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Abstract
Ammonium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) (ADNABT) was synthesized and characterized by IR spectros-
copy, 1H/13C NMR and single-crystal X-ray diffraction. The thermal decomposition of ADNABT was investigated by ther-
mogravimetry–differential thermal analysis (TG–DTA) and accelerating rate calorimeter (ARC). The kinetic parameters 
(activation energy, pre-exponential factor, mechanism functions) by DTA and ARC tests were simulated by Thermal Safety 
Software (TSS). The simulated results revealed that the exothermic decomposition of ADNABT under non-isothermal and 
adiabatic conditions all followed a full autocatalysis model. In order to ensure the safety of production, transportation and 
storage, several thermal hazard indicators such as time to maximum rate (TMR), reaction temperature at which TMR is 24 h 
 (TD24), time to conversion limit and self-accelerating decomposition temperature (SADT) were also simulated by TSS on 
the kinetic model. The  TD24 and  SADT50 kg were calculated as 183.37 and 167.00 °C, respectively.
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Introduction

Nitrogen-rich energetic compounds based on heterocyclic 
energetic anions, as a prominent family of novel energetic 
materials, have attracted considerable attention owing to 
their excellent detonation properties and good stability 
[1–5]. Heterocyclic energetic anions possess aromatic ring 
skeletons and large numbers of C–N and N–N bonds which 
can possess good stability and release more energy. In gen-
eral, the introduction of nitrogen-rich cations can increase 
the nitrogen content and performance.

Ammonium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) 
(ADNABT) has been described in the literature previ-
ously [1]. The detonation velocity (9407 m s−1) and pres-
sure (34.9 GPa) of ADNABT were similar to that of RDX 
and HMX and deemed as a promising energetic material. 
However, the structural characterization by IR spectroscopy, 
1H/13C NMR and single-crystal X-ray diffraction was not 

mentioned, and its thermal safety properties have not been 
evaluated.

The purpose of this study was to determine the thermal 
decomposition and kinetic parameters of ADNABT and 
provide some thermal hazard indicators for production, 
transportation and storage. First, the thermal decomposition 
processes of ADNABT was investigated by thermogravim-
etry–differential thermal analysis (TG–DTA). Next, the heat 
capacities (Cp) of ADNABT were measured by difference 
scanning calorimeter (DSC). The non-isothermal decom-
position was measured by DTA at different heating rates. 
The adiabatic decomposition was measured by accelerating 
rate calorimeter (ARC) in heat-wait-search mode. Then, the 
kinetic parameters by DTA and ARC tests were simulated 
by Thermal Safety Software (TSS) [6–12]. Finally, several 
thermal hazard indicators such as time to maximum rate 
(TMR), reaction temperature at which TMR is 24 h  (TD24) 
and time to conversion limit (TCL) and self-accelerating 
decomposition temperature (SADT) were simulated by TSS 
on kinetic models [6–12]. * Shaohua Jin 
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Experimental

Materials

3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) (DNABT) was 
homemade and purified according to the literature [1, 13]. 
Sodium hydroxide (0.60 g, 15 mmol) was added to a suspen-
sion of DNABT (1.92 g, 7.5 mmol) in water (50 mL) at room 
temperature. The reaction mixture was heated at reflux for 
1 h. Then, a solution of ammonia chloride (0.80 g, 15 mmol) 
in water (5 mL) was added to the reaction mixture and 
heated at reflux for 1 h. The resulting precipitate was col-
lected by filtration, washed with ethanol and dried at 50 °C 
to give ADNABT (0.86 g, 39%) (Scheme 1). ADNABT: 
IR (KBr pellet cm−1) 3342, 3205, 3036, 1628, 1525, 1445, 
1439, 1396, 1351, 1281, 1253, 1119, 1087, 1011, 977, 863, 
804, 766, 738; 1H NMR (400 MHz  d6-DMSO ppm) 9.55, 
7.00; 13C NMR (100 MHz  d6-DMSO ppm) 158.08, 153.39.

Suitable crystals of ADNABT for single-crystal X-ray 
diffraction were obtained by slow evaporation a solution of 
ADNABT in dimethyl sulfoxide (DMSO). The crystallo-
graphic data and crystal structure are shown in Table 1 and 
Fig. 1, respectively. The results revealed that one molecule 
of ADNABT was connected to two molecules of DMSO.

Instruments

A Netzsch difference scanning calorimeter device (DSC200 
F3) was used to measure Cp of ADNABT. The sample was 
heated from 30 to 110 °C with a heating rate of 10 °C min−1 
under a nitrogen flow of 50 mL min−1. A Shimadzu DTG-
60H simultaneous thermal analyzer was used to record the 
non-isothermal decomposition of ADNABT. All samples 

were 1.5 mg and were heated from 50 to 400 °C at different 
heating rates of 2, 4, 6, 8 °C min−1, respectively. A THT 
accelerating rate calorimeter (ARC) [14–17] was used to 
record the adiabatic test of ADNABT. The sample was 
100.3 mg and was heated from 80 to 350 °C in heat-wait-
search mode. The heat steps and wait times were 15 °C and 
15 min, respectively.

Results and discussion

Thermal decomposition processes by TG–DTA test

TG–DTA curve of ADNABT under a heating rate of 
8 °C min−1 is shown in Fig. 2. Obviously, there were two 
significant peaks, among which, the first endothermic 
peak ranges from 122.53 to 168.35 °C with a mass loss of 
36.0%, and the second exothermic peak ranges from 216.40 
to 278.05 °C with a mass loss of 32.2%. The theoretically 
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Scheme 1  The synthesis route of ADNABT

Table 1  Crystallographic data 
of ADNABT

Parameters Values Parameters Values Parameters Values

Formula C8H22N12O6S2 a/Å 6.276 h, k, lmax 7, 10, 11
Formula mass/g mol−1 446.50 b/Å 8.214 R1, wR2 0.0507, 0.1178
Crystal system Anorthic c/Å 9.705 S 1.278
Space group P-1 α/° 93.49 Z 1
λMo–Ka/Å 0.71073 β/° 97.91 Reflections 1835
T/K 193 γ/° 105.35 No. parameters 149
Calculated density/g cm−3 1.559 Volume/Å3 475.46 Device type Oxford Xcalibur3 CCD
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Fig. 1  Crystal structure of ADNABT. Thermal ellipsoids are set 
to 50% probability. Selected bond lengths/Å: C1–N1 1.345(34), 
C1–N3 1.343(39), C2–N2 1.314(39), C2–N3 1.358(31), N3···H6B 
1.983(347), N1–H1 0.816(387), H1···O3 2.010(360). Selected bond 
angles/°: N1–C1–N3 107.39(230), N1–C1–N4 133.77(239), N2–C2–
N3 113.90(225), C1–N4–N5 116.50(240). Selected torsion angles/°: 
C2–N3–C1–N4 178.89(250), N3–C1–N4–N5 179.56(240), N2–N1–
H1···O3 4.90(7647), N2–C2–N3···H6B 172.61(1782)
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calculated mass loss of DMSO was 35.0%, and that was 
similar to the mass loss of first endothermic peak. Hence, the 
first endothermic peak was a process of lost DMSO.

Heat capacity by DSC test

The relationship between Cp and T of ADNABT was estab-
lished by four steps. First, get the values of Cp by DSC. Next, 
open the ARKS-CK of TSS, and input the needed param-
eters, such as formula, density, temperature and Cp. Then, 
press calculator button, the relationship between Cp and T 
was simulated on the default model (Cp = a0 + a1T + a2T2). 
Finally, get the calculated results of  a0,  a1 and  a2. Thus, we 
got the relationship between CP and T, and the simulated 
Cp is shown in Fig. 3. The Cp of ADNABT at 298.15 K is 
calculated as 1.277 J g−1 K−1. The relationships between Cp 
and T were described as follows:

(1)
Cp = 1.540 × 10−1 − 4.119 × 10−3 × T + 1.070 × 10−6 × T2.

Kinetic simulation by DTA test

DTA curves of ADNABT under different heating rates (β) of 
2, 4, 6 and 8 °C min−1 are shown in Fig. 4. The experimental 
parameters, such as onset temperature (To), peak temperature 
(Tp), endset temperature (Te) and heat production (Q), are 
listed in Table 2. The DTA results revealed that the heights 
and areas of first endothermic and second exothermic peaks 
were increased when the heating rates were raised.

Most simulation of kinetic models involves complex multi-
stage reactions, which consist of several of independent, paral-
lel and consecutive stages. The simple, nth-order and autocata-
lytic kinetic models for a single-stage reaction (A → B) were 
presented in Eqs. (2)–(4), respectively [8, 18–21].

where α is the degree of conversion; t is the time; k0 is the 
pre-exponential factor; E is the activation energy; R is ideal 
gas constant; T is the temperature; n1, n2 and n are the reac-
tion orders of a specific stage; z is autocatalytic constant.

The kinetic models that include two consecutive stages 
(A → B → C) were described as follows [8, 18–21]:
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where α and γ are the degree of conversion of stage one and 
two, respectively; k1 and k2 are the pre-exponential factors of 
stage one and two, respectively; E1 and E2 are the activation 
energies of stage one and two, respectively; n1 and n2 are the 
reaction orders of stage one and two, respectively.

The kinetic models for two parallel reactions (A → B; 
A + B→2B) were described as follows [8, 18–21]:

where r1 and r2 are the rates of stage one and two, 
respectively.

Assuming that n11 = n22 = n1 and n21 = n2, then the 
kinetic model of full autocatalysis can be described as 
follows [20, 21]:
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where z0 is the ratio of pre-exponential factor k01/k02; Ez is 
the difference E1 and E2.

The kinetic parameters of ADNABT by DTA tests were 
simulated by TSS, and the results are listed in Table 3. The 
simulated and experimental values of heat production rate 
and heat production are shown in Fig. 5. The simulated val-
ues of heat production rate and heat production were similar 
to the experimental values. Hence, It could be concluded 
that the exothermic decomposition of ADNABT under non-
isothermal conditions followed a full autocatalysis model.

Kinetic simulation by ARC test

The exothermic decomposition of ADNABT by ARC is 
shown in Fig. 6. The experimental parameters such as onset 
temperature, final temperature, adiabatic temperature rise, 
max self-heating rate, max pressure and so on are listed in 
Table 4. The endothermic decomposition of loss DMSO 
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Table 2  Experimental 
parameters of ADNABT by 
DTA tests

β/°C min−1 To1/°C Tp1/°C Te1/°C Q1/J g−1 To2/°C Tp2/°C Te2/°C Q2/J g−1

2 115.54 124.47 150.18 − 4742 201.03 230.26 255.98 3442
4 118.82 131.86 161.67 − 4431 206.69 236.45 265.63 3503
6 120.88 140.03 166.43 − 2869 214.19 242.60 270.44 3666
8 122.53 141.30 168.53 − 2309 216.40 246.16 278.05 3324

Table 3  The simulated kinetic 
parameters of ADNABT by 
DTA tests

Compound ln k0/lns−1 E/kJ mol−1 n1 n2 ln z0 Ez/kJ mol−1 Q/J g−1

ADNABT 39.56 189.39 1.33 0.47 − 3.91 9.16 3470
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was between 148.25 and 156.08 °C, and the pressure was 
increased by 8.64 bar. The exothermic decomposition of 
ADNABT started at 245.17 °C and ended at 264.28 °C, and 
the pressure was increased by 6.48 bar.

The kinetic parameters of ADNABT were evaluated by 
AC and FK of TSS. The kinetic model of ADNABT by ARC 
test was described as Eq. (8). The simulated results such 
as E, ln k0, n, Q are listed in Table 5. The simulated and 
experimental values of heat production rate, heat produc-
tion, gas production rate and gas production of ADNABT by 
ARC test are shown in Fig. 7. The simulated values of heat 
production rate, heat production, gas production rate and gas 
production were similar to the experimental values which 
revealed that the simulated results were credible. From the 
simulated results by using TSS, It could be concluded that 
the exothermic decomposition of ADNABT by ARC test 
also followed a full autocatalysis model.

TMR is the time instant when reaction reaches its maxi-
mal rate under adiabatic conditions which was proposed by 
Townsend and Tou [22], and their method was only suitable 
for simple single-stage n-order reactions. In the case of more 
complex reactions (including autocatalytic reactions), TMR 
can be properly determined merely by applying a kinetic-
based simulation [6, 23–27].  TD24 is the reaction tempera-
ture at which TMR is 24 h [6]. The kinetic parameters of 
ADNABT were got from Table 5. The TMR was estimated 
by applying a kinetic-based simulation, and the simulated 
TMR is shown in Fig. 8. The TMR at 150 °C was calculated 
as 109.38 days, and the  TD24 was calculated as 183.37 °C.

Assessment of thermal stability of a substance (stability 
analysis) lies in evaluating the dependency of time instant 
(time to conversion limit, TCL) when conversion of a reac-
tion reaches some predefined value-conversion limit, at con-
stant set temperature [6, 23–27]. Thermal stability is essen-
tially characterized by the time of TCL necessary to reach a 
certain level of conversion at a specific constant temperature. 
Therefore, for long-term storage, it can be selected as the 
maximum permissible time during which the conversion of 
the product does not have any prominent impact on the prod-
uct quality. The TCL (10% conversion limit) was estimated 
by applying a kinetic-based simulation, and the simulated 
TCL is shown in Fig. 8. The TCL (10% conversion limit) at 
150 °C was calculated as 25.68 days.

SADT is defined as the lowest ambient air temperature at 
which self-accelerating decomposition may occur within a 
substance in the packaging as used in transport and storage. 
Assuming 50 kg ADNABT was loaded in a steel barrel with 
heat 40 cm and radius 15 cm. SADT was evaluated by Ther-
mEx of TSS. The  SADT50 kg was calculated as 167.00 °C.
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Fig. 6  The exothermic decomposition curve of ADNABT by ARC 
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Table 4  Experimental 
parameters of ADNABT by 
ARC test

Parameters ADNABT Parameters ADNABT

Onset temperature/°C 245.17 Max pressure/bar 6.48
Onset temperature rate/°C min−1 0.06 Max pressure rise rate/bar min−1 0.10
Temperature at max rate/°C 257.49 Thermal inertia factor 31.26
Max self-heating rate/°C min−1 0.30 Total gas production/mol kg−1 11.91
Final temperature/°C 264.28 Decomposition enthalpy/J g−1 832.19
Adiabatic temperature rise/°C 19.11

Table 5  The kinetic parameters 
of ADNABT by ARC test

Compound ln k0/ln s−1 E/kJ mol−1 n1 n2 lnz0 Ez/kJ mol−1 Q/J g−1 G/mol kg−1

ADNABT 29.15 157.87 1.09 1.33 − 0.13 9.49 950 12.59
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Conclusions

In conclusion, the thermal decomposition of ADNABT was 
performed by TG–DTA and ARC, and these tests data were 
simulated by TSS. The results were reported in detail.

1. The TG–DTA measurement showed that ADNABT has 
two decomposition processes, and the first process is an 
endothermic decomposition of loss DMSO, and the sec-
ond process is an exothermic decomposition. The kinetic 
parameters of exothermic decomposition such as E, k0 
and f(α) were evaluated by TSS. The exothermic decom-
position of ADNABT under non-isothermal conditions 
followed a full autocatalysis model.

2. The ARC measurement also showed that ADNABT has 
an endothermic and an exothermic decomposition. The 
kinetic parameters of exothermic decomposition such 
as E, k0 and f(α) were also simulated by TSS, and the 
results indicated that the exothermic decomposition of 
ADNABT under adiabatic condition also followed a full 
autocatalysis model. The several thermal hazard indica-
tors such as TMR,  TD24, TCL and SADT were also simu-
lated by TSS on kinetic model. The TMR and TCL (10% 
conversion limit) at 150 °C were calculated as 109.38 
and 25.68 days, respectively. The  TD24 and  SADT50 kg 
were calculated as 183.37 and 167.00 °C, respectively.
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