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Abstract
More than a decade, a numerous experimental and theoretical studies of thermophysical properties of nanofluids are con-
ducted to reveal its heat transfer characteristics. Due to nanofluid unique thermal properties, it is broadly used in various 
applications from automobile applications to biomedical applications. Despite that various experimental and theoretical 
studies of nanofluids are developed, the accordance between them is very little and also it is tiresome and expensive. To 
predict the thermal properties in an easy way, soft computing tools are utilized. In this research work, dynamic viscosity ratio 
of  Al2O3/H2O is predicted using machine learning techniques like multilayer perceptron and Gaussian process regression. 
In the proposed multilayer perceptron—artificial neural network model, varying a range of neurons in the hidden layer and 
using Levenberg–Marquardt as training function, it is found that 6 neurons in the hidden layer give less root mean square 
error value of 0.01118. Different kernel functions are opted to train the proposed Gaussian process regression model, and 
it is found that Matern kernel function shows the best performance with less root mean square error value of 0.018, and 
regression coefficient value of both the models is 0.99. This research work will reduce the experimental test run cost, and 
the models are accurate in prediction.
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List of symbols
GPR  Gaussian process regression
DVR  Dynamic viscosity ratio
MLP  Multilayer perceptron
ANN  Artificial neural network
H2O  Water
Al2O3  Alumina oxide
RMSE  Root mean square error
NMSE  Normalized mean square error
MAPE  Mean absolute percentage error
R2  Regression coefficient value
MSE  Mean squared error
MAE  Mean absolute error
µp  Dynamic viscosity ratio of predicted data

µa  Dynamic viscosity ratio of experimental data
�̄�a  Mean value of dynamic viscosity ratio of experi-

mental data
n  Total number of data samples
T  Temperature (K)
ɸ  Volume fraction
D  Size of nanoparticle (nm)
σ  Standard deviation

Introduction

The exemplary growth in various fields by the nanofluids is 
because of its unique thermophysical properties. The most 
important properties of nanofluids are thermal conductiv-
ity, viscosity, specific heat, density, convective heat transfer 
and pressure drop. There are many dependent factors like 
volume fraction, dimensions of nanoparticle, shape of the 
nanoparticle, temperature that influence to determine the 
thermophysical properties of nanofluids. High enhancement 
of thermal conductivity and Newtonian behavior with good 
stability made nanofluids as best fluid in cooling technology 
stated by Das et al. [1].
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The applications of nanofluids are broader from automo-
bile sector to cancer therapy affirmed by Mukesh et al. [2]. 
Adelekan et al. [3] extensively studied about  TiO2 nanofluids 
and concluded that  TiO2-based nanolubricants play a vital 
role in domestic refrigerator. Karen cacua et al. [4] stated 
that there is an enhancement of thermal conductivity in 
nanofluids compared with conventional base fluids, namely 
water, ethylene glycol and engine oil, and revealed that 
temperature plays an important role in increasing thermal 
conductivity of nanofluids and high temperature conditions 
are significant in cooling applications. Farhad and Jalali [5] 
experimented using copper oxide–thermal oil (CuO–HTO) 
nanofluid in inclined circular tube and revealed that enhance-
ment of convective heat transfer is more than pressure drop 
by the nanofluid with 1.5% of nanoparticle volume fraction 
and 387 as Prandtl number in an inclined angle of 30 °C.

Keshteli and Sheikholeslami [6] revealed that combi-
nation of the nanoparticles and fin has shown significant 
improvement in the rate of solidification. Barewar et al. [7] 
have studied extensively about thermophysical properties 
of ZnO nanofluids, and further, the author customized the 
nanofluids by adding Ag nanoparticle and compared both the 
ZnO nanofluid and Ag/ZnO hybrid nanofluids. The author 
observed that thermal enhancement is higher in the hybrid 
nanofluid than in the normal nanofluid. Convective heat 
transfer rate of two different nanofluids in different materials 
like copper, aluminum and stainless steel is experimentally 
investigated by the authors Solangi et al. [8], and they stated 
that tube made up of copper has shown significant thermal 
conductivity than aluminum and stainless steel.

Theoretical analyses, mathematical models and experi-
mental test runs were developed to analyze the physical 
properties of nanofluids. Theoretical models to predict 
viscosity are developed first by Einstein [9], and further 
improvement is made by [10, 11], using particle volume 
fraction viscosity model developed by [12, 13]. Several theo-
retical models using temperature as dependant variable are 
developed by [14–16]. Classical models and models derived 
from classical models to predict the viscosity of nanofluids 
are studied by Mukesh et al. [17], and they further stated 
that various theoretical formula found are fair in accuracy 
and discrepancies exist between experimental results and 
theoretical model results.

Artificial intelligence techniques are highly supported to 
model complex systems of high nonlinearity. Among the 
techniques, knowledge discovery of data (KDD) is used to 
extract the hidden pattern knowledge from large dataset. 
KDD can be implemented using soft computing tools. It is 
mainly for accurate estimations with ease; many machine 
learning algorithms like linear regression, multivariate linear 
regression, multilayer perceptron neural network with back 
propagation, support vector regression, Gaussian process 
regression are utilized for accurate prediction.

To predict the thermophysical properties of nanofluids 
accurately, various researchers opted artificial intelligence 
techniques. [18, 19] used single-walled and multiwalled 
carbon nanotubes to predict the thermal behavior of nano-
fluids using artificial neural network and revealed that the 
prediction is accurate and possesses good agreement with 
the experimental data. Predictions of thermophysical prop-
erties of metallic oxides are determined by Longo et al. 
[20] using artificial neural network. Feedforward structure 
of neural network is modeled by Vaferi [21] to predict the 
thermal behavior of nanofluids. Esfe and Kamyab [22] 
stated that raise in temperature decreases the viscosity of 
the nanofluids.

Multilayer perceptron with feedforward propagation 
method is modeled by Ebrahim [23] to predict the thermal 
behavior of various metallic oxides, and they stated the pre-
diction by the proposed model is accurate. To predict the 
thermal conductivity of magnetic nanofluid  Fe3O4, Afrand 
et al. [24] designed an optimal artificial neural network 
model and affirmed that the proposed model is accurate in 
prediction. Ali aminan [25] designed cascade forward neural 
network model to predict effective thermal conductivity of 
different nanofluids and revealed that model proposed for 
prediction possesses good accordance with experimental 
data.

Fuzzy C-Means adaptive neuro-fuzzy inference sys-
tem (ANFIS) with probabilistic neural network model is 
designed by Adewale et al. [26], and fuzzy logic expert sys-
tem is modeled by Khairul et al. [27] to analyze and predict 
the heat transfer coefficient of CuO/H2O nanofluids. Dinesh 
et al. [28] studied the correlation between dependent vari-
ables and independent variables using response surface 
methodology (RSM) and Grey relational analysis (GRA) 
for prediction of thermal properties of nanofluids.

Salehi et al. [29], modeled an ANN and optimized the 
model using genetic algorithm (GA) for Ag/H2O nonofluids, 
and the author found the prediction by the model is accu-
rate. Two different machine learning techniques, namely 
ANN methodology and SVR methods, are used for predic-
tion of thermophysical properties of nanofluids by Ibrahim 
et al. [30], and further, the author stated that SVR method 
is exceptional in prediction. Kavitha and Mukesh Kumar 
[31] developed models using machine learning techniques, 
namely MLP and SVR, to predict the thermal conductivity 
ratio of CNT/H2O nanofluids and reported that SVR model 
is suitable for prediction than MLP for limited data sets.

From the literature review, it seems that a Gaussian 
process regression methodology to predict the thermal 
behavior of nanofluids is not extensively studied. Hence, 
in this research paper, in addition to MLP–ANN model, 
Gaussian process regression method (GPR) has been used 
to predict the thermophysical property such as viscosity in 
terms of dynamic viscosity ratio of Al2O3/H2O nanofluids. 
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Temperature and volume fraction are used to predict the 
viscosity of nanofluids. Due to the limitation of MLP 
model like overfitting, GPR methods with cross-validation 
are introduced and possess better generalization than MLP 
model. The results obtained by the proposed model have 
good accordance with the experimental data.

Methodology

MLP–ANN model

Artificial neural networks acquire knowledge by learning the 
historical data and are capable of accurate prediction of the 
future outcome. Feedforward with back propagation, feed-
backward, cascade—forward with back propagation, layered 
recurrent, generalized regression, radial basis function and 
self-organizing map are the types of networks in artificial 
neural networks. MLP is a machine learning approach. It 
is one of the network categories of artificial neural network 
called as feedforward network. It uses the supervised learn-
ing and training algorithm. In this research, a model of 
multilayer perceptron with back propagation is developed, 
general schematic of MLP–ANN is input layer comprising 
of the input variables, and it may consist of one or more 
hidden layers, and output layer comprising the output vari-
able. The MLP–ANN trains the network, and the errors are 
backpropagated to adjust the masses and biases to obtain the 
desired output with minimum error.

Several researchers developed MLP—ANN model to 
predict the thermal properties of nanofluid and stated the 
accordance between the predicted data and experimental 
data is excellent. The dependent factors to influence the vis-
cosity of nanofluids are studied by few researchers. Kulka-
rini et al. [32] revealed the decrease in viscosity and increase 
in temperature. Masoumi et al. [33] asserted that viscosity 
of nanofluids depends upon size of the nanoparticle, parti-
cle concentration and density of nanoparticle; in addition, 
viscosity of base fluid needs to be considered stated by Zhao 
et al. [34]. Juneja and Gangacharyulu [35] experimentally 
studied that most important parameter to determine the 
viscosity is temperature and volume fraction. Increase in 
volume fraction in turn will increase the relative viscosity 
stated by Tavman et al. [36]. Shape of the nanoparticle influ-
ences the enhancement in viscosity affirmed by Srivastava 
[37]. Qui et al. [38] revealed that increase in temperature 
in the nanofluids in turn increases the intermolecular dis-
tance between the nanoparticles and results in decrease in 
dynamic viscosity values. Further, the author observed that 
drag effect of nanofluids increases with nanoparticle volume 
fraction values which in turn increase the dynamic viscosity 
values of nanofluids.

The log-sigmoid and tan-sigmoid are transfer function 
used in multilayer perceptron neural network. Log-sigmoid 
helps the network to relate the predictor and response vari-
ables with any complexity. The value of ‘x’ ranges between 0 
and 1. In tan-sigmoid, the value of x is between − 1 and + 1.

Equations (1)–(3) represent the mathematical formulation 
of transfer functions used in the MLP-NN model.

Training algorithms are applied to train the networks; 
the selection of the training algorithms depends upon the 
selected inputs. Few training functions are gradient descent 
gradient descent with momentum, Bayesian regularization, 
scaled conjugate gradient and Levenberg–Marquardt; among 
these algorithms, Levenberg–Marquardt training is compara-
tively accurate with less elapsed time and will utilize more 
memory space than any other algorithms. In the proposed 
MLP–ANN model, temperature and volume fraction are 
taken as predictor variables and dynamic viscosity ratio is 
the response variable; it is represented in Fig. 1.

(1)Logsig(x) = 1∕(1 − exp(−x))

(2)Tansig(x) = 2∕(1 + exp(−2x)) − 1

(3)Purelin(x) = x

Input
variables

Volume
fraction

Temperature

Bias

Dynamic viscosity
ratio

Hidden layer Output layer
Output
variable

Fig. 1  Representation of proposed MLP–ANN Model
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The proposed MLP—artificial neural network model, 
the input layer, which comprises of explanatory variables, 
temperature (T in K) and volume fraction (ϕ), the hidden 
layer where the number of neurons and mass between neu-
rons are adjusted to get the desired output and the output 
layer, consists of response variable, dynamic viscosity ratio 
of  Al2O3/H2O.

In MLP–ANN model, the input data are partitioned as 
70% for training and 15% each for test and validation phase; 
training functions are compared among themselves and 
Levenberg–Marquardt algorithm is chosen as training func-
tion, and in the same way activation function is compared 
and Tansig function has been chosen. Numbers of neurons 
are initially set in the hidden layer, and the performance of 
the model is validated by the evaluation criteria, root mean 
square error (RMSE) is the point of reference, till the value 
of RMSE is less, the numbers of neurons in the hidden layer 
are adjusted and the model is trained to give the best perfor-
mance; the flow of the MLP–ANN model is shown in Fig. 2.

GPR model

A Gaussian process is like an infinite-dimensional multi-
variate Gaussian distribution; it defines a distribution over 
functions, p(f), where f is a function mapping some input 
space � to ℜ denoted in Eq. (4).

Gaussian processes (GPs) are parameterized by a mean 
function, m(x) and a covariance function, k(x, x�) is men-
tioned in Eq. (5).

Gaussian noise, � − N(0, �2) , now the Gaussian process with 
noisy function is denoted by Eq. (6).

Gaussian process regression is nonparametric that is not 
limited by a functional form and used to calculate the prob-
ability distribution of parameters of a specific function. GPR 
is derived from Bayesian linear regression and calculates the 
probability distribution over all permissible functions that fit 
all the data points. Gaussian process regression (GPR) pre-
dicts the output data accurately with minimum error value 
stated by Rasmussen [39].

Kernel functions in Gaussian process regression are 
exponential function, squared exponential function, rational 
quadratic and Matern class of covariance function; the math-
ematical formulation is given in Eqs. (7)–(12), respectively.

(4)f ∶ � → ℜ

(5)f (x) ∼ GP
(
m(x), k(x, x�)

)

(6)y ∼ GP
(
m(x), k(x, x�) + �ij�2

n

)

(7)Exponential = exp
(
−
r

l

)

(8)kSE(r) = exp

(

−
r2

2l2

)

(9)kRQ(r) =
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r2

2�l2

)−�

(10)Matern =
1

2�−1Γ(�)

�√
2�

l
r

��

K�

�√
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�

(11)k�=3∕2(r) =

�

1 +

√
3r

l

�

exp

�

−

√
3r

l

�

Start

Input data

Data preprocessing

Create a neural network with feed–
forward back propagation algorithm

Set number of neurons in hidden layer

Set training algorithm as levenberg–
marquardt

Set activation function as tan sigmoid

Train the ANN model

No

Yes

Select the best performed MLP–
ANN model

Stop

Less
RMSE

Reset the number of neurons

Validate the performance of the neural
network

Fig. 2  Flow diagram of the proposed MLP–ANN
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where x̃ =
(
1, x1,… , xd

)T , x̃ is augumented input vector , r 
denotes |x − x′|, v is the positive integer.

In this research paper, we predicted the DVR of  Al2O3/
H2O using the following kernel functions squared exponen-
tial function, rational quadratic and Matern class of kernel 
function; among this, Matern v = 5/2 shows the best accu-
racy; the illustration of the GPR model is shown in Fig. 3. 
The experimental data sets (106) comprise of temperature, 
volume fraction and one of the thermophysical properties of 
nanofluid named as viscosity its subclass dynamic viscosity 
ratio (DVR) of  Al2O3/H2O values. The first two are used as 
predictor variables to predict the response variable DVR of 
 Al2O3/H2O nanofluids.

In the proposed GPR model, to avoid overfitting of the 
trained model, the input data are partitioned by different 
numbers of folds using cross-validation method. The perfor-
mance of the proposed model is evaluated by various crite-
ria; the vital criterion is RMSE value. The data value pre-
dicted by the proposed model is compared with experimental 
values; both possess good accordance between the models.

Evaluation criteria

In this research paper, various evaluation criteria are used to 
evaluate the MLP–ANN and GPR model. The criterions are 
root mean square error (RMSE), regression coefficient value 
(R2), mean absolute percentage error (MAPE), mean squared 
error (MSE), normalized mean square error (NMSE) and 

(12)k�=5∕2(r) =

�

1 +

√
5r

l
+

5r2

3l2

�

exp

�

−

√
5r

l

� mean absolute error (MAE). The mathematical formulations 
of criterions are shown in Eqs. (13)–(18), respectively.

where µp and µa denote dynamic viscosity of predicted data 
and experimental data, respectively, �̄�a is the mean value of 
dynamic viscosity of experimental data for ‘n’ data values, 
‘n’ denotes the total number of data samples. These criteria 
values are used to compare the accordance between experi-
mental values and predicted values.

Results and discussion

The experimental data sets (106) used for training the 
MLP–ANN and GPR model have been taken from Alawi 
[40].

Prediction of DVR by MLP–ANN model

Generally in MLP–ANN model, the data sets split into 
three different sets to train the model namely training, test-
ing and validation data sets and the percentage of data sets 
in each are 70, 15 and 15, respectively. In the proposed 
MLP–ANN, the experimental data sets of 106 samples 
are taken, and it is split into 74, 16 and 16 data samples 
in training, testing and validation data sets, respectively. 
The proposed model is modeled by varying neurons in 
the hidden layer. Various training functions are applied 
in the model; they are scale conjugate gradient, gradient 
descent and Levenberg–Marquardt training functions; 
among all LM shows the best fit; it is shown in Table 1 
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√√√
√1
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Fig. 3  Illustration of proposed GPR model
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and in Figs. 4–6 representing the accordance between the 
experimental values and predicted values of various train-
ing functions.   

The performance of MLP network with a range of 
neurons in hidden layer is shown in Table  2. The ini-
tial masses are made as default random values in order 
to ensure all the training starts with same initial random 
masses in the hidden layer. The RMSE value in 6 neurons 
in the hidden layer is less compared with other range of 

Table 1  MLP–ANN model performance with different training functions

Training functions Performance Performance

Training Validation Testing

Scaled conjugate gradient 0.0055 0.0043 0.0061 0.0107
Gradient descent 0.0223 0.0205 0.0291 0.0240
Levenberg–Marquardt 0.000171 0.00018 0.0000964 0.0001
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Fig. 4  Prediction of DVR using SCG
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Table 2  MLP–ANN model with a range of hidden neurons

Number of neurons in the hidden layer of MLP-ANN model is var-
ied. Six neurons in the hidden layer has shown least MSE values 
compared with other number of neurons and it is highlighted and has 
shown in Table 1.

Number 
of neu-
rons

MSE RMSE R2 MAE NMSE MAPE

5 0.00023 0.01530 0.9972 0.0270 0.00023 0.0626
6 0.00013 0.01118 0.9992 0.0093 0.00012 0.04833
7 0.00033 0.01811 0.9992 0.0166 0.00032 0.07361
8 0.00054 0.02326 0.9987 0.0112 0.00052 0.20496
9 0.00064 0.02532 0.9973 0.0093 0.00062 0.00272
10 0.00023 0.01500 0.9982 0.0092 0.00022 0.10809
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neurons, and the value is 0.01118. The regression diagram, 
best validation performance and error histogram with 6 
neurons in the hidden layer are represented in Figs. 7–9, 
respectively.   

Prediction of DVR by GPR method

The proposed Gaussian process regression model is trained 
with many covariance functions. Common covariance func-
tions are exponential, γ-exponential, squared exponential, 
rational quadratic and Matern class of covariance with 
‘v’ take the value as 5/2 and 3/2. In this proposed model, 
rational quadratic squared exponential and Matern class of 
covariance with ‘v’ as 5/2 value are used to train the model. 
Local optima and slow convergence of the trained model are 
safeguard by using cross-validation; it divides the dataset 
into number of folds like 5, 10, 15, and it is found that the 
data set with fold 10 gives less RMSE compared with other 
folds; it is shown in Tables 3–5.

In the prediction of DVR using covariance function of 
GPR, the Matern function gives less RMSE value when 
compared with other kernel functions, and at the same time, 
prediction speed and training time are optimal in squared 
exponential covariance function.

The agreement between the experimental data and the 
predicted data using Matern 5/2 kernel function is good, and 
it is shown in Fig. 10 and it is more accurate in prediction; it 
is represented by the regression diagram shown in Fig. 11. 
Response diagram denotes the closeness between the experi-
mental and predicted values; it is shown in Fig. 12 and the 
error diagram shows the deviation between the experimental 
and predicted values and it is shown in Fig. 13.   
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Significance of predictor variables in prediction 
of DVR

Correlation between volume fraction, temperature 
and dynamic viscosity ratio

The finest values of volume fraction and temperature are 
0.04 and 310 K, respectively. Increase in volume fraction 
and decrease in temperature enhance the dynamic viscosity 
ratio of  Al2O3/H2O nanofluids. It is found that increase in 

volume fraction from 0.01 to 0.05 increases the DVR by 
0.6 values. In Fig. 14, it denotes that high value of volume 
with low value of temperature gives high value of dynamic 
viscosity ratio. The effectiveness of predictor variable, tem-
perature in prediction of DVR, is shown in Fig. 15. With 
low value of temperature, it gives rise to dynamic viscosity 
ratio; in other words, if the temperature increases from 295 
to 325 K, the DVR reduces to 0.3 values.

Table 3  Evaluation of kernel 
function with fivefold

Fivefold MSE RMSE R2 MAE NMSE MAPE

Rational quadratic 0.00042 0.0204 0.99 0.0148 0.00041 0.00749
Squared exponential 0.00044 0.0209 0.99 0.0154 0.00043 0.00765
Matern 5/2 0.00038 0.0193 0.99 0.0139 0.00036 0.00708

Table 4  Evaluation of kernel 
function with tenfold

Tenfold MSE RMSE R2 MAE NMSE MAPE

Rational quadratic 0.00038 0.01952 0.99 0.01490 0.00037 0.00711
Squared exponential 0.00041 0.02022 0.99 0.01541 0.00040 0.00745
Matern 5/2 0.00035 0.01871 0.99 0.01416 0.00034 0.00691

Table 5  Evaluation of kernel 
function with 15-fold

15-fold MSE RMSE R2 MAE NMSE MAPE

Rational quadratic 0.00049 0.02207 0.99 0.01568 0.00047 0.00740
Squared exponential 0.00052 0.02271 0.99 0.01653 0.00050 0.00758
Matern 5/2 0.00045 0.02114 0.99 0.01492 0.00043 0.00710
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Fig. 10  Prediction of DVR using GPR—Matern Kernel function with 
v = 5/2 value
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Fig. 11  Regression diagram of GPR—Matern Kernel



1159Prediction of nanofluid viscosity using multilayer perceptron and Gaussian process regression  

1 3

Conclusions

One of the major thermophysical properties of nanofluids is 
viscosity. Dynamic viscosity ratio is subclass of viscosity. 
Prediction of dynamic viscosity ratio of  Al2O3/H2O nano-
fluids is implemented by using machine learning techniques; 
in this research work, 106 experimental data sets are used 
to perform it. Temperature and volume fraction are used as 
predictor variables to predict the response variable dynamic 
viscosity ratio (DVR). The proposed models are MLP–ANN 
and GPR models. The MLP is modeled with a range of 6 
neurons in the hidden layer using Levenberg–Marquardt as 
training function and tan-sigmoid as activation function; the 
performance is validated. Root mean square error value of 
0.01118 and the regression coefficient value (R2) for overall 
data are 0.99. With limited datasets, MLP–ANN may suffer 
with local optima and slow convergence problem; to evade it 
GPR methods are used to possess generalization ability even 
with limited datasets. GPR is modeled with different kernel 
functions, and it is found that Matern class kernel function 
with value = 5/2 exhibits accurate prediction of dynamic vis-
cosity ratio with less RMSE value of 0.018, and the Regres-
sion coefficient value (R2) is 0.99. This research work will 
ease the prediction of thermophysical properties of nano-
fluids, reduce the test run cost and is accurate in prediction.
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