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Abstract
A numerical model is developed to study the effects of temperature-dependent viscosity on heat transfer in magnetohydrody-
namic flow of micropolar fluid in a channel with stretching walls. The governing equations for linear and angular momenta 
and energy are transformed to a set of nonlinear ordinary differential equations by using similarity variables, and resulting 
problems are solved numerically by quasi-linearization. The effects of the various physical parameters on velocity, microrota-
tion and temperature profiles are presented graphically and numerically. Finally, the effects of pertinent parameters on local 
skin-friction coefficient and local Nusselt number are also presented graphically. Some important observations regarding the 
effect of vortex viscosity parameter, microinertia density parameter, spin gradient viscosity parameter and couple stress on 
flow fields are noted and displayed. Numerical values of shear stress, couple stress and heat flux are computed and tabulated. 
The viscosity variation parameter enhances the shear stress and the couple stress. However, the heat transfer exhibits an 
opposite trend. The viscosity parameter is the most influential on thermal distribution. The magnetic field acts as a retarding 
force which reduces the normal and streamwise velocities as well as the microrotation distribution
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List of symbols

Dimensional quantities
�0	� Characteristic viscosity (kg m−1 s−1)
�	� Electric conductivity (s m−1)
�	� Fluid density (kg m−3)
p	� Fluid pressure (kg m−1 s−2)
Tf	� Fluid temperature (K)
qw	� Heat flux (kg s−3)
�	� Kinematic viscosity (m2 s−1)
B0	� Magnetic field intensity (m−1 A)
j	� Microinertia per unit mass (m2)
�	� Microrotation component (s−1)
K	� Porous permeability (m2)
T1, T2	� Reference fluid temperatures (K)

�w	� Shear stress (kg m−1 s−2)
cp	� Specific heat (J kg−1 K−1)
b	� Stretching rate (m)
k0	� Thermal conductivity (W m−1 K−1)
�	� Vortex viscosity (Pa s)
2c	� Width of channel (m)
u, v	� x and y component of velocity (m s−1)

Non‑dimensional quantities
Cg	� Couple stress coefficient
Ec	� Eckert number
M	� Magnetic field parameter
g	� Microrotation
f	� Normal velocity
f ′	� Stream velocity,
�	� Temperature
Nu	� Nusselt number
N2	� Parameter for microinertia density
N3	� Parameter for skin gradient viscosity
N1	� Parameter for vortex viscosity
Pr	� Prandtl number,
Re	� Reynolds number
�	� Similarity variable
Cf	� Skin friction coefficient
�	� Spin gradient viscosity
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�
(
Tf
)
	� Temperature-dependent viscosity

δ	� Viscosity variation constant
�	� Viscosity variation parameter

Introduction

Heat transfer in fluid occurs in industrial applications. The 
efficiency of thermal and cooling system involves heat trans-
fer in fluid that depends upon the thermal conductivity of 
fluids. Therefore, thermal enhancement has been studied in 
many recent investigations. For instance, Sheikholeslami 
[1] performed a computational analysis for an enhance-
ment of heat transfer in fluid by suspension of nanoparti-
cles. Sheikholeslami et al. [2] did an experimental study 
for the application of nano-refrigerant for boiling of heat 
transfer in fluid flows. Sheikholeslami et al. [3] investigated 
an enhancement of heat transfer in fluid in a heat storage unit 
containing nanoparticles and cooling fin. Sheikholeslami 
and Ghasemi [4] performed heat transfer simulations in 
the presence of thermal radiation via finite element method 
(FEM). Sheikholeslami and Seyednezhed [5] analyzed the 
impact of suspension of nano-structures on transport of 
heat energy in convective transport of momentum in fluid 
immersed in porous medium. Sheikholeslami and Rashid 
[6] analyzed heat transfer in Ferro fluid exposed to variable 
magnetic field. Dogonchi et al. [7] performed numerical 
analysis of thermal performance of nanoparticles on trans-
port of heat transfer in fluid filled in a cavity. Dogonchi et al. 
[8] discussed natural convection on square enclosure with 
wavy circular heater exposed to magnetic field. Hashemi-
Tilehnoee [9] studied factors affecting entropy generation 
in fluid exposed to magnetic field. By considering various 
shapes for nanoparticles, Sheikholeslami [10] investigated 
the influence of magnetic field on flow in a permeable cav-
ity. MHD flow of Al2O3-water nanofluid inside a permeable 
medium also studied by Sheikholeslami [11]. Selimefendigil 
et al. [12] investigated MHD CuO-water flow of nanofluid 
with forced convection in channel. Selimefendigil and Hakan 
[13] studied mixed convection corrugation type effects 
through vented cavity for fluid-solid interaction. Turkyil-
mazoglu [14] presented a numerical study, in which he dis-
cussed laminar (MHD) flow of an electrically conducting 
fluid on a stretchable disk. Hayat [15] analytically presented 
heat transfer for two-dimensional MHD flow of Maxwell 
fluid (with viscosity and relaxation time depending upon the 
pressure. A comprehensive literature review on exact solu-
tions of Navier–Stokes equations were studied by Aristov 
et al. [16]. Malik et al. [17] investigated two-dimensional 
MHD flow of the Carreau fluid over a stretching sheet with 
a variable thickness. The problem (MHD) steady flow and 
heat transfer of an incompressible (non-Newtonian fluid) 

that are macromolecular in nature and their resemblance 
with an elastic solid were solved numerically by Misra [18].

Many researchers are familiar by the practical applica-
tions of the non-Newtonian fluids. In industry, non-New-
tonian fluids got much importance due to their usage in 
modern technology but on the other hand such fluids must 
be investigated to get the desired results. Due to complexity 
of these fluids, many models have been anticipated. Among 
them, micropolar model is the prominent. Blood, polymers 
and many industrial liquids containing crystals and micro-
solid structures are examples of micropolar fluid. For the 
modeling of heat transfer one additional law, the law of con-
servation of angular momentum is used along with a usual 
conservation laws. Micro-rotation in micro-polar fluid is due 
to couple stress. Further, vortex viscosity and spin gradi-
ent viscosities are also significant in such fluid. Due to its 
diversity from other fluids, many researchers have discussed 
various aspects of this rheology. For example, Fabula and 
Hoyt [19] claimed that micropolar fluid cannot be explained 
and characterized by those fluids that cannot be explained 
and characterized by Newtonian relationship they could be 
explained by micro-polar model which was later introduced 
by Eringen [20] was first to introduce set of balance laws of 
micropolar fluid. Laminar incompressible flow of a micro-
polar fluid between two disks was studied by Kamal [21]. 
Magnetohydrodynamics (MHD) flow and heat transfer char-
acteristics of a viscous incompressible electrically conduct-
ing micropolar fluid in a channel with stretching walls was 
studied by Ashraf et al. [22]. The characteristics of melting 
heat transfer in a boundary layer flow of the Jeffrey fluid 
near the stagnation point on a stretching sheet subject to an 
applied magnetic field was discussed by Nawaz et al. [23]. 
Some new strategies for the exact solutions for three-dimen-
sional thermal diffusion equations are introduced, and sev-
eral cases were discussed in a most recent studies by Aristov 
and Prosviryakov [24] and new classes of exact solutions of 
Euler equations derived by Aristov and Polyanin [25].

Despite the fact of importance of exact solution, here 
numerical method is used; exact solution is not possible to 
find. Most of the studies on transport mechanism deal with 
constant viscosity. This assumption is valid to some rare 
cases. However, in general, viscosity does not remain con-
stant in fluid flowing in the pressure of thermal changes. 
In view of this, several investigations have been published 
[26–31]. Further, these studies confirmed that the effect on 
the flow characteristics might change drastically in compari-
son with the constant viscosity assumption.

Moreover, MHD flow and heat transfer in viscoelastic 
fluid over a stretching sheet in the presence of variable 
viscosity and thermal conductivity are studied by Salem 
[32]. Also, the problem of thermal-diffusion and diffusion 
thermo effects on mixed free-forced convection and mass 
transfer boundary layer flow of non-Newtonian fluid with 
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temperature-dependent viscosity was studied numerically by 
Eldabe and Mohamed [33], using Chebyshev finite differ-
ence method. Moreover, Seddeek and Salama [34] studied 
the effects of variable viscosity and thermal conductivity 
on an unsteady two-dimensional laminar flow of viscous 
incompressible conducting fluid past a semi-infinite verti-
cal porous moving plate taking into account the effect of a 
magnetic field in the presence of variable suction.

Most of the studies on micropolar fluid consider viscosity 
of fluid to be constant. This assumption is not realistic, and 
imposition of this assumption of constant viscosity leads to 
physically unrealistic outcomes as blood and polymers do 
not posses constant viscosity. In general, such fluids have 
temperature-dependent viscosity. In view of this strong 
observation, authors have considered viscosity of micropo-
lar fluid as a function of temperature of fluid itself. Further 
Ashraf et al. [22] have considered constant viscosity while 
analyzing heat transfer in a micropolar fluid in a channel. 
We have extended it the case of temperature-dependent vis-
cosity. Hence, based on above discussion, the present work 
is an attempt to study the effects of variable viscosity on 
hydromagnetic flow and heat transfer characteristics of a 
micropolar non-Newtonian fluid in a channel with stretching 
walls. The governing equations reduced to similarity bound-
ary layer equations by using suitable transformations. The 
transformed ordinary differential equations together with the 
associated boundary conditions are discretized by the central 
finite differences and solved numerically. Numerical results 
are shown graphically for the velocity, angular velocity, tem-
perature and concentration distributions.

Mathematical formulations

Consider heat transfer in steady two-dimensional hydromag-
netic flow of micropolar fluid in a channel with stretching 
walls in the presence of a transverse applied magnetic field. 
The induced magnetic field is negligible as compared to 
the imposed magnetic field under the assumption of small 
magnetic Reynolds number [35]. Hence, the magnetic field 
will tend to relax towards a purely diffusive state, for small 
magnetic Reynolds numbers. Moreover, it is assumed that 
the electric field vanishes as there is no applied polarization 
voltage. Microrotation due to solid like structures in the col-
loidal suspension (called micropolar fluid) is significant. The 
walls of channel of width 2c are located at y = −c and y = c 
as shown in Fig. 1. The upper and lower walls of channel 
have constant temperature T2 and T1 respectively. Micropo-
lar fluids exhibit Ohmic dissipation (Joule heating phenom-
enon) when they move under the influence of applied mag-
netic field so Joule heating effects are considered.

The unknown flow fields are

where � is the component of the microrotation field normal 
to the xy-plane, whereas the microrotation is defined as the 
rotation of the microscopic particles in the fluid.

Laws of conservation of mass, linear momentum, angu-
lar momentum and energy ([36–38]) become

where � is the vortex viscosity, � is the density, p is the pres-
sure, � is the spin gradient viscosity, B0 is the strength of the 
magnetic field, j is the microinertia density, cp is the specific 
heat at constant pressure,� is the electrical conductivity, Tf is 
the temperature of the fluid and �0 is the thermal conductiv-
ity. The intensity of the inertial forces due to the microparti-
cles of the fluid is known as microinertia density. Further, it 
is worth mentioning that for � (vortex viscosity) is equal to 
zero the governing PDEs (2)–(6) reduce to governing PDEs 
for heat transfer in MHD Newtonian fluid.

The boundary conditions for the velocity, microrotation 
and temperature fields for the present problems are:

(1)
� = [u(x, y), v(x, y), 0], � = [0, 0,�(x, y)], Tf = Tf(x, y)

(2)
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Fig. 1   Flow configuration and coordinates system
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Here, b is the positive constant and has dimension, recipro-
cal of the dimension of time.

In this stage, the following similarity variables are 
defined to convert the governing partial differential Eqs. 
(2)–(6) into the ordinary differential equations:

Microrotations are significant in micropolar liquid. Blood 
and other industrial fluids are examples of such fluids. It is 
theoretically and experimentally verified that the viscosity 
of such fluid does not remain constant when thermal changes 
occurs. Due to this fact, the viscosity of such fluids depends 
on temperature. There are more than one mathematical 
model for temperature-dependent viscosity. Most commonly 
used model Ling and Dybbs [39] is

Here � is the viscosity variation parameter, �o is the constant 
dynamic viscosity, � is the dimensionless temperature and � 
is the viscosity variation constant.

Using change of variables given in Eq. (8) in conserva-
tion laws (2)–(7) and eliminating the pressure, one gets,

where N1 =
�

�0

 is the vortex viscosity parameter, N2 =
�0

�jb
 is 

the microinertia density parameter, N3 =
�

�jc2b
 is the spin 

gradient viscosity parameter, Re = 𝜌c2b

𝜇0

> 0 is the stretching 

Reynolds number, Pr = �0cp

�0
 is the Prandtl number, M =

c2�B2
0

�0

 
is the magnetic parameter and Eckert number Ec = b2x2

cp(T2−T1)
 

defined as Gopal et  al. [40]. For � = 0 and N1 = 0 , the 
boundary value problem given in Eqs. (10)–(12) reduces to 

(7)
u = bx, v = 0, � = 0 at y = ±c

Tf = T1 at y = −c

Tf = T2 at y = c

⎫
⎪⎬⎪⎭

(8)
u = bxf �(�), v = −bcf (�), � =

y

c
,

� = −
b

c
xg(�), �(�) =

Tf−T2

T2−T1
.

}

(9)

�(Tf) =
�
o

1 + �(Tf − T∞)
=

�
o

1 + ��
, with � = �(T2 − T1)

(10)(1 + N1)f
���� − N1g

�� = 2
(

�

1+��

)2

(��)2f �� −
(

�

1+��

)
���f �� + Re{f �f �� − ff ���} +Mf ��,

f (1) = 0, f �(1) = 1, f (−1) = 0, f �(−1) = 1.

}

(11)
N3g

�� + N1N2(f
�� − 2g) = f �g − fg�,

g(1) = 0, g(−1) = 0.

}

(12)
��� + Pr(Ref �� +MEc(f �)2) = 0,

�(1) = 0, �(−1) = 1.

}

Newtonian case and for � = 0 and Ec = 0, reduces to non-
Newtonian case, discussed by Ashraf et al. [22].

The skin friction coefficient is defined by

Coupled stress coefficient is defined as

Similarly Nusselt number is defined as

Further, it can be noted that for � = 0 , problem reduces to 
the case of constant viscosity, whereas N1 = 0 is the case 
of Newtonian fluid. So � = 0 , Ec = 0 is the case studied by 
Ashraf et al. [22] .

Solution procedure

The governing boundary value problems (10)–(12) are 
solved numerically by employing a computational meth-

odology based on order reduction and finite difference dis-
cretization used by Ashraf et al. [22], which is elaborated 
for the fourth order system as follows:

Let for a function Gf , we write

We now suppose that F be the solution of the ODE, then

or can be written in another form as

(13)
Cf =

(�(Tf) + �)
�u

�y
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1

2
�(bx)2
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(
2c

xRe

)(
1
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)
f
��
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x�
��
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1

2
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(15)Nu =

−xk0
�Tf

�y
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k0(T2 − T1)
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(
x

c

)
�

�

(±1)

Gf(f , f
�, f ��, f ���, f ����)

= (1 + N1)f
���� − N1g

�� − 2
(

�

1 + ��

)2

(��)2f ��

+

(
�

1 + ��

)
���f �� −Mf �� − Re{f �f �� − ff ���},

Gf(F,F
�,F��,F���,F����) = 0.
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which on using first-order Taylor series expansion, yields

or

This equation may be used to set iterative process as

Similar process may be adopted for the rest of the equa-
tions. Finally, the iterative procedure can be summarized 
as follows:

•	 An initial guess satisfying the corresponding boundary 
conditions is provided for f, g and �

•	 A new approximation of f is obtained for solving Eq. (16)
•	 The updated f is then used to find the modified g and �.
•	 Above-mentioned procedure is repeated until no signifi-

cant iterative improvement is noted for f, g and �

Results and discussion

In order to get physical insight into the problem, veloc-
ity fields (linear and angular), shear and couple stresses 
are examined for various values of physical parameters. 
Numerical values of shear, couple stresses and heat fluxes 
at the channel wall for various values of Reynolds number, 
Prandtl number, viscosity parameter and Eckert number are 
tabulated in Tables 1–5. As the problem is inherently sym-
metric, numerical values of shear and couple stresses and 
heat flux for various values of the parameters are given at 
one channel wall only. Influence of the external magnetic 

Gf(f + (F − f ), f � + (F� − f �), f �� + (F�� − f ��),

f ��� + (F��� − f ���), f ���� + (F���� − f ����)) = 0.

Gf(f , f
�, f ��, f ���, f ����) + (F − f )

�G

�f
+ (F� − f �)

�G

�f �

+ (F�� − f ��)
�G

�f ��

+ (F��� − f ���)
�G

�f ���
+ (F���� − f ����)

�G

�f ����
= 0,

(1 + N1)F
���� + (Ref )F��� + −2

(
�

1 + ��

)2

(��)2f ��

+

(
�

1 + ��
−M − Ref ��

)
F��(−Ref ��)F� + (Ref ��)F

= N1g
�� − Ref �f �� + Reff ���.

(16)

(1 + N1)F
(k+1)

����

+ (Ref )F(k+1)
���

+ −2
(

�

1 + ��

)2

(��)2f ��

+

(
�

1 + ��
−M − Ref ��

)
F(k+1)

��

(−Ref ��)F(k+1)
����

+ (Ref ��)F(k+1)

= N1g
(k+1)

��

− Ref (k+1)
�

f (k+1)
��

+ Reff (k+1)
��

.

field on the three physical quantities is also observed from 
Table 1. It is easy to note that the magnetic parameter M has 
a significant impact on the shear stress. Heat flux at the walls 

Table 1   Magnetic fields effects on shear, couple stresses and heat 
transfer rate when N

1
= 4 , N

2
= 0.3 , N

3
= 0.6 , Pr = 21, Re = 1, Ec = 

0.01 and � = 2

M
(

1

1+��(±1))
+ N

1

)
f ��(−1)

(
N
3

2

)
g�(−1) ��(−1)

0 − 2.8638 − 1.6146 − 1.1945
1 − 2.9002 − 1.6166 − 0.9423
2 − 2.9218 − 1.6186 − 0.2014
3 − 2.9185 − 1.6195 1.0240
4 − 2.8871 − 1.6191 2.7505

Table 2   Effects of magnetic field on shear, couple stresses and heat 
transfer rate with N

1
 = 4, N

2
 = 0.8, N

3
 = 0.2, Pr = 1.5, Re = 40, Ec = 

0.01 and � = 2

M
(

1

1+��(±1)
+ N

1

)
f ��(1)

(
N
3

2

)
g�(1) ��(1)

0 2.5213 − 1.5721 − 1.5974
1 2.5339 − 1.5733 − 1.8513
2 2.4882 − 1.5724 − 2.6183
3 2.4011 − 1.5704 − 3.8964
4 2.2904 − 1.5698 − 5.7001

Table 3   Effects of Prandtl 
number on heat fluxes at 
channel walls when N

1
 = 4, N

2
 

= 0.3, N
3
 = 0.6, M = 1 , � = 2 , 

Ec = 0.01 and Re = 1

Pr ��(1) ��(−1)

0.05 − 0.5019 − 0.5016
0.10 − 0.5037 − 0.5032
1.00 − 0.5381 − 0.5319
1.50 − 0.5799 − 0.5481
2.00 − 0.5782 − 0.5643
2.50 − 0.5991 − 0.5806
5.00 − 0.7118 − 0.6626
10.0 − 0.9817 − 0.8164

Table 4   Effects of temperature-dependent viscosity parameter on 
wall shear and couple stresses and wall heat transfer rate when N

1
 = 

4, N
2
 = 0.3, N

3
 = 0.6, Pr = 21, M = 1 , Ec = 0.01 and Re = 1

�
(

1

1+��(±1)
+ N

1

)
f ��(−1)

(
N
3

2

)
g�(−1) ��(−1)

0 − 2.8206 − 1.5984 − 1.1421
5 − 2.9365 − 1.6290 − 1.7964
10 − 2.9619 − 1.6386 − 0.6868
20 − 2.9811 − 1.6462 − 0.6024
50 − 2.9968 − 1.6525 − 0.5342
100 − 3.0032 − 1.6552 − 0.5066
200 − 3.0067 − 1.6567 − 0.4913
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of channel increases with an increase in the Prandtl number 
(see Table 3). Effect of the viscosity variation parameter on 
the physical quantities is evident from Table 4. The shear 
stress and the couple stress are increased by increasing the 
viscosity parameter. However, the heat transfer exhibits an 
opposite trend. Behavior of heat flux with the variation of 
Eckert number is tabulated in Table 5.

The behavior of streamwise and normal velocities is dis-
played in Figs. 2–8 when N1 = 4 , N2 = 0.3 , N3 = 0.6 , Pr 
= 21, M = 1 , Ec = 0.01 and Re = 1. Impact of viscosity 
parameter � on the normal velocity of the fluid within the 
channel for Newtonian ( N1 = 0 ) fluid and non-Newtonian 
( N1 = 1 ) fluid displayed in Fig. 2. It is observed that nor-
mal velocity of the fluid is enormously lower in the con-
text of non-Newtonian fluid ( N1 = 1 ) then Newtonian fluid 
( N1 = 0 ) with variation of � . In addition, normal velocity of 
both Newtonian and non-Newtonian fluid increases with the 
increase in viscosity variation parameter. In Fig. 3 , normal 
velocity increases with the increase in magnetic field due to 
the presence of temperature-dependent viscosity and Joule 

heating, while it decreases in the absence of both param-
eters. Moreover, both Figs. 2 and 3 show the comparison 
of present result with the existing literature Ashraf et al. 
[22]. The streamwise velocity decreases when the viscos-
ity parameter is increased (see Fig. 4). The magnitude of 
streamwise velocity of micropolar fluid with constant vis-
cosity is high as compared to the velocity of micropolar 
fluid of temperature-dependent viscosity. Therefore, it is 
concluded that the streamwise velocity of blood in vessels 
lower when its viscosity varies with respect to the tempera-
ture as compared to the case when viscosity of blood is con-
stant. However, monotonic behavior for normal velocity is 
observed (see Fig. 5).

Table 5   Effects of Eckert 
number on heat fluxes at 
channel walls when N

1
 = 4, N

2
 

= 0.3, N
3
 = 0.6, M = 1 , � = 2 , 

Pr = 5 and Re = 5

Ec ��(1) ��(−1)

0 − 1.3178 − 1.7837
0.01 − 1.3959 − 1.7025
0.02 − 1.4737 − 1.6217
0.03 − 1.5510 − 1.5411
0.04 − 1.6281 − 0.4609
0.05 − 1.7047 − 1.3810
0.08 − 1.9328 − 1.1431
0.1 − 1.3246 − 1.7859
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Fig. 2   Comparison of results for normal velocity: Curves with filled 
circles represent Newtonian fluid for N

1
= 0 and curves without 

circles represent non-Newtonian fluid for N
1
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It can be noted from Fig. 6 that angular motion of blood 
in vessels is greatly affected by the variation of viscosity of 
blood. This variation of micro-motion of blood in the vessels 
is simulated in Fig. 6. The temperature of blood (micropo-
lar liquid) in the vessel increases when the viscosity of the 
blood is increased by increasing the temperature.

The behavior of temperature of blood for various values of 
viscosity parameter is shown in Fig. 7. The effect of magnetic 
field on the normal velocity is shown in Fig. 8. It is obvious 
from Fig. 8 that normal velocity decreases when the intensity 
of the magnetic field is increased. This shows that flow of 
micropolar liquid is decelerated by the opposing Lorentz force. 
The streamwise velocity profiles are extended to the bounda-
ries (channel walls), and in the central region of the channel, 

velocity becomes decreases because of damping effects from 
the magnetic field, shown in Fig. 9. The Reynolds number is 
the ratio of viscous force to the inertial force. The magnitude 
of the angular velocity of the micropolar liquid decreases with 
an increase in the Reynolds number. It means an increase in 
the viscous force or a decrease in the inertial force results to 
slow down the micro-motion of the micropolar liquid in the 
channel (see Fig.10). The effect of the magnetic field on the 
temperature of the micropolar liquid in the channel is shown 
in Fig. 11. It can be noted from Fig. 11 that the temperature 
of micropolar fluid increases near the lower wall of the chan-
nel, whereas the opposite trend is noted for upper half of the 
channel. The magnitude of the normal velocity of the fluid 
decreases when Reynolds number of the fluid is increased 
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as shown in Fig. 12. An increase in the Reynolds number 
is due to the decrease in inertial force or an increase in the 
viscous force. The behavior of streamwise velocity due to an 
increase in the Reynolds number is depicted in Fig. 13. From 
this Fig. 13, one can easily notice that the streamwise velocity 
increase near the channel walls. However, opposite trend can 
be noted in the center of the channel. From Fig. 14, we observe 
that Joule heating due to magnetic field has immense effect on 
the temperatures and consequently increases the temperature 
with the increase in Eckert number. Figure 15 is the compari-
son of the present result for temperature profile with Ashraf 
et al. [22]. Finally, Fig. 16 illustrates the variation in the heat 
transfer rate within the channel. This figure shows that the 
rate of heat transfer increases with the increase in magnetic 

parameter which is exactly because of the fact that, firstly, heat 
is transmitted from the one end of the wall toward the fluid 
within the channel, and then, it is transferred from fluid toward 
the other end of the wall.

The results of special case are compared with already pub-
lished work. The outcomes related this validation are recorded 
in Figs. 2, 3 and 15. A good agreement between present results 
and already published is noted (see Figs. 2, 3, 15).

Applications and further directions

The constitutive equations of micropolar fluid represents 
the rheology of blood and other biofluid (synovial fluid). 
Therefore, micropolar fluid model [8, 9] is frequently used to 
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study the dynamics of blood and other biofluids. The results 
presented may predict hemodynamic flow of blood in the 
cardiovascular system when subjected to an external mag-
netic field. Further, arteries like cardiac vascular artery are 
channel like structures. Therefore, present analysis is carried 
out to get insight into the problem in order to give some pre-
dictions about blood flow in cardiac vascular. The results of 
the study are supposed to be of profound importance to med-
ical surgeons in their endeavor to regulate blood flow during 
surgery. The latest advancement on an enhancement of ther-
mal performance has proved that suspension of nano-sized 
particles in fluid of temperature viscosity plays a significant 
role in the improvement of thermal efficiency of working 

fluid. So, for efficient thermal systems, suspension of hybrid 
nanoparticles is recommended. Although consideration of 
such phenomenon leads to complex mathematical problems, 
such consideration provides information about behavior of 
thermal system under dispersion of hybrid nanoparticles.

Conclusions

A numerical study is carried out to investigate the effects of 
temperature-dependent viscosity on heat transfer in flow of 
magnetohydrodynamic (MHD) micropolar fluid in a chan-
nel with stretching walls. The powerful tool of similarity 
transformation has been employed to convert the governing 
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equations into a set of nonlinear ordinary differential equa-
tions. The analysis is summarized as follows:

•	 The magnetic parameter has a profound impact on the 
shear stress as compared to the couple stress and the heat 
transfer.

•	 An increase in Prandtl number causes the heat transfer 
rate at the channel walls.

•	 The viscosity variation parameter enhances the shear 
stress and the couple stress. However, the heat transfer 
exhibits an opposite trend.

•	 The viscosity variation parameter is the most influential 
for the thermal distribution.

•	 The magnetic field acts as a retarding force which 
reduces the normal and streamwise velocities as well as 
the microrotation distribution

•	 The Reynolds number affects the velocity and microrota-
tion in the same way as the intensity of magnetic param-
eter is increased.
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