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Abstract
Since nanoparticles play a significant role in increasing the thermal conductivity of fluids, the present study aims to predict 
the thermal conductivity of silver nanofluid coated with polyvinylpyrrolidone (PVP) by the combinational model of mul-
tilayer perceptron artificial neural network and genetic algorithm. For modeling, the results of experimental measurements 
have been used for thermal conductivity of nanofluid containing PVP-coated silver nanoparticle-based deionized water at 
25–55 °C in volume fraction of 250 ppm, 500 ppm and 1000 ppm. Henceforth, genetic algorithm is applied to improve learn-
ing process in the artificial neural network. It is in this way that the masses were chosen for each neuron’s communications 
as well as their bias happens according to optimization performed by the genetic algorithm. To evaluate the accuracy of the 
model in predicting thermal conductivity of nanofluid, mean absolute percentage error, root mean square error, coefficient 
of determination (R2) and mean bias error have exerted indices which are 1.202, 0.345, 0.989 and − 0.016, respectively. The 
results of the indices and predictions, compared to the experimental results, show high accuracy and reliable combinational 
model of artificial neural network and genetic algorithm.
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Introduction

Today, in consideration of an increment in costs of energy, 
the enhancement efficiency of energy-dependent systems 
in order that decrease their consumption is prominent [1]. 
Heat transfer is considered as one of the most significant 
processes causing energy consumption in the industry. 
Meanwhile, the thermal conductivity coefficient of fluids 
plays a salient role in the development of heat transfer flu-
ids, and also, due to the increasing global competition, the 
preference for using fluid with higher thermal conductivity 
is inevitable for diverse industries [2]. The main limitation 

of heat transfer of common fluids that are being used in ther-
mal systems such as water, oil and ethylene glycol is being 
intrinsic low thermal conductivity [3]. After more than a 
century since Maxwell’s era, this issue leads researchers and 
scientists to improve the intrinsic low thermal conductivity 
of fluids by adding solid particles to them. With regard to the 
sedimentation and basic limitation in dispersion of particles 
with micrometer and millimeter sizes, the concept of nano-
fluid was introduced by Choi as a new topic in researches 
related to nano-based heat transferors. Nanofluids consist of 
a base fluid and suspended particles with a size of 1–100 nm 
[4]. Although thermal conductivity of nanofluids was meas-
ured with nanoparticles at first [5], nanofluids did not gain 
attractions until the time Eastman et al. [6] showed for the 
first time that copper nanofluids that are being prepared by a 
direct single-step volatilization method have higher thermal 
conductivity in comparison with nanofluids that are being 
prepared by a two-step method.

Metal’s thermal conductivity is significantly higher than 
that of nonmetallic particles, and compared with the non-
metallic particles, the addition of metal particles to the base 
fluid increases the thermal conductivity more, leading to 
more acceptable results in the thermal absorbent systems [7, 
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8]. In addition to the thermal conductivity of nanoparticles, 
including metal, nonmetallic and polymer [10] in different 
application such as nanocomposite [11, 12] and nanoporous 
[13, 14], there are certain properties too such as absorption, 
diffusion and color, which makes the use of nanoparticles 
more prominent in thermal systems [14–19].

Pourrajab et al. [20] have shown that thermal conductivity 
of the hybrid nanofluid (0.04 vol% Ag plus 0.16 vol% MWC-
NTs) and base water improved by 47.3% in comparison with 
base fluid. In other research of them, the results of their 
study showed that by increasing concentration and tempera-
ture of the nanocomposite the ratio of thermal conductivity 
of hybrid nanofluids based on mesoporous silica modified 
with copper nanoparticles nanofluids was enhanced [21].

Experimental methods lead to valid, accurate and cred-
ible results in all scientific fields of studies when using 
standardized equipment and carrying out comprehensive 
studies. Due to the fact that empirical methods require spe-
cial equipment and facilities and this increases the costs 
and time needed to perform experiments, it is permissible 
to use modeling methods and algorithms as replacements 
[22–24]. Nowadays, among different modeling methods, an 
artificial neural network is considered as one of the impor-
tant methods in artificial intelligence which is influenced 
by human brain ability to identify phenomena. Artificial 
neural network modeling is known as a powerful tool in 
various advanced scientific and engineering topics to solve 
complicated problems. Regarding its high running speed, 
widespread capacity and also simplicity of applying ANNs 
in comparison with classic methods, numerous scientists 
tend to use this modeling method to predict thermophysical 
[25–29], viscosity [30–32] and thermal conductivity [33–36] 
properties of nanofluids.

Hemmat Esfe et al. indicated that artificial neural net-
works provide more reliable results than those of theo-
retical relationships in their research on diverse nanofluids 
thermal conductivity modeling such as Cu/TiO2–water/EG 
hybrid [37],  Al2O3–water [38], ZnO–MWCNT/EG–water 
[39], SWCNT–MgO hybrid [40],  SiO2–MWCNT [41], 
SWCNT–ZnO [42] and MWCNTs–ZnO/5W50 [43].

The thermal conductivity of nanofluid containing gra-
phene nanoplates and deionized water is investigated by 
Khosrojerdi et al. [44]. They calculate the root mean square 
error (RMS error), detection coefficient and mean absolute 
percentage error (MAPE) to determine the accuracy of 
their model which are 0.04 W m−1 K−1, 99% and 0.26%, 
respectively.

With the experimental analysis of the nanofluid thermal 
conductivity attributes of graphene oxide, Tahani et al. [45] 
predicted and modeled their experimental results using arti-
ficial neural networks. Their results show that the neural 
network with two inputs (volume fraction and nanofluid 
temperature) and one output parameter (nanofluid thermal 

conductivity) together with two hidden layers and one vis-
ible layer of Tansig, Logsig and Purline functions with 4-8-1 
neuron numbers has the best modeling structure.

In research on nanofluid thermal conductivity modeling, 
such as MgO–MWCNTs/EG hybrid, Vafaei et  al. [46] 
showed that the 12-neuron neural network in its secret layer 
has the best results compared to experimental results. The 
largest discrepancy between modeling results and experi-
mental results was 0.8%. Afrand et al. [47] investigated the 
effect of neuron numbers in the neural network layers, with 
respect to temperature parameter and nanofluid volume per-
centage of MgO–water, and their research showed that the 
number of seven neurons has the least error compared to the 
experimental results.

Vakili et al. [48] modeled the thermal conductivity of 
copper oxide using FFBP–ANN method, and their results 
showed that the neural network with two hidden layers and 
number of four and ten neurons has better results than those 
of theoretical methods.

Kavitha et al. [49] showed in their research that the MLP 
model compared to the SVR model has the better results 
in estimating the thermal conductivity of nanofluids. MLP 
model requires more experimental data than the SVR model. 
Therefore, they proposed SVR model when experimental 
data are limited.

Ahmadi et al. [50] modeled the viscosity of a water-based 
 Fe2O3 nanofluid, and their results showed that the model has 
0.9962 and 0.9982 amounts in the R-requested index.

Alrashed et al. [51] showed in their research on the car-
bon-dependent thermophysical properties of nanofluids that 
the nanoparticle volume percentage, temperature and the 
type of materials have a direct effect on modeling accuracy.

Agarwal et al. [52] investigated the performance of nano-
fluids containing  Fe2O3 for the use in heat transfer systems. 
The performance of nanofluids was investigated in terms 
of the effect on the thermal conductivity by increasing the 
concentration of  Fe2O3 nanoparticles in water-based liquids 
and ethylene glycol at 10, 20, 30, 40, 50, 60 and 70 °C. The 
results of their study showed that the outcome of ANN mod-
eling is in good agreement with the experimental results 
and H-C model offers better predictions than other standard 
models.

Another optimization topic that can be applied in mod-
eling is genetic algorithm. The genetic algorithm inspired 
by nature and Darwin’s evolution theory is based on the 
survival of the fittest or natural selection. Regarding the fea-
tures of genetic algorithm compared to other optimization 
method, it can be said that it is an algorithm which can be 
applied for any problem without any knowledge of it and 
there is no restriction on the type of its variables, and it has 
a proven ability to find the global optimum [53].

Karimi et al. [54] predicted the density of four nano-
fluids at 323–273 K, using artificial neural network of 
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back-propagation and genetic algorithms. Their modeling 
results show the proper accuracy with absolute deviation 
of 0.13% and high correlation coefficient of R ≥ 0.98. 
Karimi et al. [55] also in another study predicted the nano-
fluids viscosity properties, using artificial neural network 
and genetic algorithms. In this study, they modeled using 
the experimental results of eight nanofluids, which showed 
that there is a good balance between the predicted amounts 
by the model and experimental results. The amount of 
absolute deviation is 2.48% and correlation coefficient is 
0.98.

Ramezanizadeh et al. [56] predicted thermophysical prop-
erties of nanofluid containing  Al2O3/water using different 
modeling methods such as GA–LSSVM, PSO–LSSVM, 
HGAPSO–LSSVM and ICA–LSSVM, and their investiga-
tion results showed that GA–LSSVM model, which is the 
combination of genetic algorithm and least-square support 
vector machine, yielded a more acceptable result than the 
other methods.

A study conducted by Ahmadi et al. [57] on the ther-
mal conductivity properties of  Al2O3/EG nanofluid using 
GA–LSSVM showed that the use of genetic algorithm in 
this type of modeling caused the accuracy of model to be 
0.9902 in terms of R2 coefficient, indicating the high accu-
racy of the designed model. They also showed in their 
research on  Fe2O3/water nanofluid that the combination of 
radial basis function neural networks with genetic algorithm 
yields better results than other models [50]. Hemmat et al. 
[58] applied a combination of neural network modeling 
and genetic algorithm to model the viscosity and thermal 
conductivity of  Al2O3–water/EG (20–80), and the results of 
their comparison with the experimental results showed that 
modeling with this method is very accurate.

Amani et al. [59] investigated the performance of artifi-
cial neural networks and genetic algorithms in modeling the 
viscosity and thermal conductivity of nanofluids containing 
 MnFe2O4. According to the results of their research, the use 
of the genetic algorithm in neural network modeling can 
help to increase model accuracy. In their other research, they 
investigated the application of ANN, empirical correlations 
and genetic algorithm in modeling the thermophysical prop-
erties such as thermal conductivity of nanofluid including 
C-MWCNT/water. Their results showed the use of artificial 
neural network with algorithm genetic compared to empiri-
cal correlations obtained from nonlinear regression method 
is better [60].

With studies conducted on the role and performance of 
artificial neural network and the use of genetic algorithm 
in modeling of nanofluid’s thermophysical properties, in 
this study with the use of combination of perceptron mul-
tilayer artificial neural network and genetic algorithm, it 
will be dealt with modeling and predicting thermal con-
ductivity of nanofluid containing silver particles with 

water-based polyvinyl pyramid coating at volume fraction 
and different temperatures.

Experimental

Materials and methods of nanofluid preparation

In this study, silver nanoparticle with polyvinyl pyramid 
coating (US Research Nanomaterials, Inc., USA) was 
used as the particle of nanofluid factor based on deion-
ized water. The properties of the nanoparticle are listed 
in Table 1.

In this study, a two-step process was used to prepare 
nanofluid due to different processes of nanofluid prepara-
tion. In this method, the nanoparticles were scattered with 
volume fractions of 250 ppm, 500 ppm and 1000 ppm in 
the fluid, that is, deionized water. In order to propagate 
nanoparticles in the base fluid, an ultrasonicator with 
power of 400 W (Hielscher Ultrasonic UP400S, Teltow, 
Germany) was used, which is depicted in Fig. 1.

Table 1  Properties of 
nanoparticles

Attributes Properties

Appearance Black
Purity 99.99%
APS 20 nm
SSA 18–22 m2 g−1

True density 10.5 g cm−3

Morphology Spherical

Fig. 1  A picture of the sample and Hielscher Ultrasonic UP400S
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Method of investigating the properties

Due to the nature of nanofluid which is a mixture of nano-
particles and base fluid, the thermophysical properties of 
a nanofluid are a function of its constituent’s properties. 
Therefore, accurate understanding of nanoparticles proper-
ties is necessary. So in this study, nanoparticles and their 
structure were analyzed by the two methods of transmis-
sion electron microscopy, TEM, and X-ray diffraction. In 
this method, the transmission electron microscope of model 
TEM, EM900, Zeiss, Germany, with an acceleration voltage 
of 80 kV was used. Figure 2 displays TEM photograph of 
silver nanoparticle coated with PVP.

To investigate the crystalline structure of nanoparticles, 
EQUINOX 3000, Inel Inc., Artenay, France, was used, 
which has a measuring range of 5°–120°. The results of the 
measurements are shown in Fig. 3. According to X-ray dif-
fraction of silver nanoparticle, a reflection in the XRD pat-
tern of silver nanoparticles at 2-h values of 38.28, 44.45, 
64.25 and 77.52 degrees attributed to the 111, 200, 220 and 
311 planes of Ag, respectively, showed the structure of crys-
talline was cubic. The peaks in Fig. 3 show that the main 
composition of nanoparticles was Ag and no peaks of an 
impurity phase were found in the XRD patterns.

The dispersion quality of nanoparticles inside the base 
fluid is one of the important things in studying the thermo-
physical properties of nanofluids [61]. The clogging and sed-
imentation phenomena in nanofluids reduce their effects and 
properties as operating fluid, and it can even prevent them 
from being used in thermal systems as deterrent. Therefore, 
it is important to investigate the stability amount of nano-
fluids. To evaluate the stability and dispersion amount of 
nanofluids, there are several methods. In this method, the 
stability has been studied by a Zetasizer, ZEN 3600, Malvern 
Instruments Ltd., UK, for measuring the zeta potential and 
particles size.

The results of nanoparticles diameter determination of the 
nanofluid sample of 1000 ppm are shown in Fig. 4. Accord-
ing to these results, nanoparticles size obtained is equal to 

82.38 nm. In general, the zeta potential amount introduced 
as the stability boundary, in terms of the evaluation of nano-
fluid zeta potential amount, is 25 mV (positive or negative) 
[62] so that nanofluids with zeta potential of more than + 30 
and less than − 30 have a good stability [7]. In this study, 
according to the measurements, nanofluids which have been 
made from silver have a zeta potential of − 41.6, indicating 
that nanofluids have good stability. The measurement results 
are shown in Fig. 5.

By applying the simultaneous thermal method (Shi-
madzu, DTG-60), TGA and DTA spectra were carried out 
in the temperature range from room temperature to 700 °C. 
The corollary of the test is reported in the figure. Accord-
ing to the TGA curve, the mass loss of sample between 
100 and 300 °C is higher than other temperatures, notice-
ably. To the extent that, the negligible amount of mass loss 
can be observed in other temperatures. Also, based on the 
DTA curve, due to crystallization of silver nanoparticles, an 
extreme exothermic peak is occurred between 200 °C and 
300 °C which is coincided with complete thermal decom-
position (Fig. 6). 

Thermal conductivity coefficient plays a key role in 
improving the effect of thermal transferring nanofluids with 

Fig. 2  The picture TEM of silver nanoparticle with PVP coating
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energy efficiency. The effective thermal conductivity coeffi-
cient of nanofluids is typically measured by the transient hot 
wire method. In the transient hot wire method, a thin metal 
wire is used as the linear thermal source and the tempera-
ture sensor. This wire is surrounded by a nanofluid whose 
thermal conductivity coefficient must be measured. Then, 
this wire is heated by passing current through it. Now, the 
higher the thermal conductivity coefficient, the lower the 
wire temperature. This principle is used to measure the ther-
mal conductivity coefficient.

The density of the prepared nanofluid shown in Table 2 
was calculated by Pak and Cho equation [63] (Eq. 1), in 
which � is the volume concentration and �f and �p are the 
density of base fluid and nanoparticle, respectively.

As it can be found that due to the low concentration of nano-
fluids, the density of nanofluids does not have a noticeable 
deviation from density of DI water.

In this study, the transient hot wire method was used for 
measuring the thermal conductivity coefficient of nanofluids 
at a temperature range of 25–55 °C by KD2 Pro, Decagon 

(1)�nf = (1 − �)�f + ��p.

Devices Inc., USA. According to the specific information 
of KD2, the accuracy of the determined thermal conduc-
tivity is ± 5% for the range of 0.2–2 W m−1 K−1. In this 
experiment, three measurements were performed separately 
and with a time interval of 15 min for every nanofluid sam-
ple, finally their numerical mean has been calculated and 
reported as the thermal conductivity of the sample.

The measurement of thermal conductivity

Nanoparticles increase the heat transfer speed in the nano-
fluid by increasing the nanofluid thermal conductivity and 
generating heat propagation in the current. Since nanopar-
ticles have much more contact surface area than micro- and 
other larger particles, and also increasing the contact surface 
causes an increase in the effective surface of heat transfer, 
in this section we consider the importance of increasing the 
nanofluid volume fraction compared with increasing the 
temperature than increasing the thermal conductivity coef-
ficient. The silver nanofluid was measured at temperatures 
of 25–55 °C in different volume fractions, and the results of 
the empirical measurement are shown in Fig. 7.

As shown in Fig. 7, the nanofluid thermal conductivity 
is highly dependent on temperature, so that as the nanofluid 
temperature increases, its thermal conductivity rises too. 
Much movement and mobility of nanoparticles with increas-
ing temperature due to the Brownian motion phenomenon 
is one of the reasons of this dependence on temperature. 
It is in this way that as the temperature increases, the base 
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fluid viscosity decreases and the scrambling or Brownian 
motion of the nanoparticles escalates. Also, according to the 
results, by increment in temperature, thermal conductivity 
of DI water increases slightly, because there is no particle in 
DI water and the rise of temperature does not have a tangible 
impact on thermal conductivity.

Silver has some special properties. Among all metals, 
silver has the highest amount of thermal conductivity being 
700 times more than water. In addition, silver is non-toxic 
and has well compatibility with environment which lead 
it to be one of the most significant metals in nanotech-
nology. Also, according to researches, silver nanofluid 
has an acceptable range of stability. Meanwhile, applying 

polyvinylpyrrolidone (PVP) as surfactant leads to improving 
silver nanofluids stability.

Hybrid modeling

Artificial neural networks are one of the advanced and mod-
ern methods in simulation and modeling which are used 
today in all branches of different sciences as a powerful tool 
in simulating those phenomena whose conceptual analysis is 
difficult. In this method, the observational data are trained to 
the model, and after training, the model performs prediction 
and simulation work with proper accuracy. In general mode, 
an artificial network acts as a function and receives input 
variable for the quantity of input-layer neurons and output 
variable for the quantity of external-layer neurons.

In this study, the input parameters include temperature 
and volume fraction of nanofluid that are placed in the first 
layer. Due to the masses belonging to neurons and also the 
number of different neurons in the middle, at the end and 
in the final layer, the thermal conductivity of nanofluid has 
been considered as the output of the network. In Fig. 8, per-
formance structure of the neural network is shown.

Neural networks with their remarkable ability to derive 
meaning from complicated or ambiguous data can be used 
for extracting patterns and identifying methods that their 
understanding is very complex and difficult for human and 
other computer techniques. The important assumptions in 
the artificial neural network are as follows:
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1. Data processing is done in the simple components called 
neurons.

2. The information between neurons is transmitted through 
their communication.

3. Each of these relationships has their own mass which 
multiplies by the amount of exchanged information 
with other neurons, and these masses are adjusted over 
time. In fact, it is from this perspective that the network 
is educated and influenced by the environment. Each 
neuron has an operating function for its output calcula-
tion, which is usually a nonlinear function and applies 
to inputs. The artificial neural network learns to solve a 
problem and is not actually planned ahead. In fact, the 
input masses adjusting of each neuron causes the learn-
ing of the whole network, which can be done with or 
without an observer based on the implemented model. 
Artificial neural network can have multiple layers or 
one layer. Modeling with nonlinear systems, resistance 
and damage tolerance, learnability means the ability 
to adjust the network masses, generalizability, high 
speed due to parallel processing, adaptability to system 
changes and so on which are features of the artificial 
neural network.

The genetic algorithm is inspired by genetic science and 
Darwin’s evolution theory and is based on the survival of the 
best or natural selection. A common application of genetic 
algorithm is using it as an optimizer function. Genetic algo-
rithm is a useful tool in the pattern recognition, feature 
selection, image understanding and machine learning [64, 
65]. In genetic algorithms, the genetic evolution manner of 
the living creatures is simulated.

In a genetic algorithm, a population of people will survive 
in the environment according to their desirability. People 
with superior abilities will find better chance of marriage 
and more reproduction. So after a few generations, children 
with better performance are born. In the genetic algorithm, 
each individual from population is introduced as a chromo-
some, and the chromosomes become more complete over 
several generations. In each generation, chromosomes are 
evaluated and have the survival and reproducible ability 
according to their value, and superior parents are chosen on 
the basis of a fitness function [66].

The genetic algorithm generates a new generation by con-
sidering a set of answer space points in each computational 
iteration, or by performing genetic operators on them, and 
drives it over the optimal cycle. The benefits of the genetic 
algorithm method are: In the process of searching, it only 
needs to determine the value of the target function at differ-
ent locations and does not use any additional information 
such as the derivative of the target function. Therefore, it 
can be used in a variety of problems, including linear, non-
linear, continuous and discrete, and can easily be adapted to 

a variety of issues including thermal conductivity prediction 
of nanofluids.

At each stage of the genetic algorithm implementation, a 
group of search space points are randomly processed. It is 
in this way that a sequence of characters is assigned to each 
point and genetic functions are applied to these sequences. 
The resulting sequences are then decoded to obtain new 
points in the searching space. Finally, depending on how 
much the objective function is at each of these points, their 
likelihood of participating in the next step is determined. 
Figure 9 shows the structure combination of artificial neural 
network and genetic algorithm.

In the present study, genetic algorithm has been used to 
improve learning process in the artificial neural network. 
It is in this way that the masses are chosen for each neu-
ron’s communication and also their bias amount is based on 
the optimization performed by the genetic algorithm. After 
assigning the amount of masses and tendency of each layer 
with the help of genetic algorithm, the network is going to 
train itself and finally presents its proposed model according 
to the considered error.

The modeling training section begins with the genetic 
algorithm in accordance with the steps outlined as follows:

1. At first, the population is selected randomly. The char-
acteristics of each individual in the first generation are 
selected randomly from the mass amount in the artificial 
neural network.
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Fig. 9  The combination structure of neural network and genetic algo-
rithm
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2. Each individual from population is examined. To do this, 
the neural network is run according to the determined 
inputs and output and on the basis of determined masses 
for every neuron and layer, and finally, the modeled out-
put is compared with the experimental amount.

3. The population are ranked in terms of the least error of 
neural network.

4. The best person of the population with the least error 
will be moved to the next generation (elitism).

5. Using the genetic algorithm operators, the best parents 
are selected for reproduction.

6. This procedure is repeated for the second generation, 
and the algorithm is run for a defined number of cycles. 
The final set of each neuron’s masses (the chromosome 
which is selected from the best person in the past genera-
tion) is selected for neural network training.

7. After finishing the genetic algorithm training, the neural 
network algorithm begins to solve.

Figure 10 shows the flowchart of computational and 
modeling of nanofluid viscosity prediction on the basis of 
nanoparticles volume fraction and its temperature.

In the present study, with the use of MATLAB R2019a 
software and considering an initial population of 150, the 
number of generations equals 50 and the cross-linking rate 
is 0.5 and the mutation rate is 0.2 of the happened mod-
eling. The stopping condition of algorithm is the failure of 
the target function to progress for 50 consecutive genera-
tions or finishing the number of generations. In order to 
replace the newborn children with the population of past 
generation, it is in this way that from the parent popula-
tion and the children population, those chromosomes that 
have more elegance have been selected as the alternative 
population.

Statistical analysis

In this study, statistical measures of root mean square error 
(RMSE), average absolute percentage of error, coefficient 
of determination and mean deviation error have been used 
to evaluate the accuracy and the performance of model 
and network. The measures of RMSE, average absolute 
percentage of error and mean deviation error are good 
indicators for determining the accuracy of the model, so 
the closer these two indices are to zero, the higher the 
model accuracy. The coefficient of determination indicates 
the probability of correlation between two datasets in the 
future, and when this number is closer to zero, it shows the 
better performance of the model [67]. The relationships 
used for calculating of the above indices are described as 
follows:
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Fig. 10  The modeling computational flowchart with the help of artifi-
cial neural network and genetic algorithm
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where kp is the predicted thermal conductivity and ka is the 
real thermal conductivity. k̄a is the average of real thermal 
conductivity over the measured period and n is the number 
of measured samples.

Results

According to flowchart shown in Fig. 10, the modeling has 
been performed with the help of artificial neural network 
and genetic algorithm. At this stage using the trial-and-error 
method, the number of neurons, layers and network func-
tions has been modified in each modeling, and the results of 
the model accuracy and validity as well as statistical indices 
have been recorded, which are shown in Table 3.

According to the performed optimization by the genetic 
algorithm during the modeling training phase to determine 
the mass of layers and the desire amount of each of them, 
the optimization result under different conditions such as 
the number of neurons and activation functions is shown 
in Fig. 11. In order to study and select of the most optimal 
model for network training, the mean square error (MSE) 
has been used.

Since the elitism occurs in the optimization process of 
each generation change, the shown error rate is reduced after 
several repetition and the most optimal solution is selected. 
This trend continues until the model design is defined that 
the number of 50 generations has been selected in this study. 
As shown in Fig. 11, this amount is of desirable value, since 
no significant change has been observed in the error rate 
after repeating the generations. Therefore, this number 
has been considered as the desirable amount to reduce the 
modeling and computational time. According to the results 
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n
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shown in Fig. 11, the Tansig function on average has a better 
performance for optimization selecting of the layer’s masses 
and has the least mean square error in the training step by 
genetic algorithm in 50 generations.

For better investigating of the functions role on optimiza-
tion amount by genetic algorithm, Fig. 12 shows MSE index 
for each model. In this index, the closer the number is to 
zero, the model shows more proper function. With respect 
to averaging from the obtained results of MSE index for both 
two defined functions, it can be concluded that Tansig func-
tion with a mean of 0.111 in the created models has a better 
performance than Logsig function with a mean of 0.174. As 
shown in Fig. 12, the selection of neurons’ numbers does 
not follow a specific trend and only through their random 
selection the desired result can be achieved.

In order to select the proper model among the applied 
modeling, statistical indices of each model will be consid-
ered. Since the number of the middle layers neurons is ran-
domly selected, it is important to investigate the statistical 
indices as one of the proper methods for selecting the appro-
priate model among the existing methods. So, the results of 

Table 3  The results of model 
accuracy measurement indices 
according to different conditions

Model Function Neurons MBE R2 RMSE MAPE

GA–ANN 1 Tansig–Purline 3-1 − 0.011 0.973 0.374 4.42
GA–ANN 2 Tansig–Purline 6-1 − 0.016 0.989 0.345 1.202
GA–ANN 3 Tansig–Purline 10-1 − 0.055 0.985 0.38 5.42
GA–ANN 4 Tansig–Purline 14-1 − 0.052 0.973 0.355 8.96
GA–ANN 5 Tansig–Purline 19-1 − 0.135 0.969 0.293 6.3
GA–ANN 6 Logsig–Purline 5-1 0.075 0.57 0.419 24.14
GA–ANN 7 Logsig–Purline 9-1 0.04 0.529 0.429 49.41
GA–ANN 8 Logsig–Purline 12-1 0.045 0.922 0.4 23.52
GA–ANN 9 Logsig–Purline 17-1 0.029 0.91 0.374 8.99
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Fig. 11  Mean square error of each optimization stages based on the 
number of neurons and different functions
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each index for each model are shown in Fig. 13. According 
to the results of part a, MAPE index for Tansig function with 
different neurons numbers was below 9% and for Logsig 
function was below 50%. Since in this criterion, the closer 
this index to zero, the better performance you can see, the 
GA–ANN 2 with 1.20 is the best model among the created 
models. The RMSE index, like MAPE index, is closer to 
zero, indicating the accuracy and correctness of the created 
model. By investigating and observing part b, it can be con-
cluded that GA–ANN 2 with 0.345 has better accuracy than 
other models. With analyzing by R2 index that its results 
have been shown in part c, based on the performance of 
the accuracy and correctness of created models, it can be 
concluded that GA–ANN 2 model with 0.989 has the best 
performance. In this criterion, the closer the index to number 
1, the model will be in the more appropriate mode and the 
predicted results of that will have a better reliability. The 
final index that was evaluated for examining the performance 
of prediction models of silver nanofluid thermal conductiv-
ity has been the MBE index; in this measurement criterion, 
the closer this number to zero, the index will be in the better 
condition. As shown in section d, the numbers have been 
recorded between the positive and negative intervals. In 
this index, the sign of numbers, negative or positive, does 
not indicate the accuracy and correctness of the model, but 
they show just the model deviation from the real value. This 
means that the negative sign shows the model’s tendency to 
predict less than the real value and the positive sign shows 
the model’s tendency to predict more than real value. With 
created investigation on the results obtained from this index, 
the GA–ANN 2 model with -0.016 has the better accuracy 
among other models and tends to be resulted in prediction of 
less than real value. Finally, by investigating all parameters 
and statistical indices, it can be concluded that GA–ANN 2 
model with six neurons in the middle layer and one neuron 
in the final layer is the most appropriate model.

In general, the accuracy and correctness are evaluated for 
all modeling methods. A model has desirable validity when, 
in addition to the low error of its estimation in predicting 
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the sample data, it has sufficient precision to make out-of-
sample predictions and its predictions have somehow been 
generalizable.

It is also no exception for the artificial neural network 
which has been used as a method of estimation in this study. 
When the neural network provides close and acceptable 
estimates for the sample data, but performs poorly for non-
sample data, in fact it has lost his validity and over-fitting 
has been done like a complication.

After investigating the performance of the network sys-
tem in the training section by genetic algorithm, ensuring 
the proper performance of modeling, finally for the use of 
obtained information, the extracted results from the network 
should become out of normalization mode. The predicted 
amount of silver nanofluid thermal conductivity with PVP 
coating in the volume fraction of 250 ppm, 500 ppm and 
1000 ppm and in the temperature range of 25–55 °C is 
shown in Fig. 14 compared to the measured experimental 
results.

The results of combined set obtained from the modeling 
in Fig. 14 show that the predicted and experimental data in 
general mode have notable overlap to one another. In order 
to better evaluate the performance of the neural network 
and to see the difference amount between the predicted 
values of the nanofluid thermal conductivity with different 
volume fractions at temperatures of 25–55 °C in Fig. 15, 
the obtained results of modeling and predicted amounts of 
neural network along with the measured values have been 
shown experimentally. As shown in Fig. 15, the least amount 
of difference between the measured and predicted results is 
at 45 °C temperature.

In Fig. 16, the correlation of the obtained results from 
predicting the optimal model and the experimental meas-
urement amount of silver nanofluid thermal conductivity is 

shown. According to the chart, more data are on or near the 
bisector, indicating that there is a proper relation between 
the experimental and output data of predicting. According 
to the performed study and obtained relation, there is a good 
correlation between the predicted and experimental amounts 
and data have a linear relationship and are of the first order.

Conclusions

Due to the importance of investigating and measuring the 
thermophysical properties of nanofluids, in this study we 
investigated and used from combined function of genetic 
algorithm and artificial neural network of perceptron mul-
tilayer to predict the silver nanofluid thermal conductivity 
with PVP coating on deionized water. The nanofluid thermal 
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conductivity with different volume fractions was experimen-
tally measured at temperature range of 25–55 °C. Since the 
nanofluid has a strong dependence on temperature, accord-
ing to the experimental results obtained, increasing the tem-
perature causes the increasing silver nanofluid thermal con-
ductivity based on deionized water. Also, in the performed 
studies, increasing the nanofluid volume fraction causes the 
increase in thermal conductivity at each measured tempera-
ture. Experimental measuring results have been used for 
modeling with the help of combining the artificial neural 
network and genetic algorithm. Modeling was performed 
under different conditions such as the number of different 
neurons and different activation functions, that after select-
ing the optimal model, the amounts of predicted thermal 
conductivity were compared with its experimental amounts, 
and the obtained results of the model show the combina-
tion reliable accuracy of the artificial neural network/genetic 
algorithm compared to the obtained amounts from experi-
mental measurements. The results show that using a hybrid 
artificial neural network and genetic algorithm model to pre-
dict the thermal conductivity of different nanofluids yields 
more accurate results than other modeling methods devel-
oped by other researchers.

Since laboratory operations and experimental measure-
ments require special facilities and equipment and are usu-
ally costly, the use of combinational model of genetic algo-
rithm and artificial neural network presented in this study is 
suggested for measuring the silver nanofluid thermal con-
ductivity with PVP coating.
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