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Abstract
This study elucidates a numerical simulation of natural convective flow inside a confined 2D reactor containing a fluid-
saturated non-Darcy porous medium. The lower wall of the reactor is wavy, while all other walls are plane surfaces. All walls 
of the reactor are kept at surrounding temperature. A chemically reacting fluid produces flow within the reactor by a heat 
generating exothermic reaction. A coordinate transform is dispensed to turn the waviness of walls into the plane surface, 
and then, the flow governing equations in transformed coordinates are solved using the finite difference scheme. Streamlines 
and isotherms that describe, respectively, the flow patterns and temperature distributions within the reactor are displayed 
varying the dimensionless numbers, namely the Darcy number  (10−4 ≤ Da ≤ 10−2), the Rayleigh number  (103 ≤ Ra ≤ 105), 
the Frank-Kamenetskii number (0.5 ≤ Kf ≤ 3.0) and the Forchheimer drag parameter (0 ≤ F ≤ 1). Also local Nusselt numbers 
at the upper and lower walls are plotted to observe the heat transfer characteristics. The remarkable results reveal that the 
strength of vorticity and the highest temperature within the reactor increase with increasing the Frank-Kamenetskii num-
ber and the amplitude of waves. Because of increasing the Darcy number and Rayleigh number, the strength of vorticity 
enhances but the highest temperature diminishes. Opposite characteristics are observed due to an increase in the Forchheimer 
drag parameter. Heat transfer is relatively stronger in plane wall than in wavy wall in every case of dimensionless number. 
Moreover, maximum heat transfer is noticed at the points on the upper wall that are exactly above the peaks of the wave.
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Introduction

Investigation of natural convection flows due to the interior 
heat generation within a confined reactor having wavy wall 
and filled with porous media has been attracted researcher’s 
contemplation from many years owing to the vast applica-
tions in many engineering fields. Some enchanting engineer-
ing applications of such flows are the cooling processes for 
microelectronic devices, heat exchangers, solar collectors, 
underground cable systems, roughened surface in cool-
ing devices [1, 2] and so forth. To enhance the convection 

procedures and thereby system performances, interior heat 
generation and heat losses through the confined surfaces 
could take a momentous role from the technological aspects. 
Applications noted above could be classified into two cat-
egories by considering nature of heating. When heat is pro-
duced from different thermal conditions employed in the 
boundary of confined reactor, it is called external heating. 
On the other hand, when heat is produced due to the pres-
ence of interior heat sources, it is called interior heating. 
Vast works have been done considering external heating, 
but very few works have been done for the case of inte-
rior heating. In the present study, chemically reacting fluid 
which actually produces heat within the confined reactor is 
considered.

The impacts of amplitude wavelength ratio on natural con-
vective flow inside a two wall wavy enclosure were numeri-
cally investigated by Das and Mahmud [3]. They showed that 
the periodic nature in Nusselt number graphs is removed by 
raising the amplitude wavelength ratio under large values of 
Grashof number. Shu and Zhu [4] numerically investigated 
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natural convection flow in an annulus bounded by a cool 
exterior square and hot interior circular cylinders. They 
used a super elliptic function to approximate the exterior 
square cylinder so that a coordinate transformation could 
easily transform the annulus into rectangular region. Find-
ings obtained from their study established a critical value of 
aspect ratio for which different flow patterns and temperature 
characteristics were found at high Rayleigh numbers. Yang 
[5–8] introduced a new integral transform and used this to 
analyze the differential equation of heat transfer problem. 
Wang and Chen [9] numerically investigated forced con-
vection in a channel having wavy lower wall. They used a 
simple coordinate transformation that converted the wavy 
channel into parallel wall channel. Waviness in local Nus-
selt number graphs was shown due to the presence of wavy 
lower wall, and the amplitude of these waves increased sig-
nificantly with the increase in amplitude wavelength ratio of 
wavy wall at high Reynolds number. Dormohammadi et al. 
[10] conducted a numerical investigation to optimize the 
heat transfer and entropy generation of nanofluid flow in a 
channel containing two sinusoidal wavy walls. They found 
optimal heat transfer and entropy generation for a particular 
values of wavelength ratio (λ = 1) and wave amplitude ratio 
(α = 0.2) and suggested those values to design an optimal 
wavy wall heat exchanger. Effects of different wave shapes 
on corrugated channel performance were numerically inves-
tigated by Salami et al. [11]. They examined for three dif-
ferent waves namely triangular, trapezoidal and sinusoidal 
and then concluded that trapezoidal waves produce the 
maximum Nusselt number and friction factor for any set 
of values of flow parameters. Oztop et al. [12] numerically 
conducted an investigation on natural convective flow inside 
an enclosure comprising two wavy horizontal walls. Their 
interest was on the wave amplitude and two types Rayleigh 
numbers. They expressed the heat transfer as a decreasing 
function of the waviness of both wavy walls by portioning 
the ratio of internal and external Rayleigh number greater 
than unity and less than unity. The impacts of ambient oscil-
lating temperature on natural convective flow inside a closed 
vessel containing chemically reacting fluid were numerically 
studied by Roy [13]. He showed that the flow patterns and 
temperature characteristics are periodic in time and thermal 
explosion occurs for higher values of Frank-Kamenetskii 
number under the large values of Rayleigh number. Varol 
and Oztop [14] performed an investigation on natural con-
vective flow inside a shallow enclosure containing a wavy 
hot lower wall. The wavy wall was expressed by a sinusoidal 
function, and numerical simulation was conducted by the 
computational software CFDRC. Findings revealed that heat 
transfer could be ameliorated by diminishing the wave length 
and diminished by raising Rayleigh number and aspect ratio.

Cheong et al. [15] ran an investigation on natural con-
vection inside a porous cavity having wavy vertical wall to 

examine the impacts of aspect ratio on flow patterns and heat 
transfer. Convection ensued owing to temperature variety 
between two vertical walls of cavity. The results revealed 
that waviness in right wall improves heat transfer that gains 
its supreme state when the aspect ratio is equal to unity. 
Chen et al. [16] numerically simulated natural convection 
inside a fluid-saturated non-Darcy porous cavity containing 
bent vertical walls to examine the impacts of dimensionless 
parameters on streamlines and heat transfer. Two straight 
walls were retained at adiabatic thermal condition, and the 
bent walls were considered to be isothermal where right wall 
was highly heated than left wall. Finite volume-based SIM-
PLEC scheme was ascribed to solve the model equations. 
Their one enchanting result was that three vortices (top, bot-
tom and middle of cavity) are produced at low Darcy–Ray-
leigh number and among two of that vortices (top and bot-
tom) vanishes and the middle one is wrenched into two at 
high Darcy–Rayleigh number. Akbarzadeh et al. [17] con-
ducted a numerical investigation to examine the combined 
effects of nanofluid, wavy walls and porous medium inside a 
heat exchanger duct. The second-order upwind method was 
implemented to discretize all the governing equations, and 
then, SIMPLE algorithm was applied to solve the equations. 
The results obtained in their study revealed that heat transfer 
of the system can be importantly enhanced by a combination 
of wavy walls, nanofluid and porous medium.

Allali et al. [18] conducted an investigation to show the 
interaction between natural convection and thermal explo-
sion in an enclosed porous cavity where the flow governing 
equations were formed by using Darcy law and heat was 
generated from an exothermic reaction. Horizontal and ver-
tical walls were maintained at surrounding temperature and 
adiabatic thermal condition, respectively. They found some 
critical values of Frank-Kamenetskii and Rayleigh number 
and predicted that thermal explosion and solution character-
istics depend upon convection and nature of boundary condi-
tions, respectively. Natural convection flow inside a porous 
concentric annulus containing chemically reacting fluid was 
examined by Roy and Gorla [19]. They varied the values of 
physical parameters and radius of annulus to observe their 
impacts on streamlines and isotherms. The results revealed 
that flow strength and maximum temperature within the 
annulus could be improved by increasing the values of radius 
of annulus and physical parameters excluding Forchheimer 
drag parameter.

In the present study, our aim is to simulate natural con-
vective flow inside a confined 2D porous reactor bounded by 
a complex wavy lower wall. Non-Darcian model is imposed 
to govern the model equations. Heat is presumed to be gen-
erated by an exothermic chemical reaction. A coordinate 
transformation is applied to convert the physical domain into 
rectangular domain, and then, FDS is employed to solve the 
transformed equations. The results in terms of streamlines, 
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isotherms and local Nusselt number at the lower and upper 
walls are displayed varying all the introduced physical 
parameters.

Formulation of the model

Natural convection flow within a 2D confined reactor 
bounded by the plane surfaces except the lower wall is con-
sidered. A complex wavy wall is placed as the lower wall of 
the reactor. The reactor is fulfilled with an isotropic, homo-
geneous, fluid-saturated porous medium having fluid that 
can generate heat. The walls of the reactor are maintained 
at an ambient temperature Ta. The physical domain and the 
computational domain of the model are pictured in Fig. 1a, 
b, respectively. U and V are, respectively, the components 
of the velocity along the X- and Y-axes for physical domain 
and along the ξ- and η-axes for computational domain. The 
variable T stands for the temperature. It is assumed that heat 
is generated within the reactor by a single-step exothermic 
reaction when a reactant A produces product B [20–22].

where k0 and a are the pre-exponential factor and species 
concentration, respectively. E and R are known as the acti-
vation energy and universal gas constant. respectively. The 
concentration of the reactant is supposed to be constant by 
supplying sufficient reactant in the reactor.

With a view to formulating the model, the confined reac-
tor containing fluid-saturated porous medium and heat pro-
ducing fluid is taken into consideration as a continuum and 
a thermal equilibrium exists between the fluid phases and 
solid. The constant behavior of the thermophysical proper-
ties is also considered. Boussinesq approximation is taken 
into consideration so that the change in density with tem-
perature can be neglected from all terms except the buoy-
ancy term. The governing equations which describe this 
type of porous medium can be formulated using Forch-
heimer and Brinkman modifications known as non-Darcian 
model [23, 24]. Considering the above assumptions, the 

(1)A → B + heat, rate = k0ae
−E∕RT

governing equations in terms of dimensionless variables 
can be expressed as

where �v� =
√
u2 + v2 and the dimensionless variables are 

defined by

Note that length of the reactor along the X-axis and Y-axis 
are, respectively, LX and LY. P, t, α, F and ρ are, respectively, 
the pressure, time, thermal diffusivity, Forchheimer drag 
parameter and the density of the fluid. The function sw(x) 
introduced in Eq. (6) represents the lower wavy wall of the 
reactor. In our study, it is defined by

where Ai, ei and n are the constants that determine the ampli-
tude of a wave, the enlargement of a wave along the x-axis 
and the number of waves in the lower wavy wall, respec-
tively. Also, the constant xi represents the critical point at 
which the function sw(x) gains its highest value.
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Fig. 1  Transformation of a the 
physical domain (X,Y) to b the 
computational domain (�, �)
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The dimensionless parameters introduced in Eqs. (2)–(5), 
Pr, Da, Ra and Kf are the Prandtl number, Darcy number, Ray-
leigh number and Frank-Kamenetskii number, respectively. 
These parameters are defined as:

where υ, K, g, β and CP are, respectively, kinematic viscos-
ity, permeability of the porous medium, acceleration due to 
gravity, coefficient of thermal expansion and specific heat at 
constant pressure. The Frank-Kamenetskii number is used to 
explain the explosion in the reactor. This number is obtained 
by performing the Frank-Kamenetskii approximation under 
the assumption RTa

E
≪ 1 in the last term of Eq. (5) [25].

It is assumed that at the beginning of time, the fluid is at 
rest and the temperature of the fluid is uniformly distributed 
throughout the reactor. Also, no-slip velocity boundary condi-
tions are considered at the reactor walls for any time. Thus the 
boundary conditions considered in this study are in the form 
of dimensionless variables:

where L = LX∕LY . With a view to eliminating the pressure 
gradient term and then forming the vorticity-stream func-
tion formulation, we now define the stream function, ψ, and 
vorticity, Ω, by
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Thus, the vorticity-stream function formulation is of the 
form

subject to the boundary conditions

To make the numerical calculation easy, a coordinates 
transformation is required so that the irregular boundary of 
the physical domain is transformed into a regular shape in 
the computational domain. Using an algebraic transforma-
tion by introducing a new set of independent variables (�, �) , 
the physical domain enclosed by 0 ≤ x ≤ L in the x-direction 
and enclosed by the curve y = sw(x) at the lower wall and 
the line y = 1 at the upper wall can be transformed into the 
rectangular computational domain enclosed by 0 ≤ � ≤ L 
and 0 ≤ � ≤ 1 . The transformation used in this study is:

Now, by substituting Eq. (14) into Eqs. (11), (12) and (5), 
the governing equations are transformed a wavy wall reactor 
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where

Equations (15)–(17) are solved subject to the following 
boundary conditions

To besiege the thermal explosion in the reactor, it is 
important to know how the heat is released from the reactor 
to the surroundings by the reactor side walls as the heat is 
generated within the reactor by the exothermic reaction. A 
fantastic quantity that describes the heat transfer character-
istics is the local Nusselt number, Nu, which is calculated 
at the side walls of the reactor. Now, we define the local 
Nusselt number, Nu, by

where λ is the thermal conductivity of the fluid and h is the 
heat transfer coefficient which is defined by

where �∕�n refers the differentiation with respect to the 
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Numerical method

The flow governing Eqs.  (15) and (16) in transformed 
coordinates (ξ, η) subject to the boundary condition (18) 

are solved by applying FDS to produce numerical solu-
tions. The diffusion terms are split by central differ-
ence scheme, whereas the convective terms are split 
by an upwind difference scheme. Uniform step sizes, 
Δ� = 12

/
(m� − 1) andΔ� = 1

/
(m� − 1) , where mξ and mη 

are the number of grid points along the ξ and η directions, 
respectively, are used to discretize the flow domain. The 
stream function, ψ, is evaluated from Eq. (15) by utilizing 
the finite difference method together with successive over 
relaxation (SOR) technique. After getting the stream func-
tion, the velocity components u and v are obtained from 
the expression for u and v given in Eq. (17). After that, the 
vorticity Ω and the temperature θ are obtained from Eq. (16) 
and (17), respectively. Similar technique may be followed to 
calculate all the quantities in every time steps.

In any study, it is important to show whether the results 
figured in the study are grid independent or not. Because 
of this, to show the grid independency four different sizes 
of grid are considered. The results in terms of absolute 
percentage error for maximum stream function and maxi-
mum temperature in the reactor are presented in Table 1. 
Here, absolute percentage errors are calculated by using 
the following relation.

where the quantity q stands for maximum stream function or 
maximum temperature and mj = L × 2j + 1 and nj = 2j + 1 
are the number of grid points along the ξ and η directions, 
respectively. From Table  1, it is seen that the absolute 

(23)
Absolute percentage error (%) =

|||q(mj+1 × nj+1) − q(mj × nj)
||| × 100

Table 1  Grid independence study (τ = 2.0, Ra = 104, Pr = 1.0, Kf = 2.0, 
Da = 10−3, F = 0.5, Ai = 0.3, ei = 4.0 and n = 4)

J Grids 
(m × n)

ψmax Absolute 
percentage 
error/%

θmax Absolute 
percentage 
error/%

2 49 × 5 0.2534600 0.4480031
3 97 × 9 0.2459034 0.75566 0.4566592 0.86561
4 193 × 17 0.2416719 0.42315 0.4568921 0.02329
5 385 × 33 0.2393611 0.23108 0.4570051 0.01130
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percentage error for any two consecutive grids is less than 
1% and this error decreases as the grid size increases. Also, 
the maximum stream function and maximum tempera-
ture with time for different grid sizes are plotted in Fig. 2 
which showed that the difference between any two consecu-
tive curves is very small and the curves for grids 193 × 17 
and 385 × 33 are almost overlapping. This indicates that 
grids larger than 193 × 17 will produce the grid independ-
ence solution. As a result, we have taken the grid 193 × 17 
throughout our all calculations to minimize the simulation 
time and cost.

To ensure the validity of our numerical code, a com-
parison has been made of our result with the numerical 
results of Khanafer et al. [26] and Oztop et al. [12] and the 
experimental results of Krane and Jesse [27]. It is worth 

mentioning that our considered physical model reduces 
to the model of Khanafer et al. [26] and Oztop et al. [12] 
if we set Ai = 0.0 and L = 1.0. Also, the flow governing 
Eqs. (11), (12) and (5) reduce to the flow governing equa-
tions of Khanafer et al. [26] for pure fluid and Oztop et al. 
[12] if we set F = 0.0, 1/Da = 0.0 and Kf = 0.0. Temperature 
at the vertically middle point along the length of the enclo-
sure is shown in Fig. 3 when the values of the dimension-
less parameters Ra = 105 and Pr = 0.7. It is seen that our 
result makes a good harmony with the results obtained 
from [26] to [27].

Results and discussion

Numerical simulations are conducted for 2D natural convec-
tive flow inside a fluid-saturated non-Darcy porous reactor 
having a complex wavy bottom wall. The dimensionless 
parameters that generate the flow are Pr, Da, Ra and Kf. 
The results that are presented here are chosen to elucidate 
the flow patterns and temperature distribution along with 
heat transfer characteristics at the lower and top wall of the 
reactor. The following results are figured for steady case of 
exothermic reaction at dimensionless time variable τ = 2.0, 
while the values of other parameters are Ra = 104, Pr = 1.0, 
Kf = 2.0, Da = 10−3, F = 0.5, Ai = 0.3, ei = 4.0 and n = 4 when 
values are not noted in the respective figure.

Improvement of streamlines and isotherms 
with time, τ

The improvement of streamlines and isotherms in the reactor 
with increasing time is displayed in Figs. 4 and 5, respec-
tively. It is observed from these figures that both the tem-
perature and the strength of flow speedily increase and reach 
to a steady state (Figs. 4d–f, 5e, f). Two vortices are formed 

Fig. 2  Comparison of a 
maximum stream function and 
b maximum temperature with 
time for different grid sizes 
(τ = 2.0, Ra = 104, Pr = 1.0, 
Kf = 2.0, Da = 10−3, F = 0.5, 
Ai = 0.3, ei = 4.0 and n = 4)
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Fig. 3  Comparison of the present study with studies of Khanafer 
et al. [26], Oztop et al. [12] and Krane and Jesse [27] for temperature 
at the vertical midpoint along the width of the enclosure
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between every two consecutive peaks of wave where they 
have the equal but opposite directed strength. This opposite 
characteristics happen as the relatively cooler particles go 
upward because of the buoyancy force and spin in clock-
wise and anticlockwise directions. Totally, eight vortices are 
produced in the reactor where each vortex is separated by 
the stream function having zero magnitude which occurs at 
the peak and trough of the every waves. It is also observed 
from Fig. 5 that four high-temperature regions are formed 
along the vertically midsection of the reactor and at the peak 
of every waves. This region is symmetrical about y-axis if 
the produced vortices are symmetrical (the isotherms and 
streamlines allocated at the second and third peak). On the 
other hand, asymmetrical characteristics are observed in the 
high-temperature region and produced vortices if both are 
asymmetrical (the isotherms and streamlines allocated at the 
second and third peak).

Changes in streamlines and isotherms 
with increasing Darcy number, Da

Changes in flow patterns and isotherms with increas-
ing Darcy number, Da, are displayed in Figs.  6 and 7, 
respectively. The results reveal that the strength of vorti-
ces increases for increasing the Darcy number while the 
maximum temperature in the reactor decreases. It is also 
observed that for low values of Da (Fig. 6a, b), center of all 
the vortices excluding adjacent to vertical walls is under the 
horizontal line passes through the vertically middle point 
of the reactor. And the center moves upward and reaches 
to this horizontal line when Da is equal to  10−2 (Fig. 6d). 
In other words, it can be told that center of all the vortices 
moves upward as the Darcy number increases. This hap-
pens because higher values of Darcy number indicate the 
porous medium with more permeability which creates low 
resistance when fluid flows through the reactor. Therefore, 
fluid can spontaneously transfer from one place to another 
through the porous medium and the strength of vortices is 
heightened. Also, the increasing strength of vortices assists 
to distribute heat uniformly near the center of the vortices. 
Consequently, the maximum temperature decreases with 
increasing Darcy number.

Fig. 4  Improvement of stream-
lines with time, τ 
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Fig. 5  Improvement of iso-
therms with time, τ 0.24
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Fig. 6  Changes in streamlines 
with increasing Darcy number, 
Da
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Changes in streamlines and isotherms 
with increasing Frank‑Kamenetskii number, Kf

The impacts of Frank-Kamenetskii number, Kf, on fluid flow 
and temperature distribution are described by Figs. 8 and 
9, respectively. Figures evidently show that a momentous 

increase in the strength of the vortices and the highest tem-
perature is occurred due to the increase in the values of 
Kf. Heat is generated within the reactor by the exothermic 
chemical reaction, and this can be described by only the 
Frank-Kamenetskii number, Kf. Higher values of Kf generate 
more heat in the reactor and increase the temperature of the 
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reactor as the heat loss by the side walls remains constant. 
As a consequence, the strength of vortices increases and 
the center of vortices moves upward. Also, the highest tem-
perature increases and is inspissated above the peak of each 
waves where two opposite directed vortices are separated.

Changes in streamlines and isotherms 
with increasing Rayleigh number, Ra

Impacts of Rayleigh number, Ra, on fluid flows and tem-
perature distributions are described by Figs. 10 and 11, 
respectively. The results reveal that the strength of vortices 

abruptly increases due to increase the values of Rayleigh 
number while the maximum temperature slightly decreases. 
It is important to mention that the Rayleigh number imparts 
the strength of convection. AS a result, the strength of vor-
tices is higher for higher values of the Rayleigh number. 
Besides, more convection of heat occurred near the bound-
ary walls cause more heat loss through the boundary walls 
to the neighboring environments. Consequently, the maxi-
mum temperature in the reactor is markedly decreased due 
to increase in the Rayleigh number.

Fig. 7  Changes in isotherms 
with increasing Darcy number, 
Da

(a)
Da = 10–4

(c)
Da = 5 × 10–3

(b)
Da = 10–3

(d)
Da = 10–2

0.46
0.42
0.38
0.34
0.30
0.26
0.22
0.18
0.15
0.11
0.07
0.03
0.00

0.44
0.40
0.37
0.33
0.29
0.25
0.22
0.18
0.14
0.10
0.06
0.03
0.00

0.43
0.40
0.36
0.32
0.28
0.25
0.21
0.17
0.14
0.10
0.06
0.03
0.00

0.46
0.43
0.38
0.33
0.29
0.24
0.19
0.15
0.12
0.09
0.06
0.03
0.00

Fig. 8  Changes in streamlines 
with increasing Frank-Kamenet-
skii number, Kf
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Changes in streamlines and isotherms for different 
values of Forchheimer drag parameter, F

The impact of Forchheimer drag parameter, F, on the 
streamlines and temperature distribution is described by 
Figs. 12 and 13, respectively. The results elicit that the 
strength of vortices decreases with increasing values of 
the Forchheimer drag parameter while the maximum tem-
perature increases. The Forchheimer drag parameter, F, 
represents a clogging force of order two in simulating the 
fluid flow in a porous medium. Increase of values F from 
0.0 through 0.5 and 1.0 yields a potential improvement in 
Forchheimer drag which is the cause of deceleration of 
flow, that is, reduces the strength of vortices. It is antici-
pated that more chaotic effects are generated for larger 

values of F for the case of fluid flow in porous medium. 
Maximum temperature, however, is slightly increased with 
a increase in F.

Changes in streamlines and isotherms for variable 
heights of amplitude, Ai

Impacts of variable heights of amplitude on streamlines 
and temperature distributions are illustrated by Figs. 14 
and 15, respectively. Two layouts A1 = 0.1, A2 = 0.2, 
A3 = 0.3, A4 = 0.4 (Figs. 14a, 15a) and A1 = 0.1, A2 = 0.3, 
A3 = 0.2, A4 = 0.4 (Figs. 14b, 15b) and their opposite lay-
outs (Figs. 14c, 15c); Figs. 14d and 15d, respectively, are 
considered. The results elicit that the strength of vortices 
depends upon the height of wave amplitude for the both 

Fig. 9  Changes in isotherms 
with increasing Frank-Kamenet-
skii number, Kf
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Fig. 10  Changes in streamlines 
for different values of the Ray-
leigh number, Ra
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layouts. The vortex of highest strength is produced right 
to the wave of the highest amplitude where it is contiguous 
to the right wall. On the other hand, the vortex of highest 
strength is produced left to the wave of highest amplitude 
where it is contiguous to the left wall. However, the maxi-
mum temperature occurs above the wave of the highest 
amplitude and stays nearly unchanged for any layouts of 
the height of amplitude. The thinnest vortex is produced 
right to the wave with the smallest amplitude when this 
wave is adjacent to the left wall of the reactor and left 
to the same wave when this wave is adjacent to the right 
wall of the reactor. On the other hand, the thickest vortex 
is produced to the opposite side of the same wave where 
the thinnest vortex is produced. Variable shapes in the vor-
tex are happened due the variable heights of amplitude of 

the waves. The temperature above every wave is relatively 
higher with relatively higher amplitude of wave.

Improvement of Nusselt number with time, τ

Improvements of heat transfer are illustrated by the Nus-
selt number,  Nuξ, and graphs at the lower and upper walls 
which are shown in Fig. 16. The results reveal that heat 
transfer gradually raises at the both walls as time flows and 
it reaches to a steady state when the least value of non-
dimensional time is 2.0. No heat transfers are noticed at 
junctions of every two walls of reactor. Oscillating behav-
iors are shown in heat transfer characteristics at the both 
walls because of waviness in lower wall. And the ampli-
tude of oscillation in Nusselt number graphs increases 

Fig. 11  Changes in isotherms 
with increasing the Rayleigh 
number, Ra
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Fig. 12  Changes in streamlines 
with increasing the Forchheimer 
drag parameter, F 
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as time flows. At the upper wall, the highest heat trans-
fer occurs at the point which is exactly above the every 
peaks of the lower wall and the lowest at the point which 
is exactly above the every trough of the lower wall. At the 
lower wall, the highest heat transfer occurs at the points 
which are neither the peak nor the trough of a wave, and 
they are the points lie between the peak and trough of the 
wave. And the lowest temperature occurs at the each peaks 
of the wave. However, the heat transfer rate at the wavy 
wall is relatively weaker than the plane wall. This happens 
because the highest temperature regions are created more 
close the upper wall than the lower wall.

Nusselt number variations with the change of Darcy 
number, Da

Impacts of Darcy number on Nusselt number graphs at 
lower and upper walls are shown in Fig. 17a, b, respec-
tively. The results reveal that for a particular value of 
Darcy number, heat transfer is higher in upper wall than in 
lower wall. Also, at the upper wall the highest rate of heat 
transfer increases and the lowest decreases as the Darcy 
number increases. In other words, higher permeability of 
porous medium indicates higher the highest rate of heat 
transfer at the upper wall. The opposite characteristics in 
the highest heat transfer and the similar characteristics 
in the lowest heat transfer at the lower wall are noticed 
when the values of the Darcy number increases. There 

Fig. 13  Changes in isotherms 
with increasing the Forchheimer 
drag parameter, F 
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Fig. 14  Changes in streamlines 
for variable heights of the 
amplitude, Ai
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are three optimum values of the Nusselt number occur 
between every two peaks of the wavy lower wall where 
only optimum value of Nusselt number occurs between 
the portion of the upper wall above the same two peaks 
of the lower wall. The difference between these optimum 
values occurred in the lower wall decreases as the Darcy 
number increases. This happens because the temperature 
gradient near the lower wall decreases with increasing 
Darcy number.

Nusselt number variations with the change 
of Rayleigh number, Ra

Impacts of Rayleigh number on the Nusselt number at the 
lower and upper walls are shown in Fig. 18a, b, respectively. 

The results reveal that at the upper wall, the highest rate of 
heat transfer increases and the lowest decreases as the Ray-
leigh number increases. At the lower wall the highest rate 
of heat transfer decreases and also the lowest decreases as 
the Rayleigh number increases. Nusselt number curves are 
concave up at the portions of lower wall which are concave 
down (between x = 2 and x = 4; x = 5 and x = 7; x = 8 and 
x = 10). The concavity of these curves decreases with the 
increasing values of the Rayleigh number.

Nusselt number variations with the change 
of Frank‑Kamenetskii number, Kf

Impacts of Frank-Kamenetskii number on Nusselt num-
ber at lower and upper walls are displayed in Fig. 19a, b, 

Fig. 15  Changes in isotherms 
for variable heights of the 
amplitude, Ai
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respectively. The results reveal that Nusselt number graphs 
are oscillating at the both wavy and plane walls for every 
value of Frank-Kamenetskii number and these oscillations 
increase with increasing Kf. Also, heat transfer is greater 
in upper wall than in lower wall for any values of Kf. How-
ever, heat transfer at both walls raises with increasing 
Frank-Kamenetskii number. Also the difference between 
the highest and lowest heat transfer raises with increasing 
Kf, that is, the amplitude of the curves of Nusselt number 
increases as the values of Kf increase. This happens due 
to the more heat generation from the exothermic reaction 
when the value of Kf is higher. Fluid particles with high 
temperature flow very close to the reactor walls that causes 
high-temperature gradient at the reactor walls.

Nusselt number variations with the change 
of Forchheimer drag parameter, F

Impacts of Forchheimer drag parameter on Nusselt num-
ber at lower and upper walls are shown in Fig. 20a, b, 
respectively. The results reveal that at upper wall, the high-
est heat transfer is noticed at the points that are exactly 
above the every peaks of lower wall and this rate slightly 
decreases with the increase of F. Besides, at lower wall 
the highest heat transfer is noticed at the points that are 
neither the peaks nor the trough of the wavy wall and this 
rate slightly increases with the increase of F.

Fig. 17  Nusselt number,  Nuξ, 
variations at the a lower and b 
upper walls with the change of 
Darcy number, Da
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Fig. 18  Changes in the Nusselt 
number,  Nuξ, at the a lower 
and b upper walls for different 
values of Rayleigh number, Ra
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Conclusions

Numerical simulation of 2D natural convection flow in a 
closed reactor containing complex wavy lower wall and 
filled with non-Darcy porous medium containing a heat gen-
erating fluid was carried out in this study. The dimensionless 
vorticity and energy equations which govern the fluid flow 
were solved in transformed coordinates by using the finite 
difference method. Employing dimensionless numbers and 
wave amplitude, the following conclusions were noticed.

• Higher values of Frank-Kamenetskii number signifi-
cantly improve the strength of vorticity and the high-
est temperature. Heat transfer rate can be significantly 
enhanced at the both walls by increasing the Frank-
Kamenetskii number in the range 0.5 ≤ Kf ≤ 3.0.

• Though the strength of vorticity considerably increases 
due to the increase in the Darcy number, the highest 

temperature slightly decreases. Similar behaviors 
in flow patterns and temperature distributions are 
observed due to changing the Rayleigh number like 
Darcy number.

• Strength of vorticity can only be decelerated by increas-
ing the Forchheimer drag parameter. Inconsiderable 
changes in maximum temperature and heat transfer at 
both walls are observed due to changing the Forch-
heimer drag parameter.

• Strength of vorticity is higher within the vortex pro-
duced contiguous to the wave with highest amplitude. 
And the highest temperature always occurs at the above 
of this wave.

• At the upper wall, the highest heat transfer rate is 
observed at the points that are exactly above the each 
peaks of wavy lower wall and this rate increases with 
the increase in every physical parameters introduced in 
our study except Forchheimer drag parameter.

Fig. 19  Changes in the Nusselt 
number,  Nuξ, at the a lower 
and b upper walls for different 
values of Frank-Kamenetskii 
number, Kf
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Fig. 20  Changes in the Nusselt 
number,  Nuξ, at the a lower 
and b upper walls for different 
values of Forchheimer drag 
parameter, F 
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• At the lower wall, the highest heat transfer is observed 
at the points that are neither the peaks nor troughs of 
wavy lower wall and this rate increases due to increas-
ing the Frank-Kamenetskii number and Forchheimer drag 
parameter and decreases due to increasing the Darcy and 
Rayleigh number.
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