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Abstract
In this study, a horizontal-axis wind turbine based on the first and second laws of thermodynamics in different wind speeds 
and pitch angles is analyzed. The blade element momentum (BEM) theory coupled by the exergy equations was implemented 
to model the wind turbine at wind speeds from 6 to 15 m s−1 and three different pitch angles 5°, 10°, and 20°. The aim of this 
study was to evaluate the effects of metrological variables such as wind speed, temperature, pressure, and relative humidity 
on the exergy efficiency of the wind turbine in different pitch angles. It is found out that the wind turbine has been affected 
more by wind speed compared to other metrological parameters and the highest exergy efficiency is 42.8% at wind speed 
12 m s−1 and pitch angle 5°. Also, it is shown that the rising of pressure changes and relative humidity decreases the exergy 
efficiency for all wind speeds and pitch angles. Increasing the relative humidity from 0.001 to 0.015 and pressure changes 
from 100 to 240 pa can decrease the exergy efficiency 1.76% and 1.26% at the wind speed of 8 m s−1 and pitch angle of 
20°, respectively. In contrast, temperature has a positive impact on the exergy efficiency in the same condition and is able to 
increase the exergy efficiency 2% by changing from 5 to 35 °C at wind speed of 8 m s−1 and the pitch angle of 5°.
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List of symbols
a	� Axial induction factor
aʹ	� Tangential induction factor
c	� Chord (m)
Cd	� Drag coefficient
Cl	� Lift coefficient
cp	� Specific heat (kJ kg−1 K−1)
CP	� Power coefficient
D	� Drag force (N)
Ex	� Exergy (W)
F	� Force (N)
f	� Prandtl’s tip loss
I	� Irreversibility (kW)
ke	� Kinetic energy (J)
L	� Lift force (N)
m	� Mass (kg)
ṁ	� Mass flow rate (kg s−1)

P	� Pressure (kPa)
R	� Gas constant (kJ kg−1 K−1) and radius (m)
r	� Local radius (m)
T	� Temperature (k)
t	� Time (s)
TSR	� Tip speed ratio
v	� Velocity (m s−1)
wi2	� Tangential induced velocity
W	� Work (J) and relative velocity (m s−1)

Greek letters
α	� Angle of attack (rad)
β	� Pitch angle (rad)
η	� Energy efficiency
Ω	� Rotor speed (rad s−1)
ρ	� Density (kg m−3)
σʹ	� Solidity
φ	� Flow angle (rad)
Ψ	� Exergy efficiency
ϖ	� Specific humidity

Subscripts
des	� Exergy destruction
ph	� Physical
0	� Ambient
1	� Inlet
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2	� Outlet
out	� Output
avg	� Average

Introduction

Using fossil fuels in order to meet the energy demand of 
the world has brought a lot of environmental problems such 
as global warming and air pollution [1, 2]. Moreover, the 
resources of these fuels are limited and the energy crisis 
has been becoming an important issue in recent decades 
[3]. Therefore, several strategies like using efficient hybrid 
energy systems or renewable energy resources should be 
applied to decrease the consequences of fossil fuels con-
sumption [4, 5].

Renewable energy resources like wind and solar energy 
have been known as the types of energy that are clean and 
have the lowest impact on the environment compared to 
fossil fuels [6–8]. With the rapid advancement of wind tur-
bine technology and its expansion in the energy production 
portfolio of countries, the need to study the performance of 
wind turbines in different climatic conditions has become 
very important for wind energy engineers [9]. The study 
of some thermodynamic variables of wind flow has not yet 
been fully investigated in the wind turbine’s operation. In 
most studies, the power factor or the wind turbine energy 
efficiency ratio is considered to be the ratio of the power 
extracted from the wind turbine to the kinetic energy of the 
wind that is in contact with the rotor plate (first law of ther-
modynamics concept). Since this assumption does not take 
into account the other wind flow’s characteristics such as 
temperature, humidity, and pressure difference, this assump-
tion will not be accurate enough to analyze the efficiency of 
a wind turbine. Therefore, studying the wind turbine based 
on the second law of thermodynamics (exergy analysis) is 
an alternative way to reach a comprehensive insight into the 
wind turbine’s performance in different conditions.

Exergy analysis is one of the important tools for evaluat-
ing renewable energy cases and hybrid systems in different 
scenarios [10, 11]. This key not only gives a clear picture 
of the effects of each variable on the system but also is a 
good way to analyze the system economically in the energy 
markets [12–15]. For example, Chunpeng used various sce-
narios based on wind energy scopes to reach a sustainable 
and clean energy in the multigenerational systems, and it 
was shown the effect of wind energy on electricity price 
reduction [16]. Similarly, Maleki proposed a cost-effective 
system using wind energy and demonstrated the effect of 
wind in cost and efficiency of the system [17]. Barhoumi 
analyzed the different resources of renewable energy in 
Saudi Arabia and finally explained the importance of wind 
and solar energy in this country for the future [18]. In these 

studies, the importance of wind energy resources for the 
future of the energy market based on the exergy analysis is 
shown. The exergy concept can be used to analyze the wind 
turbine in a hybrid system. Koroneos studied the exergy effi-
ciency of a renewable system including a wind turbine to 
determine the electricity production of a hybrid system [19]. 
He concluded that even though wind flow has much more 
influence on energy and exergy efficiencies, the effects of 
other metrological variables are important in the calcula-
tion. Khalilzadeh employed the exergy and thermoeconomic 
concept to assess using waste heat from a wind turbine for 
desalination [20]. It was shown that this idea seems to be 
useful as it increases the exergy efficiency of the integrated 
system by 7.34%. Also, regarding the cost of potable water, 
the average rate of return and payback period are predicted 
as 6.76% and 6.33 years, respectively. Similarly, Nematol-
lahi proposed a novel method to use the heat waste of wind 
turbine into an organic Rankine cycle system and analyzed 
it based on the second law of thermodynamic [21]. Khosravi 
defined and assessed an off-grid hydrogen storage system 
combining solar panel and wind turbine, hydrogen produc-
tion unit, and fuel cell. It was demonstrated that the average 
energy and exergy efficiencies of the wind turbine were 32% 
and 25%, respectively [22]. Mohammadi analyzed the exergy 
efficiency of a combined cooling, heating, and power system 
integrated with wind turbine and compressed air energy stor-
age system [23]. The result of this study revealed that wind 
turbine and combustion chamber are the most important 
sources of the exergy destruction in this system.

In these researches, it was assumed that the wind turbine 
is a stable part of the systems and did not take into account 
the effect of the wind turbine’s fluctuations caused by metro-
logical variables changes on the system, while it is clear that 
changing the metrological variables in different conditions 
can affect the wind turbine’s performance.

Aghbashlo compared the different exergy analysis meth-
ods used to model the efficiency of a wind farm in Iran 
and propose an accurate approach to assess a wind power 
plant under different conditions [24]. Ahmadi conducted an 
exergetic analysis on a vertical-axis wind turbine [25]. He 
modeled the entropy generation, and observed by increasing 
the entropy generation in the system that the output power 
produced by wind turbine drops dramatically. Baskut evalu-
ated the impacts of meteorological parameters namely tem-
perature, pressure differences, and humidity on the exergy 
efficiency of a wind site in Turkey [26].

In these cases, the results of the experimental data were 
used to model the wind turbines based on the second law of 
thermodynamics. But it should be mentioned that measur-
ing the wind speed behind the rotor plan is very important 
to calculate the exergy flow in research, which is mostly 
calculated based on the kinetic energy changes; however, it 
is clear that wake production and irreversibility behind the 
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wind turbine affect the kinetic energy of the system. There-
fore, using aerodynamic modeling can be a good way to 
model the wind turbine and calculate the wind speed in dif-
ferent zones. Pope uses the CFD simulation method to model 
4 different wind turbines in different conditions [27]. He 
modeled two vertical-axis wind turbines and two horizontal-
axis wind turbines and used different methods to measure the 
wind speed behind the wind turbines in order to show how 
much calculating the wind speed behind the wind turbine 
can affect the calculations. However, there is no experimen-
tal data for this research to validate the calculated results. 
Khanjari employed the blade element momentum (BEM) 
method to model the MEXICO wind turbine and study the 
effect of the yaw changes and roughness intensity [28, 29]. 
He demonstrated that the BEM theory is a trustable method 
to model a wind turbine to calculate exergy parameters. It 
was concluded that increasing the roughness intensity and 
the yaw angle will decrease the power production and the 
exergy efficiency dramatically. Moreover, it was shown that 
the effect of the pressure changes, temperature, and humid-
ity of wind flow at the wind speed of 24 m s−1 on the exergy 
efficiency of the wind turbine but these effects were not fully 
studied in different wind speeds and pitch angles to show 
the effect of every single parameter on the wind turbine’s 
performance.

In all cases, it was shown that the wind speed has had a 
significant effect on the exergy efficiency compared to the 
other metrological variables. But it was not shown the effect 
of each parameter on the exergy efficiency as a comprehen-
sive study. On the other hands, they showed the effects of 
the metrological parameters in a constant wind speed and 
pitch angle, which will not give a clear understanding about 
these parameters.

In this study, the BEM theory is employed to model a 
150 KW horizontal-axis wind turbine and then study the 
effect of temperature, pressure, and relative humidity in 
different wind speeds and pitch angles on the wind turbine 
performances based on the first and second laws of thermo-
dynamics. The aim of this study is to show how much the 
metrological parameters can affect the exergy efficiency of 
the wind turbine in different wind speeds and pitch angles.

Materials and methods

Wind turbine energy analysis

Raising the wind turbine’s efficiency is one of the hottest 
topics between scientists. Therefore, studying the wind tur-
bine’s performance in different conditions is vital in order 
to achieve this goal [29, 30]. With this said, aero-dynami-
cal modeling of the wind turbine can help us to achieve a 

profound insight into the wind blades’ reaction in different 
conditions before constructing them.

There are two distinct ways to simulate the wind turbine 
aerodynamically:

1.	 Modeling the wind turbine by using the blade element 
momentum (BEM) theory, this has a satisfactory predic-
tion and needs less time to calculate the aerodynamic 
loads on the wind turbine compared to other methods 
[28, 31, 32].

2.	 Modeling of the wind turbine in computational fluid 
dynamics (CFD). It is governed by Navier–Stokes equa-
tions. This method is able to plot the different contours 
of the wind flow before and after the wind turbine but it 
is time-consuming. Also, the cost of wake simulation in 
this method is high [33–35].

Direct modeling (DM), which implements the exact 
geometry of the wind blades, is the common approach to 
simulate wind turbines in the CFD domain. Also, actuator 
disk (AD), actuator surface (AS), and actuator line (AL) are 
other methods in the CFD domain, coupling Navier–Stokes 
equations by BEM concept to eliminate the geometry of 
blades in the domain and decrease the time consumed by 
computers [33, 36, 37].

In order to apply the BEM code, airfoil characteristics 
are needed, which are mostly based on 2-dimensional (2D) 
measurements. Due to 3-dimensional (3D) effects, the BEM 
code will not able to predict a trustable result. Therefore, 
using the 3D aerofoil correction is a pivotal part of modeling 
[38].

Mahmoodi showed that an improved BEM model using 
3D correction in the stall region has a more accurate predic-
tion than AD simulation in the CFD domain [39]. Moreover, 
Kabir used the BEM method employing the 3D correction to 
evaluate the stall delay phenomenon for the NREL1 Phase VI 
wind turbine having five radial locations. It was concluded 
that this has a good agreement with aerofoil characteristics 
distribution along the blade span and a good matching for 
aerodynamics load as well as power production [40]. Pinto 
studied the BEM theory to optimize the wind turbine’s per-
formance aerodynamically. He demonstrated that in order to 
reach an optimal operating condition for a wind turbine, all 
sections of blades have to operate at maximum lift-to-drag 
ratio [41].

Arramach implemented the BEM theory coupled by 
brake state model for NREL wind turbine to determine the 
axial and tangential induction factors in different tip speed 
ratios and studied the effect of radial flow along the blades 

1  National Renewable Energy Laboratory.
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causing the centrifugal pumping on the wind turbine in both 
pre-stall and post-stall regions [42].

Another correction that has a considerable effect to reach 
a reliable prediction in BEM modeling is tip loss correction. 
Zhong implemented the tip loss correction for three wind 
turbines and concluded that this correction has a satisfactory 
agreement with experimental results in a wide range of tip 
speed ratios [43].

BEM theory

BEM theory combines both blade element theory and momen-
tum theory to calculate the force on the wind turbine’s blades. 
At first, this theory was used by Froude [44] later refined by 
Glauert [45].

By assuming the wind flow around the wind turbine is 
incompressible and axisymmetric, BEM theory is a good tool 
for understanding wind turbine aerodynamics [46]. In this 
study, the BEM method developed and described in detail 
by Glauert and Hansen is implemented [45, 47]. Each blade 
of the wind turbine is divided into several elements, and the 
performance of them is deduced by applying the momentum 
conservation principle [44, 48, 49].

A wind turbine rotating in each angular velocity generates 
a wake behind itself, which has a determinable impact on the 
flow upstream [50, 51]. Consequently, the wind speed before 
touching the blades V1 will be decreased by the wake induced 
velocity. It will be obtained by applying the momentum theo-
rem in the axial direction [47].

That a is the axial induction factor.
Avoiding the breaking down of the integration process, a 

correction is used as Eq. (2) [52]

where k is an auxiliary function and ac = 0.3 is the separation 
point of the thrust coefficient in the high axial induction fac-
tor, Cl and Cd are the lift and drag coefficient.

Also, the tip loss correction is used in this study is defined 
by following equation [47, 50].
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f is Prandtl’s tip loss correcting the turbine as a finite 
bladed rotor.

Moreover, there is a similar equation for the rotational 
speed [47, 50].

where wi2 is the tangential induced velocity at the plane just 
before the rotor and a′ is the tangential induction factor.

Other parameters like the angle of flow (ϕ) and the angle 
of attack (α) are followed by Eqs. 6 and 7 [47].

Regarding Fig. 1, in order to calculate the power pro-
duced by wind turbine, the axial and tangential forces on a 
blade element should be: 

In Fig. 1, Vo is incoming wind speed, Ω is angular veloc-
ity of the blade, r is local radius of the element, W is relative 
velocity, β is pitch angle, ϕ is flow angle, L and D are the 
induced lift and drag forces per blade length, respectively 
[47].
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c is chord length in Eqs. (10) and (11), dFax and dFtan are 
axial and tangential induced forces on the element length in 
Eqs. (12) and (13) respectively, R and rhub are tip and hub 
radius of the rotor in Eq. (14), Power is output power gener-
ated by the rotor in Eq. (14), and TSR is tip speed ratio of 
the rotor in Eq. (15).

3D modeling for the stall region

The BEM theory is a 1D code, which is not able to take 
into account the 3D flows effect aerodynamics of blades. 
An aerofoil data correction described by [47] was used in 
this study to convert lift confident of aerofoil data from two 
dimensions to three dimensions.

Figure 2 describes how to alter the lift coefficients. By 
extending the linear part of the origin curve (in viscid part), 
the stall region will be covered. The difference between two 
curves ΔCl= Cl,inv − Cl,2D is multiplied by x(c/r)y, where 
x = 2.2 and y = 1 according to [39].

Methodology

As it shown in Fig. 3, the following steps are taken to obtain 
the output results of BEM based on C programming.

Exergy modeling

The exergy concept depicts the locations of energy destruc-
tion in a process [53]. Therefore, the output result of exergy 
analysis can lead to enhance system operation [54]. Also, it 

(15)TSR =
�R
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(16)Cl,3D = Cl,2D + x
(
c
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)y

cos4 (�)
(
Cl, inv − Cl, 2D

)

can quantify the quality of energy in a thermodynamical pro-
cess [55]. Exergy is the maximum work output generated by 
a system or a flow of matter or energy that has equilibrium 
with reference environmental conditions [56, 57]. In real 
process (except for ideal, or reversible processes), exergy is 
not subject to a conservation law and it will be consumed 
or destroyed, due to the irreversibilities of process [58]. In 
exergy analysis, the characteristics of a reference environ-
ment must be specified [59]. It can be done by specifying the 
variables namely pressure, relative humidity, temperature, 
and chemical composition of the reference environment. 
Therefore, the output results are rely on the specified refer-
ence environment [60].

In this section, the modeling of both energy efficiency 
(η) (Eq. 17) and the exergy efficiency (Ψ) (Eq. 18) for the 
wind turbine are described. Like the other thermodynam-
ics systems having limitations in efficiency due to the irre-
versibility [61–63], it is not possible for the wind turbine 
to extract the total kinetic energy of the flow. Based on 
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Betz’s law, wind turbines can convert less than 59% of the 
wind power to output power [64]. Nevertheless, in prac-
tice, their efficiency is about 40% for great wind speeds. 
The energy efficiency is the ratio of total useful work pro-
duced by a wind turbine to the difference in kinetic energy 
of wind flow. Also, the exergy efficiency is the proportion 
of useful work to the exergy of the wind passing through 
the wind turbine (see Fig. 4) [65].

(17)� =
Wout

kinetic energy ofwind

(18)� =
Wout

Exflow

The energy balance equation of the wind turbine is 
defined by [65]:

where ke1,2 is the kinetic energy of wind flow before and 
after the wind rotor plan, respectively.

The mass flow rate of the wind turbine can be intro-
duced by:

The output velocity of the wind turbine can be calcu-
lated by [28]:

(19)ke1 = Wout + ke2

(20)ke1,2 =
1

2
ṁv2

1,2

(21)ṁ = 𝜌𝜋r2v

Fig. 3   Algorithm designed for 
the enhanced BEM method in 
the current study
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The exergy balance for this model is [65]:

And the wind turbine’s destruction can be defined by 
[66]:

where P1,2 = P0 ± (ρ/2)(V1,2)2. Also, the temperatures of flow 
in both states T1,2 are calculated through the wind chill tem-
perature formula developed in [67].

Finally, Eq. (27) can be used for exergy of humid air 
[26].
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In this research, the reference pressure and temperature 
are taken based on the experiment environmental condi-
tion (101.3 kPa and 298 K), respectively.

Case study

A horizontal-axis and a three-bladed wind turbine with 
a 150 KW power output named INER-P150II is used in 
this study [68] (see Fig. 5). The pitch angle and chord 
length are varied along the wind blade with 10.8 m length. 
Moreover, different types of airfoil sections such as DU 
series, NACA0013166, and FX63-137 were used from the 
root to tip blade. The wind turbine specification is sum-
marized in Table 1.

V2
Tat
Pat
PV2

V1
Tat
Pat
PV1

Fig. 4   The diagram of inlet and outlet parameters states in the rotor 
plan

Fig. 5   INER-P150II wind turbine

Table 1   the specification of 
nominated wind turbine [68] Rated RPM 45–50

Cut-in wind speed 3 m s−1

Cut-out wind speed 25 m s−1

Hub height 50 m
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Results and discussion

One important reason to implement the BEM method in 
this study is that to achieve clear anticipation about the 
power productions and power calculating the wind speed 
behind the rotor plan. The results of the output power 
under different speeds and pitch angles are presented and 
compared with experimental data in Fig. 6. With increas-
ing the wind speed from 5 to 12 m s−1, the power pro-
duction of the wind turbine increases steadily; however, 
after peaking at 12 m s−1 there is a reduction in the power 
production for all three modelings. Also, the results of the 
BEM modeling are almost in the same phase with experi-
mental data in low wind speed under 10 m s−1. It is antici-
pated that the wind turbine can produce 165 KW output 
power under the wind speed of 12 m s−1 and pitch angle 
of 5°. Also, it is shown that increasing the pitch angle will 
decrease the power production more specificity in high 
wind speeds.

As seen in Fig. 7, both energy and exergy efficiencies 
of the wind turbine are increased by rising the wind speed 
from 5 to 12 m s−1 at the pitch angle of 5° and 10°, while 
in higher wind speeds up to 12 m s−1 the wind turbine has 

faced with a steady reduction in efficiency. The maximum 
exergy and energy efficiencies are 42.8% and 43.9% at 
wind speed 12 m s−1 and pitch angle 5°. Moreover, the 
wind turbine has had the lowest efficiency at pitch angle 
20° compared to other pitch angles. Also, it should be 
mentioned that since the energy analysis just shows chang-
ing the kinetic energy and is not able to depict the effects 
of the temperature, pressure, and humidity, it predicts the 
higher efficiency more than the exergy efficiency.

Wind speed is the most important source of the exergy 
flow in the wind systems; however, the wind turbine is 
not able to extract all of the wind exergy and the leftover 
of the upcoming wind leave the rotor plan and disappear. 
Also, due to the wake production behind the wind blades 
in both laminar and turbulent flows as main sources of 
entropy production, the amount of the exergy destruc-
tion is shown in this study. As seen in Fig. 8, while wind 
speed increases, both exergy destruction and exergy flow 
rise continuously. By increasing the pitch angle from 
5° to 20°, the wind blade will touch the higher angle of 
attacks, which means that the flow separation behind the 
blade will increase considerably. Therefore, it increases 
the wake production in the flow stream behind the wind 
turbine; consequently, the exergy destruction will increase 
dramatically.

Regarding the former figures, it is shown that wind 
speed has a noticeable effect on the wind turbine’s perfor-
mance, but in figures from 9 to 11 it will show the effect of 
the other metrological parameters on the exergy efficiency 
in four wind speeds of 8, 10, 12, and 14 m s−1 and three 
pitch angles of 5°, 10° and 20°. As seen in Fig. 9 increas-
ing the relative humidity has had a negative effect on the 
exergy efficiency in all three pitch angles; however, this 
impact on the higher wind speeds (12 and 14 m s−1) is not 
very sensible. By increasing the pitch angle, this amount 
of the reduction increases too. The higher exergy effi-
ciency loss has occurred at the wind speed of 8 m s−1 and 
pitch angle 20° (near 1.76%), When the relative humidity 
increases from 0.001 to 0.015.
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Fig. 7   a Exergy efficiency.  
b Energy efficiency of the wind 
turbine against the wind speed 
in various pitch angles
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Fig. 8   Compression of the 
a exergy flow and b exergy 
destruction under different wind 
speeds
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In Fig. 10, the relation between pressure changes (from 
100 to 250 pa) and exergy efficiency is shown. Likely, 
changing the Δp from 100 to 240 pa has had an adverse 
effect on the exergy efficiency, especially at the lower speeds 
and pitch angle 20°. In wind speeds more than 10 m s−1, the 
effect of the wind speed on the wind turbine’s efficiency 
is dominant. Therefore, the sensibility of the system to 
other parameters becomes insignificant. It is shown that by 
increasing the pressure changes from 100 to 250 pa at the 

wind speed of 8 m s−1 and pitch angle of 20° the exergy 
efficiency will decrease 1.26%.

Numerical evaluation between changing the ambient 
temperature and exergy efficiency is depicted in Fig. 11. 
Compared to pressure changing and relative humidity, the 
temperature has a straight effect on exergy efficiency. In all 
three pitch angles, temperature has had the highest effect 
on the wind speed of 8 m s−1. It is shown that by increasing 
the ambient temperature from 5 to 35 °C, exergy efficiency 

Fig. 10   Effect of pressure 
changing on exergy efficiency 
in different wind speed. a Pitch 
angle 5°. b Pitch angle 10°.  
c Pitch angle 20°
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increases from 38.1 to 40.1% in wind speed of 8 m s−1 and 
pitch angle 5°.

Conclusions

In this study, the wind turbine’s performance in differ-
ent conditions based on the energy and exergy analysis is 
studied.

•	 The BEM code has had a good agreement with exper-
imental data to calculate the power production for all 
three pitch angles.

•	 The maximum exergy and energy efficiencies are 42.8% 
and 43.9% at wind speed 12 m s−1 and pitch angle 5°

•	 Wind speed has the highest impact on the energy and 
exergy efficiency of the wind turbine, compared to the 
temperature, pressure changes and relative humidity.

•	 Temperature has a positive effect on the exergy efficiency 
and by increasing the temperature from 5 to 35 °C, the 
exergy efficiency rises 2% at the wind speed of 8 m s−1 
and pitch angle of 5○,

•	 Increasing the relative humidity from 0.001 to 0.015 and 
pressure changes from 100 to 240 pa can decrease the 
exergy efficiency 1.76% and 1.26% at the wind speed of 
8 m s−1 and pitch angle of 20°, respectively.

•	 Effects of the pressure, temperature and relative humidity 
in the low wind speeds (less than 10 m s−1) are more sig-
nificant than the high wind speeds on the wind turbine.
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