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Abstract
Lithium silicates are ceramic materials known for its high CO2 adsorption capacity and excellent cyclic stability at high 
temperatures. In the present work, an attempt has been made to use different types of organosilicone precursors viz., methyl-
trimethoxysilane, triethoxyphenylsilane, polyoligomericsilsesquioxane and polydimethylsiloxane as the silica precursor for 
the synthesis of lithium silicates for CO2 adsorption. Thermogravimetry and differential scanning calorimetry were used to 
optimize the thermal decomposition of precursor to lithium silicate. Polydimethylsiloxane could not produce lithium silicate, 
as it decomposed to form volatile cyclic silicon oligomers at high temperatures. Lithium silicates were obtained from the 
other three precursors and were characterized for its structure and morphological features using X-ray diffraction, Fourier 
transform infrared spectroscopy, scanning electron micrography, energy-dispersive X-ray spectrometry, particle size and 
surface area analysers. The CO2 adsorption/desorption studies using thermogravimetry showed that lithium silicates syn-
thesized from the silica precursor, methyltrimethoxysilane, retained a cyclic adsorption capacity of 31% for 10 cycles. The 
study reveals that hydrolysable aliphatic organosilicone compounds are better silica precursors for the synthesis of lithium 
silicates for regenerable CO2 sorption.
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Introduction

Considering the anomalous increase in the atmospheric con-
centration of carbon dioxide (CO2), techniques for its indus-
trial and economical capture are in high demand. Burning of 
fossil fuels has resulted in the drastic increase in the average 
CO2 concentration to around 414.7 ppm as on Dec 2019 
[1–3]. Flue gas from coal burning power plants constitutes 
about 10–15% of the CO2. Being the main source of CO2 
exit to atmosphere, methods for direct CO2 capture from 
flue gases at high temperatures are preferred considering the 
high energy penalty and cost in cooling the flue gas [4–6]. 
Among the various separation technologies like absorption, 
adsorption, cryogenic separation, membrane separation 
and micro-algal bio-fixation adopted for carbon capture and 

storage, adsorption technique is considered as a competitive 
solution, considering its ease of regeneration by thermal or 
pressure modulation [7–9]. The adsorbents available for CO2 
separation are alkaline ceramics, zeolites, activated carbons, 
porous carbon, hydrotalcites, porous silicates, metal oxides, 
amine functionalized solid sorbents, metal–organic frame-
works and metal-based oxides [10–15].

For the separation of CO2 from flue gas at temperatures 
around 400–800 °C, materials with high thermal stability, 
high CO2 capture capacity, high CO2 selectivity, excel-
lent regeneration property, stable sorption capacity during 
cycles and improved kinetic properties are required. Recent 
researches in this field have shown much attention in using 
dry solid sorbents for CO2 capture. Lithium ceramics are 
excellent class of materials for CO2 capture at high tem-
peratures. Among these ceramics, lithium orthosilicates 
(Li4SiO4) have received worldwide attention because of 
their high theoretical CO2 sorption capacity (0.367 g CO2/g 
sorbent) and excellent cyclic stability. They also possess the 
advantage of using cheaper and widely available raw mate-
rial (SiO2) [16–23]. The reversible chemisorption of lithium 
orthosilicates is shown as
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Different methods like solid-state reaction method, sol–gel 
method, precipitation method, combustion method, etc. 
were developed for the synthesis of Li4SiO4 sorbents. In 
solid-state reaction method, Li2CO3 and SiO2 are mixed 
together and calcined at high temperatures to form Li4SiO4 
sorbent. The solid-state reaction method is a facile and the 
most commonly used technique to synthesize Li4SiO4 sor-
bents [24–26]. Sol–gel method includes different steps for 
the synthesis like uniform mixing of the lithium and sili-
con precursors in a liquid phase, formation of a gel of a 
three-dimensional network by the gelatinized particles and 
finally the drying and calcination of the gel to obtain the 
Li4SiO4 sorbent. Sol–gel method facilitates the formation 
of relatively homogeneous material at lower temperatures 
[27–29]. In precipitation method, the silicon source is mixed 
with solution of lithium source and the mixture suspension 
is stirred, dried and calcined at high temperatures to pro-
duce Li4SiO4 sorbent [25, 29–31]. In combustion method, 
the silicon source is mixed with the lithium solution and the 
fuel (i.e., citric acid, urea, glycine) followed by vaporization 
during which it begins to foam and swell and finally burns 
itself (autoignition) due to strong exothermic reaction. The 
charred ash is grinded and calcined at high temperatures to 
produce Li4SiO4 sorbents [32, 33]. Other techniques like 
solvo-plasma synthesis and spray-drying methods are also 
applied for the synthesis of Li4SiO4 sorbents [34, 35]. Meth-
ods like microstructural modification, utilization of efficient 
lithium and silicon sources or by doping with transition/
alkali metals are also attempted to enhance their sorption 
capacity [36, 37].

The structure and properties of the synthesized lithium 
silicates (LS) are wholly dependent on many factors like 
synthesis method adopted, type of raw material used and the 
synthesis temperature [25–28]. The lithium sources typically 
employed are limited to lithium nitrate, lithium carbonate, 
lithium acetate and lithium hydroxide. In the case of sili-
con sources, substantial researches have been carried out by 
using raw materials like natural silicon containing minerals, 
biomass ashes, fly ashes, zeolite-based materials, organosili-
cone compounds, silica powder and its different forms like 
fumed silica, amorphous silica gel, colloidal silica, aero-
sol silica, silica sol and quartz powder [21, 38–43]. Silica 
obtained from most of the inorganic routes are contaminated 
with various impurities which are very difficult to remove 
and will adversely affect the properties of the final product. 
Silica produced by the hydrolysis/oxidative decomposition 
of organosilicone compounds will be of high purity. In addi-
tion to that in solid-state synthesis, homogenous mixing of 
reactants is essential which is not possible in the case of 
aged silica which is a polymerized form of silica molecules. 
However, insitu generation of silica and mixing with LiOH 
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before polymerization of silica will produce a homogeneous 
mixture of reactants at molecular level, which is ideal for the 
synthesis of Li4SiO4.

Organosilicone compounds on heating in air decom-
pose and oxidize with the release of gaseous products and 
ultrafine silica. The fine silica formed then reacts with the 
lithium precursor at high temperature aiding in the formation 
of porous LS as compared to other silicon precursors [44, 
45]. The controlled thermal decomposition of the organo-
silicones also helps in the synthesis of silicates at relatively 
lower temperatures when compared to solid-state methods. 
The porous LS thus synthesized is expected to have high 
CO2 adsorption capacity and cyclic stability. The formation 
of silica from different organosilicone compound depends 
on its structure, chemical and thermal stability. Considering 
this, we attempted to synthesize highly active and efficient 
lithium orthosilicates from LiOH.H2O and different types of 
organosilicone precursors viz., an aliphatic SiO2 precursor—
methyltrimethoxysilane, an aromatic SiO2 precursor—trieth-
oxyphenylsilane, acyclic, aliphatic SiO2 precursor—polyoli-
gomericsilsesquioxane, and a long chained, high molecular 
weight SiO2 polymer—polydimethylsiloxane. For the first 
time, the effect of such types of SiO2 precursor on the struc-
ture and morphology of the synthesized lithium silicates is 
studied. Thermogravimetry is employed for comparing the 
CO2 adsorption capacities of the synthesized lithium ortho-
silicate sorbents and also for evaluating the cyclic adsorption 
capacity [46].

Experimental

Materials

Analytical grade lithium hydroxide monohydrate was pro-
cured from Supraveni chemical Pvt. Ltd., India and was used 
as the lithium source. The SiO2 precursors used for the study 
are Methyltrimethoxysilane (MTMS), Triethoxyphenylsilane 
(TEPS), Polyoligomericsilsesquioxane (POSS) and Polydi-
methylsiloxane (PDMS). All the chemicals were of purity 
> 98% and have been used as such for the study without 
further purification. The structure and source of the SiO2 
precursors used are given in Table 1.

Preparation of lithium silicate sorbents

Lithium silicate sorbents were prepared from stoichiometric 
volumes of LiOH.H2O and organosilicone precursors. The 
silicone precursor was dissolved in ethanol and was added to 
the aqueous solution of LiOH.H2O drop by drop with con-
stant stirring. The stirring was continued for 1 h, followed 
by ageing in room temperature for 24 h. After adjusting the 
pH of the solution to 8 using nitric acid, the solution was 
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carefully heated to a dry mass on a boiling water bath for 
10 h.

The dried powder was then heated in an alumina cruci-
ble using a muffle furnace from 30 to 700 °C at a heating 
rate of 3 °C min−1 and kept inside the furnace at 700 °C for 
3 h. Throughout the heating experiment, air at the rate of 
100 mL min−1 was passed through the furnace. The heated 
samples are referred as LS-MTMS, LS-TEPS, LS-POSS 
and LS-PDMS depending on the precursors used for its 
synthesis.

Thermal characterization of adsorbents

Thermal decomposition behaviour of the LS precursors and 
the CO2 adsorption capacity of the LS adsorbents were stud-
ied using TA Instruments Q 600 simultaneous TG-DSC. A 
sample mass of 5 ± 1 mg of precursor samples was taken 
in a platinum crucible and heated from 30 to 900 °C with a 
heating rate of 10 °C min−1. All analysis was carried out in 
air atmosphere purged at the rate of 100 mL min−1.

The CO2 adsorption capacities of the sorbents were stud-
ied using a dynamic TG analysis. About 5 mg of the sorbent 
was taken in a platinum crucible and was heated from 30 to 
900 °C at a heating rate of 20 °C min−1 in pure CO2 purged 
at the rate of 100 mL min−1.

The cyclic stability for CO2 adsorption/desorption capac-
ity was evaluated using the thermogravimetric analyser at 
700 °C for 10 cycles. For this, the sorbent was initially heated 
up to 700 °C in pure nitrogen atmosphere. After equilibrating 

at 700 °C, the purge gas was changed to pure CO2 and the 
sorption was performed for 30 min. For desorption studies, 
the purge gas was switched over to pure nitrogen, under the 
same temperature for 30 min. A flow rate of 100 mL min−1 
was used for nitrogen and CO2 in all experiments. The sorp-
tion capacity of the sorbent was calculated based on the initial 
sorbent weight.

Characterization of sorbents

FTIR analysis was carried out using Thermofisher Nicolet 
iS50 Fourier transform infrared spectrometer in the wave num-
ber range of 4000–400 cm−1, after pelletising the sample with 
KBr powder. The XRD patterns of the samples were recorded 
using a Bruker D8 Discover diffractometer with Cu-Kα radia-
tion (λ = 1.5406 Å) at scanning rate of 5°/min from 10° to 
90°. Surface morphology of the samples was studied using 
a Carl Zeiss Gemini SEM 500 Field emission scanning elec-
tron microscope. The elemental identification was done using 
Bruker Quantax XFlash Energy Dispersive X-ray Spectrom-
eter. Brunauer–Emmett–Teller (BET) surface area was deter-
mined using Quantachrome NOVA 1200 e surface area ana-
lyser. Particle size was assessed using Malvern Mastersizer 
2000 particle size analyser.

Table 1   Structure and source 
of the SiO2 precursors used for 
the study
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Sl
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SiO2 precursor Structure Source 

1. Methyltrimethoxy 
silane  (MTMS) 
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Source: Sigma Aldrich 
Chemicals 

Molecular weight:136 g mol-1

2. Triethoxyphenylsilane  
(TEPS) 

  H5C2O Ph

Si

  H5C2O            OC 2H5

Source: Sigma Aldrich 
Chemicals 

Molecular weight:240  g mol-1

3. Polyoligomericsilsesq
uioxane (POSS) 

Source: Hybrid Plastics 

Molecular weight:1082  g mol-1

4. Polydimethylsiloxane 
(PDMS) 

Source: Sigma Aldrich 
Chemicals  

Molecular weight:18000  g mol-1
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Results and discussion

TG/DSC analysis of lithium silicate precursors

To determine the calcination temperature for the synthesis 
of the LS sorbents, TG and DSC analysis of the precursors 
were carried out in air up to 900 °C. The TG/DTG/DSC 
curves of the four LS precursors are given in Fig. 1.

From the TG-DTG-DSC curves, it is observed that the 
precursor to LS-MTMS (Fig. 1a), shows an endothermic 
mass loss of 15% below 100 °C corresponding to the loss 
of adsorbed water. This is followed by another mass loss 
in the temperature range of 400–600 °C corresponding to 
the multistage reactions involving melting and decomposi-
tion of LiOH, oxidation of organic moieties and the solid-
state reaction between silica and lithium oxide to form 

Li4SiO4. The overall reaction is indicated as exothermic 
by the DSC.

In the case of precursor to LS-TEPS, the TG-DTG-DSC 
curves show an initial endothermic mass loss of 10% corre-
sponding to the loss of adsorbed water, followed by another 
endothermic mass loss of 20% due to the hydrolysis of 
TEPS and the loss of volatile hydrolysis products. Similar 
to LS-MTMS, an exothermic mass loss stage is observed in 
the range of 400–600 °C corresponding to the oxidation of 
organic groups, melting and decomposition of LiOH, and 
conversion of silica to LS.

TG-DSC curves of precursor to LS-POSS show an ini-
tial mass loss in the temperature region of 300–450 °C cor-
responding to the decomposition and oxidation of POSS 
molecules with the formation of ultrafine silica particles. 
The second mass loss stage from 550 to 700 °C indicates 
the exothermic oxidation of remaining organic residue 
and the formation of LS. DSC analysis indicates that both 
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Fig. 1   TG/DTG/DSC curves of a LS-MTMS, b LS-TEPS c LS-POSS and d LS-PDMS
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the stages are exothermic in nature. In the case of precur-
sor to LS-PDMS, the TG-DSC curves show an exotherm 
(350–450 °C), indicating the partial oxidative decomposi-
tion of PDMS to its volatile oligomers and decomposition 
of LiOH [47, 48]. This stage accounts for 40% mass loss 
and is exothermic in nature. This stage is followed by an 
endothermic mass loss of 10% in the range of 680–780 °C 
indicating a partial loss of lithium oxide.

Based on the TG analysis, the temperature selected for 
calcination was fixed at 700 °C for all the four precursor 
samples.

FTIR analysis

The overlaid FTIR curves of LS sorbents are given in 
Fig. 2.

All the four FTIR spectra (Fig.  2) show peaks at 
1440 cm−1 and 860 cm−1 corresponding to CO3

2− ions 
indicating the formation of Li2CO3 in all the four com-
pounds [49]. Peaks at 500 cm−1 and 700–740 cm−1 may be 
attributed to O-Li–O structure in all the compounds. The 
IR absorption bands corresponding to [SiO4]2− tetrahe-
dral arrangements are found at 940–950 (v3), 820(v1), and 
520–524(v4) cm−1. The vibration bands at 980–1060 cm−1 
and 620  cm−1 are attributed to Si–O-Si and O-Si–O, 
respectively. Thus, the FTIR spectra confirms the presence 
of Li4SiO4 with some Li2CO3 in LS-MTMS, LS-TEPS and 
LS-POSS where as the absence of bands due [SiO4]2− ions 
in the FTIR spectrum of LS-PDMS indicate the non-for-
mation of Li4SiO4 in that compound. The FTIR spectrum 
of LS-PDMS confirms only the formation of hydrated 
lithium oxide along with some lithium carbonate.

XRD analysis

The XRD patterns of the samples are given in Fig. 3. From 
the XRD spectra, it is seen that all the samples were highly 
crystalline in nature. In the case of LS-MTMS, LS-TEPS 
and LS-POSS, other than the expected main phase of 
Li4SiO4, phases like Li2SiO3 and Li8SiO6 were also pre-
sent in minor quantities. Traces of LiAlSiO4 phase was 
also identified, which is expected to be formed by the reac-
tion of the alumina crucible with the raw materials at high 
temperatures.

Some Li2CO3 is also observed in all the samples, which 
is formed by the reaction between lithium compound and 
CO2 from the atmosphere as well as from the CO2 formed by 
the oxidation of carbonaceous residue in organic precursors. 
Since aluminium is reported as a promoter for the adsorp-
tion of CO2 by Li4SiO4 and Li2CO3 is one of the byproduct 
of CO2 adsorption, these compounds will not affect the CO2 
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adsorption/desorption capacity of the LS, especially in a 
cyclic adsorption/desorption process.

In the case of LS-PDMS, LS was not formed, as PDMS 
decomposed to form volatile cyclic silicon oligomers, 
thereby unable to provide silica to react with LiOH at higher 
temperatures. The XRD spectra showed the presence of 
Li2CO3 and traces of Li2O in the sample.

FESEM and EDS analysis

The morphology of the synthesised sorbents was studied 
using FESEM analyses. The SEM images of the sorbents 
are shown in Fig. 4.

Flake like morphology is observed for LS-MTMS, LS-
TEPS and LS-POSS samples indicating the homogenity in 
the surface composition of the samples. LS-PDMS sam-
ple has a dense sheet like structure of lithium carbonate as 
confirmed from the XRD spectra. The FESEM image also 
reveals that the particle size of LS-MTMS is much lower 
than that of LS-POSS and LS-TEPS, which is comparable 
from the data obtained from the particle size analyser (Refer 
Table 1). Also, the distribution of particles of LS-MTMS is 
observed to be more uniform and homogeneous compared 
LS-TEPS and LS-POSS. The EDS spectra of the LS materi-
als were measured at 10 keV and are shown in Fig. 5.

The EDS spectra of the samples confirmed the presence 
of silicon, oxygen and carbon in LS-MTMS, LS-TEPS and 
LS-POSS samples. The EDS spectra of LS-PDMS showed 

the presence of oxygen and carbon peaks only and no silicon 
peaks, supporting the absence of silicate formation.

CO2 adsorption studies

The calcined LS sorbents were evaluated for their CO2 
adsorption efficiency using a Thermogravimetric analyser 
under dynamic conditions in 100% CO2 atmosphere. The 
overlaid TG curves of LS-MTMS, LS-POSS, LS-TEPS and 
LS-PDMS in CO2 atmosphere are given in Fig. 6 and their 
CO2 adsorption capacities are tabulated in Table 2.

From the TG curves, it is observed that LS synthesized 
from MTMS, POSS and TEPS only could adsorb and desorb 
CO2. The CO2 adsorption capacities of the sorbents varied 
with the organosilicone precursor used for the synthesis.

LS-PDMS didn’t show any CO2 adsorption. This is due to 
the inability of PDMS to generate SiO2 at high temperatures 
for the formation of LS. It is observed from the TG curve 
of the PDMS precursor (Fig. 1d) that during the heating 
process, decomposition of the material occurs, leading to 
unzipping of the polymer chain to form volatile cyclomers. 
These volatile cyclomers escape with the purge gas, without 
getting oxidized to silica, making it unavailable for the reac-
tion with Li2O in the crucible. The absence of silicate in this 
sample is also confirmed by FTIR spectroscopy and XRD 
analyses. In addition, the fused lithium oxide (LS-PDMS), 
as revealed by SEM analysis, has very low surface area to 
absorb CO2.

Fig. 4   FESEM images of a LS-
MTMS, b LS-TEPS c LS-POSS 
and d LS-PDMS
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The CO2 adsorption of LS-MTMS, LS-POSS and LS-
TEPS started at 550 °C, with a peak adsorption at 700 °C for 
LS-MTMS and around 750 °C for LS-POSS and LS-TEPS. 
LS-MTMS showed the highest CO2 adsorption efficiency of 
around 29.2% compared to 20.3% for LS-TEPS and 18.1% 
for LS-POSS.

LS-MTMS is an aliphatic SiO2 precursor with low 
molecular weight. Due to the presence of relatively simple 

–OCH3 groups attached to the silicon atom, it is easily get-
ting hydrolysed to CH3OH and SiO2 to react with LiOH for 
the formation of LS. In the case of TEPS, the phenyl group 
and the ethoxy groups restrict the easy hydrolysis to gen-
erate SiO2. POSS is a cyclo-aliphatic SiO2 precursor with 
bulky alkyl groups present in the polymer. The presence 
of bulkier groups always hinders the hydrolysis reaction 
and hence easy generation of SiO2. This suggests that the 
easiness to generate SiO2 enhances the silicate formation 
and hence the increase in their CO2 adsorption capacity. All 
the three sorbent showed regeneration on heating at high 
temperatures. Regeneration of the sorbents LS-MTMS, LS-
POSS and LS-TEPS was completed by 900 °C even in CO2 
atmosphere, indicating their application for use of sorbent 
for cyclic purposes.

Particle size and surface area analysis

The particle size and the surface area of the synthesised 
sorbents, which adsorbed CO2 are tabulated in Table 2.

LS-MTMS is having the lowest particle size and highest 
surface area among the three samples, which may be the rea-
son for its high CO2 sorption capacity. The easy hydrolysis 
of MTMS with controlled thermal decomposition has led 
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Table 2   Surface area and the particle size of the synthesised lithium 
silicate sorbents

Sorbent Particle size/µm Surface area/
m2 g−1

CO2 adsorp-
tion effi-
ciency/%

LS-MTMS 108 7.2 29.2
LS-TEPS 239 1.3 20.3
LS-POSS 217 1.4 18.1
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to the formation of particles with comparatively lower size 
and higher surface area than the other LS precursors. The 
particle size and surface area of LS-TEPS and LS-POSS 
were almost the same and show comparable CO2 adsorp-
tion capacity.

Cyclic CO2 adsorption studies

Considering the high CO2 adsorption efficiency and regen-
eration capability of LS-MTMS sorbent amongst the others, 
the cyclic performance of the sorbent was studied under iso-
thermal TG conditions at 700 °C as per the procedure in 2.3 
and the cyclic sorption plot is given in Fig. 7. The adsorp-
tion/desorption cycle was repeated 10 times to ascertain the 
recyclability of the material.

From the TG curve, it was observed that LS-MTMS 
showed an adsorption capacity of 31%, higher than that 
obtained during the dynamic TG process. This is due to 
the increased diffusion of CO2 molecules on retaining at 
high temperatures. The cyclic efficiency of the sorbent was 
retained even after 10 cycles, suggesting its suitability for 
high temperature CO2 capture. The graph also shows a 
constant rate of adsorption and desorption throughout the 
cycles.

Conclusions

A comparative study of different types of organosilicone 
polymers were made for the synthesis of lithium silicate for 
CO2 adsorption. LS were synthesized from lithium hydrox-
ide and silicone precursors viz., MTMS, TEPS and POSS. 
LS could not be produced form PDMS as it could not gen-
erate SiO2 at high temperatures to react with LiOH. The 
CO2 adsorption capacity of the LS varied with the silicone 
precursor. LS-MTMS showed the highest CO2 adsorption of 
29.2% compared to 20.3% for LS-TEPS and 18.1% for LS-
POSS in dynamic TG analysis. LS-MTMS retained a cyclic 
adsorption capacity of 31% for 10 cycles and is a promising 
candidate for regenerable CO2 capture at high temperatures. 

The study concludes that hydrolysable aliphatic organosili-
cone compounds are better silica precursors for the synthesis 
of lithium silicates for regenerable CO2 sorption.
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