in this regime of 
0 < Pe < Peopt is confirmed in Fig. 8. However, as the Peclet 
number increases beyond its optimum value 

(
Pe > Peopt

)
 , a 

significant enhancement in convective transport of heat 
through the fluid governs the system entropy generation as 
realized by a further increasing trend in this regime of Pe (
Pe > Peopt

)
 . From the above discussion, it can be conjec-

tured that the conduction through the walls takes a dominat-
ing role in dictating the system entropy generation for 
0 < Pe < Peopt , while nanoparticle driven enhancement in 
convective transport of heat as supported by the viscous dis-
sipation and Joule heating effects becomes the leading char-
acter in dictating the system entropy generation for 
Pe > Peopt . As such, our argument is confirmed by the con-
tribution of each term on the net entropy generation in the 
system as portrayed in Fig. 8 with increasing Pe.

Figure 7b describes the effect of nanoparticle volume 
fraction (�) on the entropy generation rate of the system. It 
can be observed from Fig. 7b that with increasing � , entropy 
generation in the system increases for all the value of Pe . As 
mentioned, with an increase in � , both the effective thermal 
conductivity and effective viscosity of nanofluid increases. 
Enhancement of convective heat transfer with increasing 
effective thermal conductivity of the nanofluid strongly 

affects the total irreversibility of the system. As a conse-
quence, with increasing � the global entropy generation rate 
increases, as seen in Fig. 7b. Also, with increasing � , the 
optimum Pe

(
Peopt

)
 for which system entropy generation 

becomes the minimum becomes slightly higher.

Effect of Biot number (lower wall) on the system 
irreversibility

In Fig. 9a, b, we show the variation of normalized global 
entropy generation 

⟨
Ṡ
⟩/⟨

Ṡ
⟩|||Bi1=0(normalized with its value 

when Bi1 = 0) versus lower wall Biot number 
(
Bi1

)
 . The 

other parameters used in plotting the figures have been men-
tioned in the caption. While Fig. 9a shows the variation for 
different values of the Debye–Hückel parameter (𝜅̄) , the 
effect of nanoparticle volume fraction (�) on the entropy 
generation rate is demonstrated in Fig. 9b. It may be men-
tioned here that to explain the variation depicted in Fig. 9a, 
b, we have depicted the contribution of each term on the 
system entropy generation rate in Fig. 10. Note that the Biot 
number is defined as the ratio of the convective heat transfer 
to the conductive heat transfer in a body. An increase in the 
magnitude of the Biot number indicates a reduction in the 
resistance to the surface heat transfer as the properties of the 
channel wall is remaining fixed. Along these lines, it may be 
mentioned here that increasing Bi1 in the range Bi1 > Bi1,opt 
stimulates the heat transfer enhancement through the lower 
wall, leading to an enhancement in system entropy genera-
tion rate as seen in Fig. 9a, b. Notably, this phenomenon in 
the process reduces the fluid temperature and its gradient 
inside the system. Thus, with the increase in Bi1 , the entropy 
generation rate related with the heat transfer through the 
lower wall ( 

⟨
Ṡ
⟩
w1

 ) increases, while entropy generation 
because of the convective heat transfer ( 

⟨
Ṡ
⟩
convec.

 ) through 
the fluid gets reduced. These two observations are clearly 
reflected in Fig. 10, where it is seen that with increasing Bi1 , ⟨
Ṡ
⟩
convec.

 decreases continuously and 
⟨
Ṡ
⟩
w1

 shows an 
increasing trend. Also, with a change in Bi1 in the range 
0 < Bi1 ≤ Bi1,opt , a reduction in fluid temperature and its 
gradient leads to a decrement in heat transfer between the 
fluid and upper wall, and overall effect results in a slight 
reduction in the system entropy generation rate. This com-
plex change of system irreversibility modulated by several 
factors, as mentioned in Eq. (33) brings about a decreasing-
increasing trend of the system entropy generation with a 
change in Bi1 as seen in Fig. 9a, b. From the above discus-
sion, it can be concluded that for 0 < Bi1 ≤ Bi1,opt , heat 
transfer through the fluid and upper wall takes a lead role in 
predicting the system entropy generation rate, while for 
Bi1 > Bi1,opt conductive heat transfer through lower wall 
becomes the indicative character for the net thermodynamic 
irreversibility of the system.
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A relative increment in system entropy generation with 
increasing value of 𝜅̄ as seen in Fig. 9a is attributed effect 
of viscous dissipation dominated irreversibility of system, 
largely stemming from electrical force modulated enhance-
ment in the flow velocity and its gradient inside the EDL 
(see Fig. 2b for flow velocity with 𝜅̄ ). Figure 9b shows the 
impact of the volume fraction of nanoparticle in carrier 
fluid (�) on the entropy generation rate. The volume frac-
tion of nanoparticle affects the convective heat transfer by 

modulating the thermal conductivity. Also, an increment 
in � will stimulate the viscous dissipation effect following 
the enhancement in the effective viscosity of the fluid. For 
this case, as clearly seen from Fig. 10, irreversibility due 
to viscous heating that too becomes severe with increas-
ing � surpasses the irreversibility that is stemming from the 
convective transport of heat (which becomes stronger with 
increasing � as well). Thus, a rise in fluid temperature with 
increasing � (due to higher viscous dissipation) will lead 
to a reduction in the conductive transport of heat through 
the lower wall, which is the influencing factor in dictating 
the system irreversibility. Because of this phenomenon, with 
the increasing � , the entropy generation rate in the system 
reduces (relatively), as seen in Fig. 9b with a slight shift in 
Bi1,opt towards its higher value.

Conclusions

We have investigated the entropy generation characteris-
tics for a conjugate heat transfer problem, wherein, a nano-
fluid, driven under the combined influence of an externally 
imposed pressure gradient and electroosmosis, is subjected 
to an asymmetric cooling at the channel walls. For this 
thermo-fluidic transport process, taking accounts of the 
viscous dissipation and Joule heating effects, we have estab-
lished that the net entropy generation rate of the system is 
an outcome of the intricate interplay between the irrevers-
ibilities associated with heat transfer, viscous dissipation, 
and Joule heating. It is found that such an interplay among 
these irreversibilities gives rise to an optimum value of the 
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geometrical parameter, viz. the channel wall thickness ( � ), 
and the thermophysical parameters viz., the thermal con-
ductivity of the wall (�) , Biot number (Bi) , and the modi-
fied Peclet number ( Pe ), leading to the minimum entropy 
generation rate of the system. This study further reveals that 
changes in the electroosmotic parameter 𝜅̄ (representative 
of the EDL thickness) or the composition of the fluid ( � , 
the volume fraction of nanoparticles agglomerates) can non 
trivially alter the optimum values of these parameters. We 
believe such an analysis will be helpful in optimum design 
of the thermal systems/devices typically used in microscale 
thermal management such as micro-heat exchangers, micro-
reactors, and micro heat pipes.
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