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Abstract
In this work, we report the synthesis of a new nanofluid (NF) based on magnetic nanoparticles (MNPS) synthesized by the 
coprecipitation method with high colloidal stability. The MNPS were functionalized with citric acid (Cac), and then, polyeth-
ylene glycol, 1000 (PEG1000), was bonded by polycondensation reactions with acid groups on the nanoparticles surface to 
increase the colloidal stability of the nanofluid. The MNPS were dispersed in an aqueous medium to obtain nanofluid-based 
magnetic nanoparticles in water (NF-MNPS-W) and in ethylene glycol to obtain nanofluid-based magnetic nanoparticles in 
ethylene glycol (NF-MNPS-E). The MNPS were characterized by X-ray diffraction and selected area electron diffraction, 
which confirmed the formation of the crystalline phase of Fe3O4. Transmission electron microscopy was used to confirm 
the size and morphology of the MNPS. The MNPS had an average diameter of 11.33 ± 3.68 nm. Infrared spectrum of the 
MNPS allowed the functionalization of the MNPS by Cac and then by PEG1000 to be proved. The colloidal stability of 
NF-MNPS-W (pH 8) and NF-MNPS-E was evaluated by measurement of Zeta potential (ζ) and dynamic light scattering 
(DLS) − 25 mV and 112 nm ± 1 nm, respectively. The DLS in the temperature function allowed the stability of the NF to 
be proved in working conditions.
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Introduction

The combination of electronic components and the min-
iaturization of devices are responsible for the production 
of large amounts of heat flow. Although there has been a 
growth in the electronics industry, semiconductor technol-
ogy still presents significant challenges related to refrig-
eration, which may result in lower performance and lower 
longevity of the devices. A combination of different cool-
ing techniques has been used to meet the current energy 
demands [1–7].

As is generally known, high-efficiency electronic 
devices produce large amounts of heat in small areas, and 
traditional methods of refrigeration, the use of conven-
tional refrigerants is not able to meet the demand for cool-
ing [8–10]. To overcome research into new materials with 
more efficient refrigeration capacity has become increas-
ingly intense [11].

In this context, the use of nanofluids (NF), which con-
sist of a colloidal dispersion of highly stable nanoparticles 
in a traditional refrigerant, has been promising because it 
has a heat exchange capacity superior to the conventional 
fluids used in refrigeration [6, 12–15]. Since its conception 
in the early 1990s, this new class of materials has been 
considered promising as more efficient heat exchangers. 
They can be applied as refrigerants in the most diverse 
areas [16], such as solar collectors [17, 18], vehicles, and 
refrigeration [19], different means of transportation [9], 
aerospace [20], cutting and tempering of metals [21], and 
electronic devices [6, 22].

Besides, their superior cooling capacity can also be com-
bined with microchannel systems and thus considerably 
increase the efficiency in heat dissipation from electronic 
devices [19, 22, 23]. More than 20 years of research have 
been invested since the first report on the superior proper-
ties of heat exchange related to the use of NF as refrigerants 
[24–26]. More recently, articles have been concerned with 
demonstrating the colloidal stability of these systems, which 
is critical if NF for use in real systems [27–32].

Researchers have been engaged in the production of NF 
with appreciable colloidal stability and the study of the col-
loidal properties of these systems. However, a systematic 
review is essential, demonstrating colloidal stability over 
time and presenting the conditions used during this interval 
(e.g., in steady state or under agitation, at what temperature 
or in light). Images or data that prove the stability of these 
NF also needed. It is vital to show the values of the dynamic 
light scattering (DLS) of the sample, the size distribution 
curve, and the polydispersity index (PDI) of the sample, fac-
tors that prove the quality of the data obtained.

Different NF has been reported in the literature over 
the past decades [33–36], and the vast majority consisting 

of nanoparticles (NPS) oxides [37] dispersed in various 
fluids such as water, ethylene glycol, and refrigerant oils. 
Oxide NPS have been noted for their ease in obtaining, 
handling, and cost when compared, for example, to the use 
of metallic NPS or carbon derivatives. Among oxide NPS, 
colloidal magnetic nanoparticles (MNPS) dispersions were 
intensively studied decades before the development of this 
class of materials now known as NF (previously reported 
in the literature as ferrofluids or in high concentrations as 
rheological magnetic fluids) [38–40].

MNPS have unique characteristics that can, for example, 
allow flow control in microfluidic circuits. Furthermore, 
these materials are prevalent in the use of drug release 
[41–43]. MNPS can flow along a magnetic field gradient, 
which may be useful for the development of micropumps 
without moving parts that can be a pumping alternative to 
microsystems [44, 45].

Although the use of MNPS are widespread in the litera-
ture and there are many different protocols for obtaining 
these materials, ensuring the chemical and colloidal stability 
of this system for an extended period without agglomeration 
or aggregation occurring is an extremely important factor 
[46]. After obtaining the MNPS, they are usually able to 
present colloidal stability at acidic/basic pH regions. This is 
colloidal stability acquired is due to the loading of the sur-
face of the MNPS at these pH intervals giving electrostatic 
stability to the colloid [47].

Electrostatic stability is widely reported in the literature, 
and this system can be well described by DLVO theory [48], 
but when it comes to nanofluid applications, it is not the best 
strategy to be used for colloidal stabilization of the system. 
Electrostatic stability promotes colloidal stability through 
kinetic mechanisms and, for these to be more efficient, they 
must be composed of diluted colloidal dispersions. Fur-
thermore, methods based on electrostatic repulsion may be 
agglomerated/aggregated due to compression in the electric 
double layer when the system undergoes variations in its 
ionic strength [49].

Thus, to promote better system stability, the use of the 
steric stabilization strategy or electrosteric stabilization 
is the best strategies for colloidal stability in nanoma-
terials. The first is capable of promoting colloidal sta-
bility for the system by creating a physical barrier that 
prevents two particles from getting close, decreasing the 
entropy of the system in addition to having an increase 
in the osmotic gradient caused when particles approach 
one another, factors that significantly increase the col-
loidal stability of the system compared to electrostatic 
stability [49]. The third (electrosteric) strategy that can 
be adopted comes from the combination of the mentioned 
strategies promoting better colloidal stability to the sys-
tem. Therefore, in this work we produced MNPS, which 
were coated with citric acid and then functionalized with 
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PEG1000, combining the electrostatic and steric stabiliza-
tion mechanisms, to obtain efficient colloidal stability in 
the various application conditions, such as dilution and 
temperature variation.

In this paper, we report the synthesis of two NF (water 
and ethylene glycol-based), obtained by dispersion of 
MNPS coated by Cac-PEG1000 and the evaluation of 
their colloidal stability as a function of the time, heating 
cycles and, for the water-based fluid, the effect of pH as 
well.

Materials and methods

All the chemical reagents used in this work presented ana-
lytical grade and were used without any purification. For 
the synthesis, iron(II) chloride tetrahydrate (98%), iron(III) 
chloride hexahydrate (97%), citric acid (99%), polyethyl-
ene glycol 1000, and triglyme (99%) were purchased from 
Sigma-Aldrich Brazil. Sodium hydroxide (97%) Vetec, 
sodium chloride (99%), and ethylene glycol were acquired 
from Neon, and absolute ethanol (99%) was obtained from 
Synth. Acetone (99%) and hydrochloric acid (38%) were 
bought from J.T. Baker.

Fig. 1   Synthesis and function-
alization of MNPS step by step

MNPS synthesised by coprecipitation method
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Fe2+  and Fe3+
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Surface modification
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Surface modification second step
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(stirring)
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Experimental

The MNPS were synthesized by coprecipitation of the 
mixture of iron(II), and iron(III) ions in alkaline medium 
with modifications [12] Fig. 1 shows the scheme used for 
the synthesis and functionalization step by step. Briefly, 
a solution containing 0.04 mol of FeCl2, and 0.08 mol of 
FeCl3 was dropped into hydroxide solution 1.5 mol L−1 

under mechanical stirring and inert atmosphere. The solu-
tion was stirred for 12 h at 100 °C. The MNPS produced 
were washed with distilled water until pH 9.0. After that, 
the MNPS were functionalized [50] with citric acid (Cac), 
magnetic nanoparticles were surface modified with citric 
acid (MNPS-Cac), and 0.37 mmol of Cac was added for 
each 1 g of MNPS and kept under stirring overnight. The 
MNPS-Cac produced were washed with distilled water and 
ethanol. In the peglaytion step, polyethylene glycol, 1000 
(PEG1000), was bonded by polycondensation with the 
citric acid on the surface of the nanoparticles to produce 
the surface of the magnetic nanoparticles modified with 
citric acid and PEG1000 (MNPS-Cac-PEG1000). Then, 
1.5 g of wet MNPS-Cac was dispersed in triglyme, and to 
it was added 20 mL of PEG1000; this solution was kept in 
a magnetic stirrer at 120 °C for 3 h under an Argon flow, 
and then, the temperature was raised to 150 °C for 21 h. 
The MNPS-Cac-PEG1000 produced were washed three 
times with acetone [50]. Finally, this material was divided 
into two parts, one added to 50 mL water and the other 
one added to 50 mL ethylene glycol, to produce the NF-
MNPS-W and NF-MNPS-E. The dispersions were carried 
out by stirring overturning, and after adding the desired 
mass (1.15 g) to the solvent (50 mL), the nanomaterials 
stayed under stirring for 24 h at 10 rpm.

The X-ray diffractogram was obtained in a model 
5005 with CuKα radiation (I = 1.5418 Å) with a 40 kV 
and 40 mA, in the range of 20 to 80 degrees. The infra-
red spectra (FTIR) of the sample were performed using 
a Frontier FTIR spectrometer from PerkinElmer using 
diffuse absorption spectroscopy. The analysis was meas-
ured using 64 scans for accumulation data and 4 cm−1 of 
resolution in 4000 at 400 cm−1 range. The micrograph of 
MNPS has performed in a transmission electron micro-
scope Philips CM120 microscope at 120 kV. The TGA 
curves were obtained in the TGA 4000 thermoanalyzer, 
from PerkinElmer. The analyses were performed under 
the following conditions: temperature range from 35 to 
900 °C, the heating ratio of 10 °C min−1, under dry air 
with a flow rate of 10 mL min−1 in an α-alumina cruci-
ble. The determination of the degree of covering was car-
ried out, considering the average diameter of the MNPS 
obtained by TEM, for the calculation of the number of 
particles present in 1 g and the surface area of a MNPS, 
with the TGA data the mass was related to loss of organic 
matter in the samples, and the approximate amount of 
coating molecules present in this mass was calculated, 
from the ratio between the number of molecules and the 
surface area of a nanoparticle, the degree of coating of the 
number of molecules per nm2 of the MNPS surface. The 
colloidal stability was evaluated by the analyses of the 
zeta potential (ζ) and DLS using a Zetasizer Nano series 
ZS equipment from Malvern Instruments. Measurements 
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of DLS as a function of temperature were taken from the 
dilution of the NF samples in ultrapure water or ethylene 
glycol. For the measurements as a function of temperature, 
the samples were added to a glass cuvette, and the analyses 
were performed using 600 s for temperature equilibrium 
and performed in triplicate. After the analyses, the sam-
ples were discarded. The hydrodynamic diameter average 
was performed by cumulative analysis, and the final value 
obtained was the average of the Z-average triplicate, and 
all data presented are related to the intensity of scattered 
light. The Zeta potential was measured by dispersing 50 
microliters of NF in 1 mL of solution (water, sodium chlo-
ride 1 and 10 mmol L−1). Then, the samples were titrated 
in the pH range 3 to 10 with an interval of pH units meas-
ured in triplicate with 30 s between each measurement, 
using hydrochloric acid (HCl, 0.1 mol L−1) and sodium 
hydroxide (NaOH, 0.1 mol L−1) as titrants.

Discussion and results

The crystallographic structure of the MNPS was evaluated 
by the XRD analyses. Figure 2 shows the XRD patterns of 
the MNPS.

As observed, the sample showed characteristic reflection 
patterns according to the crystalline structure standard of 
magnetite (pdf JPCDS 79-419). The lattice parameter was 
a = 8.530, which is approximately equal to the standard mag-
netite. The size of the crystallites was calculated based on 
Scherrer’s law, using the width at half-height of the most 

intense peak <311> and considering the approximately 
spherical MNPS, the average size of the crystallites was of 
9.1 nm [50, 51]. Figure 3 shows the morphology and the 
diameter distribution of the MNPS.

As can be observed in Fig. 3a, b, the roughly spheri-
cal morphology of the MNPS and the average diameter 
size (DTEM) obtained by the counts of the images from 
transmission electron microscopy (TEM), the MNPS had 
an average diameter of 11.33 ± 3.68 nm Fig. 3c. Figure 3d 
shows the selected area electron diffraction (SAED), in 
which indexation of the MNPS is performed by software 
Crystbox7 and the crystalline phase of the MNPS is con-
firmed as magnetite PDF card number 79-419 from the 
JPCDS database. The size histogram of the MNPS sample 
was obtained by counts of 200 particles and using a Gauss-
ian distribution function with R2 = 0.96. The calculated 
polydispersity index (PDITEM) acquired by the square of 
the rate of the standard deviation by DTEM is 0.11, and 
this indicated that the MNPS synthesis is monodisperse 
(monodisperse materials show PDITEM close to 0.1) [52].

Figure 4 shows the spectra in the infrared region, con-
firming the coating of the MNPS in different steps of the 
surface modification.

The characteristic band is shown in Fig. 4 in the region 
of 3183 cm−1 attributed to the O–H stretch [53]; the bands 
in the range of 2953 and 2858 cm−1 to the C–H stretch [54] 
and the bands in the region of 578 cm−1 were assigned to 
the M–O stretch [53]. MNPS-Cac presents absorption bands 
in 1599 and 1385 cm−1 that were attributed to asymmetrical 
and symmetrical COOH stretches and confirm the modifica-
tion of the surface of the MNPS by Cac [54]. The difference 
between these bands was calculated as Δ = 204 cm−1, and 
this gives evidence that the Cac bridges the iron atoms [53].

The other bands confirm the presence of PEG1000 in the 
sample. As observed, the asymmetrical and symmetrical 
stretches were shifted to 1610 and 1385 cm−1, respectively, 
indicating the change in the chemical environment caused 
by PEG1000 [55, 56]. However, the characteristic band of 
C=O stretch esters that would confirm the reaction between 
PEG1000 and Cac is of low intensity, indicating that only a 
small amount of sample would be bound to PEG1000 (Inset 
Fig. 4b) [55, 56]. The band in the 1294 cm−1 region was 
assigned to the C–H stretch, and the 1248 cm−1 band was 
attributed to the CH3 strain. Finally, the original PEG band 
at 1108 cm−1 was attributed to the C–O–C stretch [57, 58].

Figure 5 shows the three TGA curves of the samples 
(MNPS, MNPS-Cac, and MNPS-Cac-PEG1000). Their 
specific thermal events are described in detail.

All the TGA curves show the first thermal event attrib-
uted (range 30–175 °C) to the desorption of water molecules 
adsorption at the NPS surface. This event is associated with 
a small mass loss that was 1.25, 1.93, and 1.22% for the 
MNPS, MNPS-Cac, and MNPS-Cac-PEG1000 samples, 
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respectively. For the MNPS sample, only one more slow 
thermal event is observed associated with hydration water 
molecules leading to a total mass loss of 3.63% for the 
MNPS-Cac presented in the thermal event, which can be 
related to loss of organic matter (7.37%). The MNPS-Cac-
PEG1000 showed three more thermal events, the first two 
associated with loss of organic matter at 361 and 659 °C 
with mass losses of 15.1 and 19.7%. The last observed ther-
mal event, which starts at 659 °C, is associated with a mass 
gain caused by the oxidation of magnetite to maghemite. 
However, the total mass gain cannot be completed in the 
temperature range analyzed.

Based on the data obtained from the loss of organic mat-
ter of the samples and knowing the size of the sample nano-
particle (11.33 nm), as shown in Fig. 5, it was possible to 
calculate the degree of coating of the samples. For sample 
MNPS-Cac, the degree of Cac coating was 1.13 Cac mol-
ecules per nm2 surface area of MNPS, indicating that Cac 
forms something close to a monolayer over MNPS, con-
sidering the bonding area of a carboxylate 0.25 nm2 [50, 
59, 60]. For the MNPS-Cac-PEG1000 sample, the coated 
PEG1000 shows the number of molecules for the particle to 
be approximately 316, which leads to an estimate that the 
molecule ratio of Cac/PEG1000 is 1.5 coating the nanopar-
ticles. TGA analyses of the sample at different heating ratios 
(10, 20, 25, 30 and 35 °C min−1) allowed the calculation of 
the activation energy required for the loss of approximately 
10% of the sample mass according to ASTM E1641. The 
activation energy in this process was about 109.6 kJ mol−1, 
which indicated the thermal stability promoted by coating 
the sample.

The colloidal stability of the NF was evaluated by meas-
urements of the zeta potential as a function of pH shown in 
Fig. 6.

The isoelectric point (IEP), the MNPS, MNPS-Cac and 
MNPS-CacPEG1000 were at pH 6.7, 3.1, and 3.6, respec-
tively. In Figure 6a, Zeta potential curves present the char-
acteristic profile of the MNPS curve as a function of pH. 
Zeta potential above the minimum limit (25 MV in modulus) 
[61] is needed for electrostatic system stability at pH values 
below 4 and above 8. This is characterized by the forma-
tion on the surface of Fe–OH2

+ species in acidic regions 
and Fe–O− species in alkaline regions [62]. After the first 
functionalization stage, Cac modifies the surface of MNPS 
by oxygen binding of Cac carboxylate. In the literature, Cac 
presents pKa at 4.2 [40, 63]; therefore, below pH 4, there is 
a predominance of the protonated form of this acid, whereas, 
at a higher pH, the acid is found in its deprotonated form, 
which confers a negative potential observed for this acid in 
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the sample MNPS-Cac. After the functionalization step, the 
PEG1000 saw a decrease (in modulus) of the potential due to 
the interaction between some Cac functional groups and the 
PEG1000 molecules. This diminished the contributions of 
the electrostatic stability to the system but contributed to the 
steric stability. In this way, a system with electrosteric col-
loidal stability is formed. Above pH 5.5, the sample shows a 
value of the zeta potential in modulus (25 mV), which gives 
the minimum electrostatic stability. Therefore, the final pH 
of the aqueous NF was adjusted to 8.0. The attachment of 

PEG onto the MNPS surface added higher dispersibility and 
colloidal stability in aqueous media compared with citrate-
coated [50]. The addition of NaCl electrolyte at a higher 
concentration (0.01 mol L−1) decreases the zeta potential 
magnitude, due to the effect known as “double electric layer 
compression.” The ionic strength increases in the system, 
caused by the addition of the electrolyte, and therefore leads 
to a decrease in the magnitude of the zeta potential and the 
electrostatic stability of the colloidal dispersions [32, 50, 
64]. Figure 7 evaluated the colloidal stability of the aqueous 
nanofluid NF-MNPS-W in the function of the pH.

The DLS data in Fig. 7 corroborate what is observed in 
the zeta potential curve for the MNPS-Cac sample. Above 
pH 5, the sample has appreciable electrostatic stability 
where no significant changes in the hydrodynamic diameter 
and polydispersity index values of the sample are observed. 
For lower pH values, however, the electrostatic stability 
is smaller, and a rapid increase in hydrodynamic diameter 
and polydispersity index values is observed, indicating the 
agglomeration/aggregation of the system particles. (The size 
distribution curves as a function of pH were added as sup-
port material Fig.Sup.01.)

Figure 8 shows the data of the zeta potential variation as a 
function of sample temperature NF-MNPS-W in different val-
ues of pH. In Fig. 8a, the behavior of the zeta potential of the 
NF-MNPS-W pH8 sample is shown when subjected to temper-
ature variations. As expected with increasing temperature, the 
magnitude of the zeta potential decreases since with increasing 
temperature, there is a decrease in the viscosity of the medium 
that is directly proportional to the zeta potential [59, 65, 66]. 
Although there is a slight decrease in the magnitude of the 
zeta potential, the sample in this temperature range showed 
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colloidal stability even after repeated heating and cooling 
cycles of the sample. In Fig. 8b, the importance of zeta poten-
tial value above 25 mV (in modulus) to nanofluid stability is 
observed, because the temperature influence is critical, and 
this will promote the quick agglomeration of nanomaterial the 
under this limit when the temperature of the fluid is increased. 
For NF-MNPS-W pH5, the sample has a zeta potential value 
lower than the electrostatic stability limit. Thus, the heating 
of the sample becomes more significant in the destabilization 
of the NF, as can be observed from 40 °C, and despite the 
polymer coating, the sample is subject to destabilization. The 
magnitude of the zeta potential decreases to near the isoelectric 
point of the sample. This decrease leads to loss of colloidal 
stability and phase separation. In Fig. 8c, the temperature of 
NF-MNPS-W pH5 was set at 40 °C and the variation in zeta 
potential as a function of time was observed; the sample gradu-
ally loses colloidal stability, and after 2250 s there is a change 
in behavior due to agglomeration of the sample.

To assess the stability of nanofluids under real working con-
ditions, NF-MNPS-W pH8 and NF-MNPS-E DLS measure-
ments were performed as a function of temperature, as shown 
in Fig. 9.

As noted, the Dh of the two NF does not change signifi-
cantly with the heating and cooling of the sample, because 
nanomaterial agglomeration caused by changes in system tem-
perature is not observed, which is due to the use of electros-
teric stabilization of Cac-PEG1000 functionalized nanoparti-
cles, providing a higher stabilization capacity than commonly 

used electrostatic stabilization. While electrostatic stabilization 
is susceptible to temperature variations that can cause nano-
materials to agglomerate because it is a kinetic stabilization, 
electrosteric stabilization has the alternative to increase the 
colloidal stability of the system through contributions of steric 
stability, which can add to the system promoting thermody-
namic stability to nanomaterials. These results are displayed 
in Fig. 9, which characterizes the colloidal stability of the NF 
against the working conditions of refrigerant fluid.

The colloidal stability of nanofluids as a function of 
time was assessed by DLS, as shown in Fig. 10. Figure 10 
evaluates the colloidal stability of the nanofluids: Fig. 10a–c 
show the initial DLS results for samples NF-MNPS-W pH5, 
NF-MNPS-W pH8, and NF-MNPS-E, respectively. The 
samples were stored and were stirred with overturning at 
low revolutions per minute, and in Fig. 10d–f, the results 
of DLS are presented after 160 days. As observed by the 
DLS data presented and by the photographs in the insets 
presented in Fig. 10c initial and Fig. 10f after 160 days, in 
these conditions, the only sample that showed to be unsta-
ble and separated phases was NF-MNPS-W pH5, but it was 
necessary to re-disperse the sample again for the analysis 
shown in Fig. 10c through the ultrasound bath. Although in 
the other samples the separation of phases was not observed, 
increases in the hydrodynamic diameter of the samples can 
be observed and the aging of the sample may indicate a 
destabilization of the sample due to the function of long 
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periods, observed by the increased contribution of families 
in the agglomerates.

Conclusions

In this work, we used peglaytion methodology to obtain 
stable NF based on Cac-PEG-functionalized magnetite 
dispersed in ethylene glycol and water. The pegylation 
step was adequate to obtain NPS with a coating degree 
that enables the colloidal stabilization mechanisms in the 
system. MNPS-Cac-PEG1000 were shown to be easily 
dispersed in water, and ethylene glycol and the resulting 
NF exhibited excellent colloidal stability. The Dh, when 
the nanofluids are subjected to heating and cooling cycles, 
showed no significant changes in the base fluids used, indi-
cating that they can be used as nanofluids. Dh did not 

change significantly when the sample was submitted to 
heating and cooling heat cycles to evaluated. This shows 
that these materials are promising for use as nanofluids.

Funding  Funding was provided by FAPESP (Grant No. project 
2015/126385).
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