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Abstract
This study aims to analyze the heat transfer phenomenon of power-law fluid with the occurrence of non-uniform heat source/
sink within two stretchable disks which are parted with the constant distance and are co-axially rotating. The thermal con-
ductivity is obeying the similar properties of power-law as that of viscosity. Von Karman’s generalized similarity transfor-
mation has been used firstly to reduce the physically modeled partial differential equations to nonlinear coupled ordinary 
differential equations and then tackled numerically with shooting method by finding missing initial conditions with the help 
of Newton–Raphson method and then system of equations are handled by means of RK-method. The influence of physical 
parameters for instance rotation as well as stretching, power-law index, Prandtl number, heat sink/source parameters upon 
non-dimensional velocity and temperature profiles are studied profoundly, later on, comprehensive analysis is expressed in 
discussion and results segment. The results which are computed numerically illustrate that the emerging parameters have 
substantial influences on velocity and temperature fields. In addition, rotation enhances the velocity components but tem-
perature is predicting two diverse behaviors for shear-thinning and shear-thickening fluids, whenever upper and lower disk 
stretching it leads to an upsurge in radial and axial velocities but causes a decline in tangential velocity and temperature. 
Moreover, velocity and temperature distributions are in increasing trend except for the tangential component of the veloc-
ity which is decreasing by boosting the index of power-law. Furthermore, temperature decreases along with the similarity 
variable with the increasing Prandtl number but enhances with the enhancement in heat source/sink parameters. Finally, the 
skin friction in radial direction and local Nusselt number are escalating along the stretching parameters and Prandtl number 
but skin friction in tangential direction plummeting.

Keywords  Power-law fluid flow · Similarity variables · Heat transfer · Shooting method · Co-axially rotating and 
stretchable disks

List of symbols
u	� Radial velocity 

(
m s−1

)
v	� Tangential velocity 

(
m s−1

)
w	� Axial velocity 

(
m s−1

)

r	� Cylindrical coordinate (m)
�	� Cylindrical coordinate (m)
z	� Cylindrical coordinates (m)
Nur	� Local Nusselt number
cp	� Specific heat 

(
J kg−1 K−1

)
k0	� Positive constant
k	� Thermal conductivity 

(
W m−1 K−1

)
s1	� Lower disk stretching rate 

(
rad s−1

)
s2	� Upper disk stretching rate 

(
rad s−1

)
T 	� Temperature of the fluid (K)
T1	� Temperature at lower wall (K)
T2	� Temperature at upper wall (K)
S1	� Lower disk stretching parameter
S2	� Upper disk stretching parameter
F	� Dimensionless radial velocity
G	� Dimensionless tangential velocity
H	� Dimensionless axial velocity
Pr	� Prandtl number
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CFr	� Skin friction in radial directions
CF�	� Skin friction in tangential direction
qw	� Constant heat flux 

(
Wm−2

)
q′′′	� Non-uniform heat source/sink 

(
k s−1

)
B∗	� Temperature-dependent heat source/sink parameter
A∗	� Temperature-dependent heat source/sink parameter
Rer	� Local Reynolds number

Greek symbols
�	� Dimensionless temperature
�	� Effective density 

(
kg m−3

)
�	� Kinematic viscosity 

(
m2 s−1

)
�	� Rotational parameter
�	� Effective dynamic viscosity 

(
kgm−1s−1

)
�0	� Consistency coefficient
�1	� Lower disk angular velocity 

(
rad s−1

)
�2	� Upper disk angular velocity 

(
rad s−1

)
�	� Dimensionless similarity variable
�rz	� Shear stress in radial direction (Pa)
�θz	� Shear stress in tangential direction (Pa)

Superscripts
′	� Derivative w. r. t �
n	� Power-law index
∗	� Dimensionless variables

Subscripts
p	� Pressure (Pa)
N	� Effective variable

Introduction

Flow driven by rotating disks is apparently the most distin-
guished and of particular interest research part in the study 
of fluid mechanics, the reason behind this is because of its 
emerging numerous scientific applications associated with 
engineering, for instance, rotating machinery, lubrication, 
computer storage devices, turbine systems and jet motors. 
That is why the circulating disk flow phenomenon captured 
the interest of researchers globally. Von Karman was among 
the first one who has debated the laminar and steady flow 
of viscous Newtonian fluid over a disk which is rotating 
infinitely in 1921 [1]. He developed an authentic similarity 
transformation by means of which the Navier–Stokes equa-
tions are reduced to coupled ODEs, and thus the approxi-
mated solution of the ODEs is obtained via method of 
momentum integral. The results are more accurate when 
Cochran [2] gave an asymptotic series solution to Von Kar-
man’s problem in 1934 by considering z positive and motion 
of the fluid is on the side of the plane as the nature of the 
fluid is infinite in extent and the only boundary is z = 0 . 
Rogers and Lance [3] improved the outcomes in 1960. They 
studied the fluid flow due to the infinite disk rotation in a 

state of solid rotation at infinity and concluded that when the 
fluid is revolving in a similar sense as disk at infinity then in 
all cases physically acceptable solutions exist and these solu-
tions occur only in the presence of uniform suction which is 
operating on disk in the case when the fluid spins opposite 
to that of disk. In 1966, Benton [4] pointed out the mistakes 
in previous work and described the exact non-steady velocity 
and pressure fields given by appropriate power-series expan-
sion in the angle of rotation with the help of coefficients 
which are the functions of similarity variables. Millsaps and 
Pohlhausen [5] investigated the solution of energy equation 
and transfer the heat for a variety of Prandtl numbers at 
a constant temperature due to disk rotation in 1952. The 
thermal boundary condition with the wall temperature of a 
power-law distribution for a free rotatory disk was scruti-
nized by Dorfman and Serazetdinov [6]. The new analytical 
solution of Nusselt number was given by Shevchuk [7] in 
the shape of a function of an arbitrary power-law and for 
specifying it as a boundary condition. Turkyilmazoglu [8] 
provided full analytical solutions of the conducting and vis-
cous incompressible fluid flow through a porous disk which 
is spinning with a uniform angular speed. Flow by the virtue 
of rotating rough and porous disk is analyzed numerically 
and mathematically by Turkyilmazoglu and Senel [9]. Mat-
kowsky and Siegmann [10] examined the similarity equa-
tions of Karman for the fluid which is flowing between two 
coaxial infinite disks that rotates in opposite directions but 
having equal rotation rates. Sandilya et al. [11] deal with the 
gas flow and transfer of mass and gave the numerical simula-
tion between two co-axially rotating disks. Turkyilmazoglu 
further explored the fluid flow together with heat which is 
induced simultaneously by two stretchable and co-axially 
rotating disks having constant distance [12]. Awati et al. 
[13] did a series analysis of two stretching disks which are 
co-axially infinite of an axis-symmetric flow and enlarged 
the validity of the series solution for larger values of Reyn-
olds number up to infinity. Ahmed et al. [14] investigated 
the Maxwell fluid for axisymmetric rotating flow between 
two disks which are spiraling co-axially by considering Cat-
taneo–Christov heat flux conduction model and concluded 
that in all directions the velocity components are decreasing 
with the Deporah number. Imtiaz et al. [15] have explored 
the Jeffrey fluid flow with respect to non-Fourier heat flux 
due to the rotation of disk and in occurrence of homogenous-
heterogeneous reactions. They have computed the conver-
gent series solutions of nonlinear equations by the method 
of homotopy analysis and concluded that radial velocity 
decays with the influence of Deborah number and also with 
the rise in Prandtl number the temperature reduces. Mahan-
thess et al. [16] assumed the nanofluid flow in the presence 
of heat source which is thermally as well as exponentially 
space based near the disk which is infinite and stretching 
in radial direction. The heat and mass for nonlinear mixed 
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convection in stagnation-point flow around the solid cyl-
inder of an impinging jet surrounded in a porous medium 
has been researched by Hong et al. [17]. Pahlevaninejad 
et al. [18] did the hydrodynamic and thermal analysis in 
a wavy microchannel for non-Newtonian nanofluid. Wakif 
et al. [19] numerically inspected the influences of externally 
applied uniform magnetic field upon the onset of convection 
in a layer of nanofluid which is conducting electrically and 
based upon two-phase non-homogeneous by incorporating 
the influences Brownian motion as well as thermophoresis of 
the particles of nanofluids within the mechanism of thermal 
transportation. Nayak et al. [20] did a comparative analysis 
upon examining the differential quadrature numerically by 
means of nanofluid fluid flow which is steady and mixed 
convection as well over a thin needle of an isothermal car-
rying the nanomaterials of metallic as well as metallic oxide. 
Zaib et al. [21] calculated the dual similarity solutions by 
analyzing the characteristics of entropy generation in the 
direction of thermally radiated MHD upon the incompress-
ible mixed convection fluid flow of ferrofluid particles from 
a plate which is vertically flat under the influence of viscous 
dissipation and joule heating. Qasim et al. [22] scrutinized 
the two-dimensional Jeffrey fluid flow within the bound-
ary layer on a disk which is stretching radially and in the 
occurrence of nonlinear thermal radiation. Wakif et al. [23] 
numerically computed the influence of magnetic field which 
is uniformly transverse by considering the water and metallic 
as a base and nanoparticles upon using Buongioron’s non-
homogeneous mathematical model. Rashad and Hakiem [24] 
has assumed the temperature-dependent viscosity and exam-
ined the influence of radiation upon non-darcy free convec-
tion by means of cylinder which is placed vertically and 
in a porously saturated fluid. Some interesting researches 
about the nanofluid about the different geometries has been 
provided by Sheikholeslami et al. [25–32], Raza et al. [33] 
and Waqas et al. [34], respectively. Sheikholeslami et al. [35, 
36] further did the modeling numerically for nanomaterial 
through circular channel as well as space which is porous 
and includes magnetic forces.

A considerable trend toward the flow and transfer of 
heat by means disk rotation near the Newtonian fluid got 
the prominent attention. Zandbergen and Dijkstra [37] gave 
valuable information by conveying more precisely the idea 
of single and double disk problems simultaneously. The fluid 
having variable viscosity is based on applied stress and is 
known as non-Newtonian fluid. It has its own importance 
and significance, for example, quicksand, cornflour, water, 
polymer solutions, melts, rubber, grease etc. Some inter-
esting researches about the Reiner-Rivlin model have been 
provided by Attia [38] by transferring the heat of rotatory 
disk flow via porous medium with suction and injection of 
a non-Newtonian fluid. Sahoo [39] has calculated the influ-
ences of partial slip, joule heating viscous dissipation of an 

electrically conducting non-Newtonian fluid on a Karman’s 
flow and heat problem and Osalusi et al. [40] extended it fur-
ther in the occurrence of hall and ion-slip currents. Rashaida 
[41] gave a better concept of the behavior of a Bingham fluid 
flow on a disk rotation in the laminar boundary layer by 
operating two district procedures: laboratory investigations 
and numerical simulation with support of flow visualiza-
tion and particle image velocimetry (PIV). Several types 
of fluids satisfy the psuedo-plastic and dilatant properties 
which are known as power-law fluid. Mitschka [42] extended 
the Karman’s theory toward the power-law fluid. Mitschka 
and Ulbricht [43] have computed the solution numerically 
for the flow produced by disk rotation in liquids by taking 
viscosity which is dependent on shear with the power-law 
indices in the limit 0.2 ≤ n ≤ 1.5. R. Smith and Greif [44] 
has obtained the mass transfer about rotating disks and cones 
for non-Newtonian laminar power-law fluids and rendered 
the exact results for the velocity field. Andersson et al. [45] 
re-examined the work in [43] to check the reliability of 
the numerically approached technique and concluded that 
when we reduce the index of power-law n the boundary layer 
thickness increases in the parameter range from 2.0 to 0.2. 
Nitin and Chhabra [46] have numerically solved the conti-
nuity and momentum equations for two-dimensional steady 
power-law fluids on a disk having thin circulation which 
is placed normally on the path of flow. They obtained the 
wide-ranging results on total drag coefficients which are the 
functions of Reynolds number Re, disk-to-cylinder diam-
eter ratio e and the index of power-law n in the ranges, i.e., 
1 ≤ Re ≤ 100, 0.02 ≤ e ≤ 0.5 and 0.4 ≤ n ≤ 1 , respectively. 
Andersson and Korte [47] studied the power-law fluid over 
an infinite rotation of disk constantly with the consideration 
of a uniformly applied magnetic field. Denier and Hewitt 
[48] in 2003 debated the asymptotic matching constraints 
for power-law boundary layer rheology fluid flow which is 
driven with the help of a plane whose rotation is infinite in 
an otherwise static system by addressing the problem for 
pseudo-plastic and dilatant fluids. Kabeir et al. [49] have 
applied the group theoretic technique for combinedly trans-
fer of heat and mass for naturally convective MHD non-
Darcy toward a cylinder which is impermeably horizontal by 
considering non-Newtonian power-law fluid model embed-
ded in saturatedly porous medium under the influence of 
mass and thermal diffusion, thermal radiation, magnetic field 
and inertial resistance, respectively. In 2010, Kabeir et al. 
[50] made an advancement in the power-law fluid through 
transferring heat and mass by considering MHD stagnation-
point power-law fluid phenomenon about the surface which 
is stretchable together with the influence of radiation, chemi-
cal reaction and soret and dufour. Ming et al. [51] handled 
the power-law for steady flow and heat transfer on a disk 
rotation with the supposition that both thermal conductivity 
and viscosity obey the same function and further extended 
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it in the existence of uniform magnetic field [52]. In 2016, 
Ming et al. [53] introduced a generalized heat transfer Fou-
rier model that is when the thermal conductivity depend-
ent on temperature gradient, the influences of the index of 
power-law and local Prandtl number upon velocity, pressure 
and temperature are calculated particularly, the conductiv-
ity of heat and the coefficient of viscosity are conversed. In 
2014, Griffiths et al. [54] checked the boundary layer stabil-
ity especially for the pseudo-plastic fluids on a rotatory disk 
which satisfies the power-law fluids. Griffiths [55] pondered 
the generalized Newtonian fluid cause of a rotating disk and 
provided the solutions for power-law, Bingham and Carreau 
modeled fluids, respectively.

It can be seen that not enough articles are available for 
flow and transfer of heat between two co-axially rotation of 
disks of power-law fluid with the occurrence of non-uniform 
heat source/sink. So, it encouraged us to examine the stretch-
ing phenomenon and its influences for the flow and transfer 
of heat for two disks which are rotating as well as stretchable 
with the aim of power-law fluid model and in the presence 
of non-uniform heat source/sink. The corresponding equa-
tions are firstly altered into nonlinear combined differential 
equations and later tackled by RK-shooting. The missing ini-
tial guesses are calculated by the Newton–Raphson method. 
Finally, the validities of some physical quantities on heat and 
flow properties are explained in detail.

Physical model and mathematical 
formulation

The steady axial-symmetric laminar flow between two infi-
nite disks which are placed parallel where the lower one 
placed at z = 0 and the upper one at z = h and in the pres-
ence of non-uniform heat source/sink have been assumed. 
The disk rotation toward r = 0 is coaxial and of particular 
interest here with respect to constant stretching radial rates 
s1 and s2 along with constant angular velocities �1 and �2 . 
The cylindrical coordinate system has been chosen and it 
can be seen in Fig. 1. In cylindrical coordinate systems, the 
velocity components such as (u, v,w) are taken in the direc-
tions of (r,�, z) , respectively.

The physically modeled PDEs can be written as [51].
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where T  indicates temperature for the fluid � represents den-
sity, � is the dynamic viscosity, cp denotes specific heat at 
constant pressure and k implies the thermal conductivity of 
the fluid.
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 thermal conductivity obey 

the power-law properties which is successfully implemented 
by the authors in [51, 52, 56]. Here �0 is the consistency 
coefficient for fluid, k0 which refers to a positive constant and 
n is an index of power-law. Here n = 1 indicates Newtonian 
fluid and � = �0, k = k0 . The parameter of non-uniform heat 
source/sink q′′′ is defined by the following relation [57–59]:

In which A∗ and B∗ represents the parameters of space 
and temperature-dependent heat source/sink, respectively. 
The positive and negative values of these parameters denote 
internal heat generation and absorption.
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Fig. 1   The flow geometry
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The proper boundary conditions subject to (1–4) are

Here T1 is the temperature corresponding to the lower wall 
and T2 with respect to the upper wall.

Similarity variables

The similarity transformation for this type of flow problem 
can be defined as follows:

Introducing (7) into (1–4), we get the following set of 
ODEs:

The boundary conditions are converted into

Here S1 =
s1

�1

 and S2 =
s2

�1

 are the parameters for stretch-
ing, � =

�2

�1

 means rotation and Pr = �0cp

�0
 , a Prandtl number. 

The skin friction coefficients at z = 0 in radial CFr as well as 
in tangential CF� directions and local Nusselt number Nur 
can be expressed as:

(5)u = rs1, v = r�1, w = 0, T = T1, at z = 0,

(6)u = rs2, v = r�2, w = 0, T = T2, at z = h,

(7)

� = z

(
�2−n

1

�
0

/
�

)1∕ (n +1)

r
(1−n)∕ (1+n)

, u = �
1
rF(�), v = �

1
rG(�),

w =

(
�1−2n

1

�
0

/
�

)−1∕ (n +1)

r
(n−1)∕ (n+1)

H(�), T = T
2
+
(
T
1
− T

2

)
�.

(8)H� = −2F −
1 − n

1 + n
�F�

(9)

F2 − G2 +
(
H +

1 − n

1 + n
�F

)
F� =

{
F�
((

F�
)2

+
(
G�

)2)(n−1)∕ 2
}�

(10)

2FG +
(
H +

1 − n

1 + n
�F

)
G� =

{
G�

((
F�
)2

+
(
G�

)2)(n−1)∕ 2
}�

(11)
(
H +

1 − n

1 + n
�F

)
�� =

1

Pr

[{
��
((

F�
)2

+
(
G�

)2)(n−1)∕ 2
}�

+ {A∗F + B∗�}

]

(12)F(0) = S1, G(0) = 1, H(0) = 0, �(0) = 1

(13)F(1) = S2, G(1) = �, H(1)= 0, �(1) = 0,

(14)CFr =
�rz

�
(
�1r

)2 , CG� =
��z

�
(
�1r

)2 , Nur =
rqw

k
(
T1 − T2

) ,

The quantities �rz, ��z represent the shear stresses in radial 
as well as in tangential directions and qw is the constant heat 
flux which are defined by the following relations:

Upon using the similarity transformation the (7) leads to

where Rer =
�2−n

1
r2

�0∕ �
 is the local Reynolds number.

Adopted numerical technique

Shooting method is adopted to obtain the solution of ODEs 
(8–11) subject to (12–13) in MATLAB software. The imple-
mentation of shooting method is based upon these steps [60]. 
Firstly, the boundary value problem (BVP) is required to 
transform into initial value problem (IVP) by setting the 
higher-order derivative terms to some functions so that the 
equations are reduced to first-order ODEs. Secondly, the 
missing initial conditions at the initial value of the provided 
interval are taken and then integrate the differential equation 
numerically at boundary point as an IVP, this leads to the 

determination of missing initial conditions. Thirdly, the vali-
dation of assumed missing initial conditions can be assured 
upon finding the dependent variable at the value which is 
given on the boundary, if there is still difference then we 
need to guess another value, this process can be continued 
until the desired level of accuracy is obtained between the 
given and computed missing initial conditions. Finally, RK-
method is then applied for finding the solution of the system 
of first-order IVP subject to provided and computed missing 
initial conditions.

Thus, the above-mentioned solution scheme can be 
applied on our proposed problem as given below:
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The given BVP corresponds to boundary conditions and 
is transformed to first-order IVP by setting the derivates as

Then Eqs. (8) to (11) are expressed in terms of seven 
first-order ODEs with respect to seven variables, i.e., 
yN(N = 1, 2,… , 7)

Boundary conditions are:

Here a, b, c are the missing initial conditions which can 
be determined from y1(1) = S2, y3(1) = �, and y6(1) = 0. 
For instance, in order to compare our results for n = 0.8 with 
those in Ref. [43, 45, 51], Tables 1-4 are drawn by setting 
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(19)

y1(0) = S1, y2(0) = a, y3(0) = 1, y4(0) = b, y5(0) = 0,

y6(0) = 1, y7(0) = c, y1(1) = S2, y3(1) = �, y5(1) = 0, y6(1) = 0.

the involved parameters as S1 = S2 = � = A∗ = B∗ = 0 and 
upon taking step size of 0.01. Then after performing the 
15 iterations by means of Newton–Raphson method, the 
values for missing initial conditions 

(
F�(0),−G

�

(0), ��(0)
)
 

that is (a = 0.5038, b = 0.6361, c = 0.4111) which are cor-
rect up to 4 decimal places with that of previous iterated 
value and are matched up to approximately 4 decimal places 

with those in Ref. [43, 45, 51]. Similarly, if we change the 
values of any of involved parameters we need to follow the 
same process as we just described. Hence, RK-method can 
be implemented for finding the solution of first-order IVP 
with respect to given conditions and calculated missing ini-
tial conditions. This means that proposed numerically tech-
nique is extremely effective in solving such type of highly 
nonlinear differential equations. Thus further outcomes are 
deliberated in Results and discussion section.   

Table 1   Comparison of F�(0) in non-stretching and non-rotation disk 
case S1 = S2 = � = A

∗ = B
∗ = 0,Pr = 1

Power-law 
index
n

F
�(0)

Present Ref. [51] Ref. [45] Ref. [43]

2.5 0.5624 0.56236 – –
2.2 0.5532 0.55319 – –
2.0 0.5468 0.54676 0.547 –
1.7 0.5366 0.53664 0.537 –
1.5 0.5292 0.52919 0.529 0.529
1.3 0.5215 0.52150 0.522 0.521
1.0 0.5102 0.51021 0.510 0.510
0.8 0.5038 0.50381 0.504 0.504
0.5 0.5006 0.50058 0.501 0.501

Table 2   Comparison of −G�

(0) in non-stretching and non-rotation 
disk case S1 = S2 = � = A

∗ = B
∗ = 0,Pr = 1

Power-law 
index
n

−G
�

(0)

Present Ref. [51] Ref. [45] Ref. [43]

2.5 0.6096 0.60967 – –
2.2 0.6057 0.60566 – –
2.0 0.6033 0.60327 0.603 –
1.7 0.6009 0.60091 0.600 –
1.5 0.6010 0.60099 0.601 0.601
1.3 0.6035 0.60346 0.603 0.603
1.0 0.6159 0.61591 0.616 0.616
0.8 0.6361 0.63608 0.636 0.636
0.5 0.7130 0.71322 0.712 0.713
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Results and discussion

This part of the paper demonstrates the numerical results 
with respect to velocity components such as radial F(�) , tan-
gential G(�) , axial −H(�) and temperature θ(ξ) profiles for 
various non-dimensional physical quantities that are rotation 
parameter Ω, stretching parameters (S1, S2) , Prandtl number 
Pr and index of power-law n . Comprehensive discussion for 
shear thickening (n > 1) and shear thinning (n < 1) alongside 
with that of physical parameters are studied by their graphi-
cal representations.

In order to elucidate the reliability and efficiency of the 
proposed technique, the comparison of the computed results 
with those in Ref. [43, 45, 51] can be seen in Tables 1–4 
for different power-law indexes. The excellent agreement 
can be observed. Where F�(0) , G�(0) and −H�

(1) indicate 
the wall-gradients and axial inflow, respectively, and ��(0) 
specifies the heat flux. Furthermore, in order to examine the 
variations in skin friction and local Nusselt number Table 5 
is constructed for different values of stretching parameters (
S1, S2

)
 together with rotation parameter (�) . It is seen that 

the values of skin friction in the case of shear thinning are 
smaller from shear thickening but for the values of local 
Nusselt number opposite trend is observed. Thus from 
Table 5 it is observed that, from non-stretching of disks (
S1 = 0.0, S2 = 0.0

)
 to faster stretching rate of upper disk 

than lower disk 
(
S1 = 0.2, S2 = 0.6

)
 and faster stretching rate 

of lower disk than upper disk 
(
S1 = 0.6, S2 = 0.2

)
 , the effects 

Table 3   Comparison of −H�

(1) in non-stretching and non-rotation 
disk case S1 = S2 = � = A

∗ = B
∗ = 0,Pr = 1

Power-law 
index
n

−H
�

(1)

Present Ref. [51] Ref. [45] Ref. [43]

2.5 0.5425 0.54200 – –
2.2 0.5655 0.56553 – –
2.0 0.5877 0.58765 0.586 –
1.7 0.6366 0.63662 0.633 –
1.5 0.6783 0.67828 0.676 0.678
1.3 0.7359 0.73591 0.735 0.735
1.0 0.8823 0.88230 0.883 –
0.8 1.0593 1.05929 1.089 1.052
0.5 1.5438 1.54389 1.539 1.513

Table 4   Comparison of 
��(0) in non-stretching 
and non-rotation disk case 
S1 = S2 = � = A

∗ = B
∗ = 0,Pr = 1

Power-
law index
n

�
′(0)

Present Ref. [51]

2.5 0.3996 0.39980
2.2 0.3965 0.39655
2.0 0.3939 0.39392
1.7 0.3897 0.38970
1.5 0.3886 0.38859
1.3 0.3891 0.38910
1.0 0.3963 0.39632
0.8 0.4111 0.41108
0.5 0.4791 0.47917

Table 5   The values of radial 
direction skin friction and 
local Nusselt number when 
A
∗ = B

∗ = 0,Pr = 1

Stretching parameters 
(
S
1
, S

2

)
Rotation 
parameter Ω Re

1

n+1

r C
Fr

Re
−

1

n+1

r Nu
r

n = 0.8 n = 1.2 n = 0.8 n = 1.2

S1 = 0.0, S2 = 0.0 0.1 0.2617 0.2642 0.9770 0.9517
0.2 0.2798 0.2826 0.9826 0.9486
0.3 0.2994 0.3025 0.9897 0.9440
0.4 0.3205 0.3240 0.9988 0.9371
0.5 0.3431 0.3470 1.0111 0.9269
0.6 0.3672 0.3713 1.0281 0.9124

S1 = 0.2, S2 = 0.6 0.1 0.5983 0.6149 1.1467 1.0203
0.2 0.6010 0.6229 1.1561 1.0147
0.3 0.6158 0.6318 1.1674 1.0078
0.4 0.6230 0.6416 1.1812 0.9989
0.5 0.6325 0.6524 1.1976 0.9881
0.6 0.6542 0.6646 1.2160 0.9761

S1 = 0.6, S2 = 0.2 0.1 − 0.3559 − 0.3534 1.2218 1.0791
0.2 − 0.3483 − 0.3309 1.2245 1.0780
0.3 − 0.3395 − 0.3069 1.2267 1.0772
0.4 − 0.3295 − 0.2815 1.2276 1.0765
0.5 − 0.3179 − 0.2553 1.2283 1.0750
0.6 − 0.3041 − 0.2288 1.2295 1.0745
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of the stretching of a material change the results significantly 
in comparison with that of solid rotating disks.

Effects of rotation

Figures 2–5 illustrate how the velocity and temperature 
fields vary with a stationary to increasing � along ξ in the 
case when the disks are stretching with a constant rate that 
is S1 = S2 = 0.4. It should be reminded here � = 0 describes 
that upper disk is stationary, and 𝛺 > 0 refers to the rota-
tion of disks in a similar direction. Figure 2 is plotted to 
show the effects of rotation on radial velocity for shear 
thickening and shear shinning. It is noticed that the rota-
tion parameter enhances the radial component of velocity in 
both shear-thickening and shear-thinning cases. Further, it is 
also depicted that the radial velocity under the circumstances 
of shear thickening is greater than the shear-thinning case. 
Figure 3 deals to predict the tangential velocity behavior 
against the rotation parameter in the occurrence of shear 
thickening and shear thinning. Tangential velocity in both 
situations (shear thickening and shear thinning) increases.  

It is also seen that for small values of rotation parameter 
the tangential velocity for shear-thickening case is higher 
than the shear-thinning case but however for larger values 
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of rotation parameter this behavior gets reversed. It is due 
to the increasing resistance effects on the tangential motion 
of the fluid which is caused by shear-thickening behavior 
while this resistance is lower for the radial motion when 
power-law index and rotation parameters are increased. In 
Fig. 4, axial velocity is plotted to show the rotation effects 
for shear-thickening and shear-thinning. Axial velocity pro-
file presents the behavior similar to tangential velocity but 
the change in axial velocity is very small. The effects of 
rotation in the case of shear-thinning and shear-thickening 
are shown in Fig. 5. This temperature profile predicts the 
two different effects of the parameter of rotation for shear-
thickening and shear-thinning fluids. Temperature is found 
as an increasing function with respect to the parameter of 
rotation in the case of shear thickening while decreasing 
function of parameter of rotation in case of shear thinning.   

1

0.9

0.8

0.7

0.6

0.5

0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

S2 = 0,0.2,0.4,0.6

n = 1.2 Shear-thickening (n>1)

n = 0.8 Shear-thinning (n<1)

T
an

ge
nt

ia
l v

el
oc

ity
/m

 s
–1

Fig. 7   Tangential velocity G profiles when 
� = 0.4, S

1
= 0.2, S

2
= 0, 0.2, 0.4, 0.6, Pr = 1, A

∗ = B
∗ = 0.1.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

S2 = 0,0.2,0.4,0.6

n = 1.2 Shear-thickening (n>1)

n = 0.8 Shear-thinning (n<1)

–A
xi

al
 v

el
oc

ity
/m

 s
–1

Fig. 8   Axial velocity −H distributions when 
� = 0.4, S

1
= 0.2, S

2
= 0, 0.2, 0.4, 0.6, Pr = 1, A

∗ = B
∗ = 0.1.

S2 = 0,0.2,0.4,0.6

n = 1.2 Shear-thickening (n>1)

n = 0.8 Shear-thinning (n<1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

T
em

pe
ra

tu
re

/K

1

0.8

0.6

0.4

0.2

0

Fig. 9   Temperature � distributions when 
� = 0.4, S

1
= 0.2, S

2
= 0, 0.2, 0.4, 0.6, Pr = 1, A

∗ = B
∗ = 0.1.

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

R
ad

ia
l v

el
oc

ity
/m

 s
–1

n = 1.2 Shear-thickening (n>1)

n = 0.8 Shear-thinning (n<1)

S1 = 0,0.2,0.4,0.6

Fig. 10   Radial velocity F when 
� = 0.4, S

1
= 0, 0.2, 0.4, 0.6, S

2
= 0.2, Pr = 1, A

∗ = B
∗ = 0.1.

n = 1.2 Shear-thickening (n>1)

n = 0.8 Shear-thinning (n<1)

S1 = 0,0.2,0.4,0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ξ

1

0.9

0.8

0.7

0.6

0.5

0.4

T
an

ge
nt

ia
l v

el
oc

ity
/m

 s
–1

Fig. 11   Tangential velocity G when 
� = 0.4, S

1
= 0, 0.2, 0.4, 0.6, S

2
= 0.2, Pr = 1, A

∗ = B
∗ = 0.1.



1744	 Usman et al.

1 3

Effects of stretching

Figures 6–13 are plotted against the dimensionless similar-
ity variable � for the velocities (F,G,H) and temperature (�) 
profiles in order to predict the stretching effects of upper and 
lower plates when the disks rotate by the rate that is � = 0.4 
and also upon fixing Pr = 1 . Figures 6–9 explain the no 
stretching 

(
S2 = 0

)
 to faster stretching rate 

(
S2 = 0.2, 0.4, 0.6

)
 

of upper disk when lower disk is stretching at a rate of 0.2. 
It is noted that radial and axial velocities (Figs. 6 and 8) are 
increasing function of the stretching parameter S2 while tan-
gential velocity and temperature (Figs. 7 and 9) are declin-
ing functions along � . It can be observed that in the case of 
radial and axial velocities when upper disk is not stretching 
the shear thinning (n = 0.8) is smaller from shear thickening 
(n = 1.2) but this trend gets reversed by the rise in stretch-
ing rate of upper disk and the fluid is naturally drawn from 
slower stretching disk to that of faster stretching disk. On 
the other hand, whenever stretching is functioning at upper 

disk the vertical flow changes its direction due to which flow 
is eventually thrown from faster to slower stretching disk 
this leads to reduction in the flow in tangential direction. 
Furthermore, a decrease in the temperature profile is seen 
from Fig. 9.

Figures 10–13 indicate the effects of the stretching rate of 
lower disk on the profiles of velocity and temperature when 
the upper disk stretches by a constant rate that is 0.2. Again 
an increasing trend can be noted for the radial and axial 
components of the velocity whereas tangential component 
of velocity and temperature is decaying along � . The shear 
thickening becomes greater from shear thinning with the 
increase in lower disk stretching rate in the case of radial and 
axial velocities but the reduction for shear thinning in the 
case of tangential velocity and temperature is on higher note 
than that of shear thickening. Physically it can be expressed 
as the larger values of the 

(
S1, S2

)
 leads to the greater stretch-

ing rates of the respective disks due to which radial and axial 
velocities escalates. Furthermore, the rotational velocity is 
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in inverse relationship with that of tangential velocity which 
causes deduction in the tangential velocity for larger values 
of 
(
S1, S2

)
 . Thus, the radial as well as axial velocities esca-

lates significantly and the flow move toward the upper disk 
whenever stretching is operative at lower and upper disks 
while for tangential velocity as well as for temperature pro-
files this trend gets reversed.

Influence of power‑law index

The influence of the index of power-law n can be observed 
from Figs. 14–17 when disks are stretching and rotating 
that is S1 = S2 = 0.4 and � = 0.6 . It is seen that the extreme 
value of radial velocity enhances and moving toward the 
center with the enhancement in the index of power-law. The 
shear which is driven by the motion in tangential direction 
decayed. Axial flow and temperature are escalating while the 

power-law index increasing. The effects for shear-thickening 
fluid are more noticeable in comparison with that of shear-
thinning fluid.   

Effects of Prandtl number

Figure 18 explains the temperature for dilatant (n = 1.2) 
and pseudo-plastic (n = 0.8) with respect to the influence of 
Prandtl number. It is clearly distinguished that temperature 
decreases alongside the variable of similarity ξ. By increas-
ing the Pr which causes reduction in the temperature it is 
because of the reason that Prandtl number is linked with 
the momentum and thermal diffusities and with the aug-
mentation in the Prandtl number which leads to the reduc-
tion in the thermal diffusivity and due to which temperature 
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decreases. The reduction for shear thickening is more obvi-
ous from shear thinning.

Effects of parameters heat source/sink

The influence of the parameters of heat source/sink on tem-
perature profile � when P r = 1, � = 0.6, S1 = S2 = 0.4 has 
been deliberated in Fig. 19. It can be examined that the � 
is escalating along the dimensionless similarity variable � 
for the rising values of temperature-dependent heat source/
sink parameters (A∗,B∗) . Physically it can be interpreted 
as, the positivity of A∗ and B∗ refers to heat source which 
performs like heat generators due to which heat energy has 
been released toward the flow and it causes rise in tempera-
ture profile. The negativity of A∗ and B∗ indicates the heat 
sink which behaves as heat absorbers, the energy is absorbed 
for the negative values of A∗ and B∗ . The heat source/sink 
effected the shear-thinning fluid n = 0.8 dramatically.

Skin friction and local Nusselt number

The skin friction in radial Re
1

n+1

r CFr as well as in tangential 

Re
1

n+1

r CG� directions and local Nusselt number Re
−

1

n+1

r Nur 
are plotted in Figs. 20–23 along the parameter S1 and for 
different values of S2 for shear-thickening and shear-thinning 
fluids by setting other parameters as � = 0.2, Pr = 1.0 . The 
effects of skin friction in radial direction are elucidated in 
Fig. 20 where both the fluids, i.e., shear thickening and shear 
thinning are describing almost the similar behavior and are 
increasing along S1. The skin friction in tangential direction 
in Fig. 21 demonstrated the opposite trend to that of Fig. 20. 
The upshots of local Nusselt number are revealed in Fig. 22. 
The shear-thickening and shear-thinning fluids are increas-
ing along S1 by increase in S2. The increase in shear-thinning 
fluid is extremely on higher note. Figure 23 delibrates the 
influence of local Nusselt number along S1 for diverse values 
of Pr by setting S2 = 0.4,� = 0.2. Upon rising in the values 
of Prandtl number, the effects in shear-thinning fluid are 
slightly greater than shear-thickening fluid.
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Conclusions

This current study is dedicated to inspect the steady flow 
and transfer of heat of power-law fluid for two co-axially 
stretchable rotatory disks in the existence of various rates 
of stretching and rotation. The PDEs are converted to ODEs 
by means of suitable similarity transformation. The influ-
ence of rotation, stretching parameters, index of power-law 
and Prandtl number upon the profiles of velocity and tem-
perature are explained for pseudo-plastic and dilatant fluids. 
Newly calculated results which are obtained from shooting 
method and already existing outcomes are rendered. In addi-
tion, graphical representation and tabular comparison certify 
that shooting method is truly operative to such problems 
and many more. The applied technique can also be useful to 
other nonlinear problems. Hence, the key points of current 
study are given below:

•	 The effect of the rotation of disks which causes increases 
in the radial, tangential and axial flow except the tem-
perature where shear thinning is toward downside.

•	 Increasing the rates of stretching which causes a notable 
rise in the radial as well as axial velocities, but the tan-
gential and temperature profiles are in decreasing trend.

•	 By the increase in the stretching rate of upper disk which 
results the maximum in vertical velocity.

•	 In the situation when upper disk is stretch the effect is to 
revert the radial direction of flow from bottom to upper 
disk.

•	 The velocity and temperature distributions are increasing 
excluding the tangential component which is declining 
by rise in the index of power-law.

•	 The temperature is affected by the increasing Prandtl 
number and heat transfer is decaying but it escalates with 
the escalation in space and temperature-dependent heat 
source/sink parameters (A∗,B∗).

•	 Skin friction in the radial direction increases along S1 
for increasing values of S2 but in tangential direction it 
decreases.

•	 The local Nusselt number escalates along S1 with the 
escalation in S2 and in Pr , respectively.
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