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Abstract
To achieve fast and effective control of complex coalfield fire areas in close-distance coal seams, proposals regarding “block-
ing air leakage, reducing oxygen, eliminating high temperature, and preventing re-ignition” were put forward. Combined 
with isotope radon measurement, infrared thermal imaging and ground drilling construction technology, the exact location 
of coalfield fire source was outlined. According to the characteristics of coalfield fire areas in Liujiamao and Qian’an mines, 
a set of economical and efficient coalfield fire control and extinguishing plans have been developed, which include the isola-
tion of the production system, treatment of slope, injection of fly ash composite colloid, and excavation. The results show 
that the combined application of multiple detection technologies can accurately determine the location of fire source and 
divide three regions according to the temperature distribution. In addition, we developed a set of coalfield fire detection, 
fire-fighting equipment, fire-fighting materials and data monitoring as one of the coalfield fire control and extinguishing 
technology. Through the implementation of the plan, the coalfield fire disaster of Liujiamao and Qian’an mines was success-
fully solved. The successful application of this technology provides theoretical and technical support for similar coalfield 
fire control and extinguishing.
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Introduction

China is one of the largest producers of coal with abundant 
coal resources, and provides an adequate amount of materi-
als for rapid economic development. However, the large-
scale coal mining is also accompanied by some secondary 
disasters, such as those attributed to fire, water damage, gas, 
coal dust, and roof collapses. Among these, coalfield fires 
have always been the focus of the coal mine industry. Coal-
field fires have the characteristics of large fire areas, high 
temperature, long burning time, and strong destructive force. 
Coalfield fire will not only destroy the surface ecology, cause 
coal resources losses, but it will also produce a lot of green-
house gases  (CO2 and  CH4) [1–6], toxic and harmful gases 
(CO,  SO2,  H2S,  N2O,  NOx, etc.) [7–9], radiation gases (Rn) 

[10, 11], and trace elements (As, F, Se, Hg, etc.) [12, 13]. 
In addition, coalfield fires also seriously threaten the health 
and safety of workers and restrict normal mine productions 
[14]. The Nineteenth National Congress of the Communist 
Party of China pointed out that economic development must 
establish and practice the concept of “lucid waters and lush 
mountains as invaluable assets,” and adhere to the harmo-
nious coexistence of man and nature [15]. Therefore, the 
prevention and control of coalfield fire are an important 
task of environmental management in areas rich with coal 
resources.

Coalfield fire prevention and control mainly consists 
of fire location detection and fire control and extinguish-
ing technology. Current fire source location detection 
technologies include measurements of temperature [16], 
magnetic detection [17], resistivity [18], gases [19], iso-
topes [20, 22], radiowaves [21], geological radar detec-
tion [23], remote sensing [24], and computer numerical 
simulations [25, 26]. Coalfield fire control and extin-
guishing technology mainly includes excavation [27], 
water injection [28], grout injection [29], gel injection 
[30–33], inert gas injection [34–36], foam or three-phase 
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foam injection [37–41]. Many scholars have reported on 
fire control and extinguishing technologies in coalfields. 
Excavation is the most direct and effective method for 
shallow seam coalfield fires, but the technology is lim-
ited by environmental conditions [27]. If the coalfield 
fire is less than 15 m above the surface, water injection is 
the most effective measure for the reduction of tempera-
ture within the fire zone [28]. When the water injection 
is located in the undisturbed coal seam, water can pen-
etrate in the combustion center with high permeability, 
which is conducive to the cooling of the fire area [42]. In 
areas with poor water sources, compound colloids have 
become the main means of coalfield fire control. It can 
be mixed with fly ash, sand, loess, and other materials, 
and has a remarkable effect on water fixation and on the 
elimination of leakages [30]. In summary, the choice of 
coalfield fire prevention and control technology needs 
to be determined in combination with the supply of the 
location of the fire area resources and characteristics. In 
addition, there are few reports on the current technical 
guidelines for coalfield fire management systems.

We proposed a technical plan of coalfield fire control 
and extinguishing aiming to “block air leakage, reduce 
oxygen, eliminate high temperature, and prevent re-igni-
tion.” Based on the treatment of the coalfield fire area in 
the Liujiamao-Qian’an coal mine, we obtained the range of 
the accident fire area based on radon detection, and drilled 
a hole for verification. The production system isolation, 
open-fire-area landfill, fly ash glue injection, fire source 
excavation, and other measures were adopted to success-
fully control the fire area.

Accident overview and technical idea 
of coalfield fire control and extinguishing

Accidentoverview

Both the Liujiamao and Qian’an coal mines are located in 
the Shenmu County, Yulin City, Shaanxi Province, China. 
The eastern and southeastern parts of the Qian’an coal mine 
are adjacent to the Liujiamao coal mine, of which the Liujia-
mao mine is mine-exploited and the Qian’an coal mine is an 
open-pit mining site. The accident occurred at the boundary 
between the two mines, as shown in Fig. 1.

On January 6, 2016, at 9 a.m., an explosion occurred 
at the Liujiamao coal mine in the Shenmu County, and 11 
people were killed in the accident. The explosion caused 
large-scale coal combustion and produced a large amount of 
toxic and harmful gases. The location of the explosion point 
was located near the protective coal pillars of the 1st coal 
seam, and was 50–60 m away from the surface that caused 
the coal pillars of 1st coal seam to catch fire. The 2nd coal 
seam was located at the lower part of 1st coal seam, and was 
80–90 m away from the surface. The 1st and 2nd coal seams 
were connected through a coal pass and a return air connec-
tion lane, as shown in Fig. 2. After the accident and during 
the rescue process, the rescue team found that the smoke in 
the roadway of the Liujiamao coal mine was heavy, and the 
highest CO concentration measured underground was 4.204 
×  10-3 %. On January 11th, ambulance crews found two open 
flames in the underground parts of the Qian’an coal mine. 
On January 13th, smoke emerged from the open pit of the 
Qian’an coal mine (Fig. 3a and b). On January 17th, an open 
flame appeared in the open-pit (Fig. 3c). According to the 

Fig. 1  Accident location
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onsite situation, a long-distance, rapid closure plan were 
formulated. From January 18 to 21, all the wellheads of the 
Liujiamao mine, the open pits of the Qian’an coal mine, and 
the fire area, were closed to prevent the expansion of the 
fire area. Based on the onsite gas observations on February 

26th, the CO concentration outside the closed wall of the 
main shaft was 3.05 ×  10-3 %, and the CO concentration 
at the main fan of the air shaft was 7.5 ×  10-4 %. In mid-
April, the CO concentration outside the closed wall of the 
main shaft occasionally reached 1.0 ×  10-3 %, and the CO 

Fig. 2  Explosion point location
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concentration showed an upward trend. After the explosion, 
the original surrounding rock was destroyed, and the surface 
was cracked. As shown in Fig. 4, the ground surface of the 
goaf had a serious air leakage, and the coal fire situation 
become increasingly serious.   

Characteristics of the fire area in the Qian’an 
and Liujiamao coalfields

It had been two months since Qian’an and Liujiamao coal-
field fire started. Owing to the large heat capacity of coal 
and the large volume of the high-temperature coal body, 
a large amount of heat energy had been stored in the coal 
body and surrounding rock. As a large amount of heat accu-
mulated in the fire area, it facilitated the continued spread 
of the fire over a wider area, subject to high-temperature 
and poor-oxygen conditions. Some spontaneously ignited 
coals can maintain the coal oxygenation with  O2 concentra-
tion in the range of 2 to 3% at 200 °C and prevent the coal 
temperature from falling. With sufficient oxygen supply, the 
heated coal will ignite in less than a day. The coal seam got 
some air supply through the ground fissures. This fissure 
air leakage, supported the spread of the fire over wider area 
(Fig. 4). Below the surface, the working space of the disas-
ter relief personnel and the room for maneuver was small. 
This imposed a significant threat to the disaster relief per-
sonnel. In addition, there were detonators and explosives of 
unknown types within the fire area and the high tempera-
tures from smoldering coal could detonate the explosives at 
any time. In summary, the coal body had stored significant 
amounts of heat energy, and the temperature of coal and 

rock around the fire was very high. The challenge was to 
reduce the temperature of coal and rock in such a large area. 
High-temperature coal has a high-oxidation activity and the 
air-leakage channel provided oxygen supply that sustained 
and fueled the spread the fire over a wider area. Extinguished 
coal fire can easily reignite upon sufficient supply of oxygen, 
this posed a risk to the isolated areas where fire had been 
extinguished.

Technical idea of coalfield fire control 
and extinguishing

In the process of making the plan, the comprehensive evalu-
ation of each treatment measure is conducted according to 
the characteristics of the fire area, and the technical route is 
determined, as shown in Fig. 5. Owing to the presence of 
detonators and explosive hazardous materials within the fire 
area, the technical measure of direct excavation of the fire 
source was excluded from the evaluation of the measures to 
prevent the occurrence of secondary disasters.

Results and discussion

Coalfield fire area detection

Fire source detection based on isotope radon measurement

The α-cup radon detector is composed of an atmospheric 
pressure air-pulse ionization chamber, amplifier, a power 
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supply circuit, and counter and control circuits. When the 
α-cup adsorbed with the radioactive radon daughters is put 
into the ionization chamber α-detector, the α-ray radiated 
by the radon daughters can make the air-ionization cham-
ber produce positive and negative ion pairs, and form the 
pulse signal subject to the action of a high-voltage electric 
field in the ionization chamber. After the pulse signal is 
amplified by the low-noise pulse amplifier, the noise is 
removed by the pulse amplitude discriminator, and then 
recorded by the pulse counter.

To accurately obtain the range of coal seam combus-
tion area, combined with the complexity of the terrain, 
the fire area is detected by the radioactive radon element 
testing method. The radon measuring device is shown in 

Fig. 6. Generally, the amount of radon exited from the soil 
is relatively stable. Subject to the same geological and 
stratigraphic conditions, when the local lower coal seam is 
oxidized or spontaneously ignited, the natural radioactive 
radon exited from the surrounding and overlying strata will 
increase. The α-cup method has a high-detection sensitivity 
and yields low-background measurements. It is easy to high-
light the strength of α-radon rays and their daughters in the 
soil. Thus, the coalfield fire area can be obtained based on 
the abnormal radon range. Given that explosives and deto-
nators are stored near the explosion site, it is necessary to 
control the fire area as soon as possible to avoid its spread 
and the risk of a secondary explosion. Therefore, clarifying 
the location and scope of the fire source in the fire zone is the 

GPS α -cup radon detector Onsite radon measurement

Measuring pit cupα

Fig. 6  Radon measurement device
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first major problem of the fire extinguishing project. Accord-
ing to the distribution of goaf areas in the Liujiamao coal 
mine, a total of 460 detection points were arranged, and 400 
data of actual burial points were measured. The detection 
accuracy was controlled and was 10 × 10 m2. The detection 

area was approximately 240 m long and 210 m wide, with 
a total detection area of 50,400 m2. The three-dimensional 
diagram of the radon outliers in the fire area was obtained, 
as shown in Fig. 7.

The average radon level in the local area was 15. As it 
can be observed from Fig. 3, there are 14 high-temperature 
zones within the detection range, and the total area of the 
high-temperature fire zones was approximately 5050 m2. 
The high-temperature area is a U-shaped distribution that 
conforms to the room-pillar mining mode and the roadway 
layout information provided by the mine. Radon anomalies 
usually exist on the upper surface in the mining affected area 
and coal fire covered area. The mine is a multiseam mine. 
It is impossible to judge at which coal seam the fire area is 
located at by measuring the radon on the surface. Therefore, 
it is difficult to judge the fire area directly by measuring 
the radon on the surface. Thus, an additional exploration is 
needed by surface drilling.

Borehole construction fire area verification

Based on the detection of the radon value and regional 
division, 32 holes were generated. As the Liujiamao 
coal mine adopts house-column mining, there is no 
detailed distribution map for the roadway and goaf, so the 
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pore-forming rate is only 51.61%. As it can be observed 
from Fig. 8, according to the temperature distribution, 
we divide the fire into three parts, namely A, B, and C. 
Among them, 18 fire holes are arranged in the A fire zone. 
These include  2#,  3#,  4#,  5#,  13#,  14#,  16#,  17#,  18#,  19#, 
 20#,  21#,  22#,  23#,  28#,  29#,  30#, and  31#. A total of 14 
drill holes were arranged in the B fire area, and include 
 1#,  6#,  7#,  8#,  9#,  11#,  12#,  15#,  25#,  26#, and  27#. There are 
three boreholes arranged within fire area C and include 
 10#,  24#, and  32#.

Fire detection with infrared thermal imaging

The accident site is located at the junction of the two 
mines. The Qian’an coal mine is an open-pit mining. 
Therefore, the author held infrared thermal imaging to 
detect the cliff wall from two locations, as shown in Fig. 9, 
and obtained two main fire sources. Combined with geo-
graphical location analysis, the detection areas 1 and 2 
correspond to the fire areas A and B in Fig. 8, respectively. 
The cliff at the fire zone C could not be detected owing to 

Fig. 10  Isolation of production 
system
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the steep terrain. Therefore, the infrared thermography in 
Fig. 8 verifies the coalfield fire area distribution.

Coal fire extinguishing technology

Production system isolation

Based on the monitoring and analysis of the CO concentra-
tion at the closed point, after the accident, the high-temper-
ature fire source was still at the development stage. At the 
same time, the CO will continue to spread to the 2nd min-
ing coal seam. Conversely, to ensure the rapid recovery of 
the 2nd coal seam production system and reduce economic 
losses subject to conditions that ensure safety, the 1st coal 
seam production system was isolated promptly. According 

to the data, there may be three locations for the 1st and 2nd 
coal seams. These include the coal discharging chute, the 1st 
coal seam return air lane, the 2nd coal seam return air–well 
connection roadway, and the fissure between the caving zone 
of the goaf in the 2nd coal seam (first mining face) and 1st 
coal seam (Fig. 10). 

Slope treatment

In view of the surface damage situation after the accident 
(Fig. 3), slope treatment measures were proposed to deal 
with surface fissures to reduce air leakage in the goaf, as 
shown in Fig. 11.

Fig. 13  Coalfield fire monitor-
ing

Table 1  Visual system monitoring results

Number Total detection distance/m Distance between the ground and the roof/m Distance between roof and slurry level/m

4# 53.10 51.95 1.15
8# 53.40 53.00 0.40
5# 47.10 46.60 0.50
28# 56.55 54.90 1.65
20# 52.90 52.10 0.80
18# 53.10 52.50 0.60
14# 51.70 50.20 1.50
9# 57.50 55.00 2.50
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Fly ash compound colloid

Water injection is the most effective measure used to elimi-
nate high temperatures in the coalfield fire area. The accident 
was located at the boundary of the two mines, and it was 
difficult to obtain water. In addition, the fluidity of water 
was good, and the accident caused many cracks that were 
not conducive to water storage. There are many power plants 
in Shenmu City, and fly ash is abundant. Deng et al. [30] 
reported that the compound colloid had poor fluidity that 
was beneficial to the accumulation characteristics. There-
fore, based on the characteristics of fire prevention and 
extinguishing materials, economics, and other indicators, 
we have proposed measures for injecting pulverized coal 
composite colloids. Figure 12c shows the regional layout of 
the fire extinguishing site that mainly includes four parts: 
living area, fly ash pile, working area, and pool. To speed 
up the progress of the project, a total of two sets of grouting 
equipment were invested, as shown in Fig. 12a and b. The 
grouting process has been described in detail in [30].

Excavation

According to the data provided by mines, the thickness of 
the coal seam in the fire area was 2 m on average, and the 
volume to be filled was calculated to be 40,000 to 60,000 m3 
based on a 50% porosity. In September 2017, the planned 
grouting volume was completed successfully. Based on tem-
perature, gas data analysis, and visual monitoring results, it 
was concluded that coal spontaneous combustion had been 
effectively controlled, and no secondary disasters would 
occur. However, there were still dangerous materials, such 

as detonators and gunpowder in the explosion site, so it was 
decided to eliminate the fire sources and dangerous materi-
als from the accident area to completely eliminate the risk 
for a disaster.

Fire area monitoring and effectiveness analysis

Coalfield fire area monitoring

During the implementation of fire-fighting project, the 
monitoring content mainly included two parts, namely the 
fire area and the change of injection slurry level. Therefore, 
onsite technicians monitored the drilling temperature and 
gas within the fire areas A, B, and C, at the same time every 
day, as shown in Fig. 13a and b. Moreover, the slurry lev-
els in all boreholes in the fire area were regularly observed 
with the visualization system, as shown in Fig. 13c and d. 
Table 1 shows the height of the slurry level of some drilling 
holes detected in the construction process, and the distance 
between the slurry level and roof could be observed directly, 
thus providing reference for the implementation of the next 
project.

Analysis of fire extinguishing effect in coalfield fire area

To obtain the change of the fire area during the implemen-
tation of fire extinguishing technology, one drill hole was 
selected from the fire areas A, B, and C, namely  2#,  6#, 
and  10#, respectively. The gas and temperature changes in 
the borehole are shown in Figs. 14–16. The construction 
of the  2# drill hole was completed in November 2016, the 
initial CO concentration in the drill hole was greater than 
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1% (Fig. 14a), and the temperature was 180 °C (Fig. 14b). 
Both variables exhibited a decreasing trend with respect 
to time. Affected by the climate in December, the ground 
was frozen, the project was temporarily suspended, and the 
boreholes in the fire area were all closed. In April 2017, the 
fire-fighting project continued. Compared with 2016, both 
CO concentration and temperature rebounded. The grout-
ing pipe was moved to the fire zone A for drilling. After a 
period of grouting, the CO concentration and temperature 
gradually decreased, and were finally maintained at approxi-
mately 0.4% and 40 °C, respectively. At this time, based on 
visual borehole monitoring, all boreholes in the fire area 
A had been filled with a fly ash composite colloid. It was 
preliminarily determined that the fire area A was effectively 
controlled. As it can be observed from Figs. 15 and 16, the 
variation trend of the CO concentration and temperature in 
boreholes  6# and  10# is consistent with  2#. At the end of the 
fire-fighting project, the CO concentration of  6# and  10# drill 
holes both decreased to 0.01% and the temperature dropped 
to 30 °C. This was consistent with the rock temperature. 
Combined with the visual drilling monitoring results,  6# and 
 10# boreholes have been filled with fly ash compound col-
loid. Thus, we judge that the fire area of B and C has been 
effectively controlled.

Conclusions

To achieve efficient control of coalfield fire area, our 
research group developed a set of coalfield fire control and 
extinguishing technology and carried out the implementa-
tion in Liujiamao and Qian’an mining areas. This study sum-
marizes the coalfield fire control and extinguishing interven-
tion of “blocking air leakage, reducing oxygen, eliminating 
high temperature, and preventing re-ignition.” The main 
conclusions of this study are as follows: (1) On the basis of 
this guiding approach, combined with the characteristics of 
coalfield fire areas in Liujiamao and Qian’an mines, a set 
of economical and efficient coalfield fire control and extin-
guishing plan have been developed, which include the isola-
tion of the production system, treatment of slope, injection 
of fly ash compound colloid, and excavation. (2) High tem-
perature area was about 5050 m2 as determined by isotope 
radon measurement technology, and the distribution was 
U-shaped that conformed to the room-pillar mining mode 
and the roadway layout. Combined with infrared thermal 
imaging and ground drilling construction, the location of 
coalfield fire source was determined. According to the dis-
tribution of high temperature points monitored by boreholes, 
the fire area was divided into three parts for local treatment. 
The combined application of isotopic radon measurement 
method, infrared thermal imaging and ground drilling tech-
nology enabled the accurate determination of coalfield fire 

area and provides a foundation for the efficient implementa-
tion of fire control and extinguishing technology. (3) We 
have developed a set of coalfield fire detection, fire-fighting 
equipment, fire-fighting materials and data monitoring as 
one of the coalfield fire control and extinguishing methods. 
Through the implementation of the plan, the coalfield fire 
disaster of Liujiamao and Qian’an mines was successfully 
solved. The successful application of this method and tech-
nology provides theoretical and technical support for similar 
coalfield fire control and extinguishing.
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