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Abstract
A hybrid nanofluid phenomenon is considered involving nanoparticles since such particles are potential medication trans-
portation devices in biomedical applications. Moreover, the expansion in heat transfer can be accomplished by refining 
either flow mechanism with geometry annoyance or thermal conductivity of the liquid itself. This motivation encourages 
the authors to discuss the three-dimensional study to analyze the peristaltic transport of Carreau nanofluid in a cross sec-
tion of rectangular channel. This investigation may be helpful in physiology, chemical industries and biomedical apparatus, 
especially for the dismissal of cancerous cells where the heat convection would be followed by nanoparticles through three-
dimensional tube/duct. In the current analysis, the constitutive equations are managed under the assumptions of long wave 
length and low Reynolds number assumptions. After making use of some suitable dimensionless quantities, we gathered 
the partial differential equations in nonlinear coupled form which are then handled by the homotopy perturbation method. 
The variational occurrence of all emerging parameters affecting the flow is analyzed through graphical treatment. Velocity 
distribution is also plotted for three dimensions. Trapping scheme is also presented through streamlines which implies the 
flow phenomenon through circulating empty bolus traveling toward the flow. A comparative analysis is also made to differ-
entiate between the behavior of Newtonian and Carreau fluid model. On the other hand, the pumping rate of 3D rectangular 
channel is also contrasted with a 3D square duct. It is analyzed that peristaltic pumping rate is enhanced with the growing 
values of aspect ratio, power law index and local nanoparticles Grashof number; however, the inverse results are faced with 
Brownian motion factor and Weissenberg number. It is also visualized that pumping rate in 3D rectangular enclosure is 
higher than a square duct geometry.
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List of symbols
xi	� Rectangular coordinates (m)
�	� Velocity column vector (m s−1)
�	� Wavelength (m)
c	� Wave speed (m s−1)
�f	� Fluid density (kg m−3)
P	� Pressure term (kg m−1 s−2)
�	� Stress matrix (kg m−1 s−2)
g	� Gravitational acceleration (m s−2)
T , T0	� Temperature factors (K)
C,C0	� Nanoparticles concentration
(�c)f	� Fluid heat capacity (kg m−1 s−2 K)

(�c)p	� Nanoparticles heat capacity (kg m−1 s−2 K)
K	� Thermal conductivity (Wm−1 K−1)
DB	� Brownian diffusion (m2 s−1)
DT	� Thermopherotic diffusion (m2 s−1)
�	� Fluid viscosity (Pa s)
⋅

�	� Symmetric velocity gradient (s−1)
Γ	� Characteristic time factor (s)
a	� Channel length (m)
b	� Wave amplitude (m)
d	� Channel width (m)
�T	� Thermal expansion coefficient (K−1)
�C	� Mass expansion coefficient

Dimensionless symbols
�	� Wave number
Re	� Reynolds number
Pr	� Prandtl number
Sc	� Schmidt number
�	� Amplitude ratio
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u	� Dimensionless axial velocity
�	� Dimensionless temperature
�	� Dimensionless volume fraction
h	� Dimensionless upper wall
q′	� Embedding parameter
£	� Linear differential operator
q	� Volumetric flow rate
Q	� Average flow rate
�	� Heat capacity ratio
We	� Weissenberg number
�	� Aspect ratio
Br	� Local temperature Grashof number
Gr	� Local nanoparticles Grashof number
Nb	� Brownian motion parameter
Nt	� Thermophoresis factor
n	� Power law index

Introduction

Peristaltic transport of viscous and nonlinear viscosity 
model fluids has been discussed by the number of research-
ers for their wide range of applications in physiology, bio-
medical, chemical industries, etc. A vital industrial imple-
mentation of this scheme is used in the designing of roller 
pumps applied in pumping fluids without being mixed due to 
the contact with the pumping characteristics [1]. In the field 
of fluid mechanics, the experimental and theoretical inves-
tigations regarding peristaltic flow phenomenon have been 
suggested by a number of researchers due to its considerable 
applications in medical, physiology, chemical equipment and 
clinical engineering. Two intriguing mechanisms related to 
peristaltic flows are liquid trapping and material reflux. The 
former portrays the advancement and downstream traveling 
of free vertexes, called liquid boluses. The last alludes to the 
net upstream convection of liquid particles against the voy-
aging surface waves. These two phenomena are of extraor-
dinary physiological hugeness, as they might be liable for 
thrombus arrangement in blood and neurotic transport of 
microscopic organisms. From the stance of fluid dynamics, 
these strategies show the multifaceted nature, yet in addi-
tion spur the principal investigation of peristaltic streams. 
Effects of magnetism on the peristaltic flow of a couple 
stress fluid across a porous space followed by heat and mass 
transfer have been presented by Eldabe et al. [2] . Tripathi 
et al. [3] have distributed the peristaltic stream of viscoelas-
tic liquid with fractional Maxwell stress inside a channel. 
They have discovered the analytical arrangements with the 
assistance of HPM and Adomian decomposition strategy. 
Some years back, Nadeem and Maraj [4] have considered 
the scientific investigation for peristaltic stream of nanofluid 
in a curved geometry comprising flexible walls. Akbar and 
Nadeem [5] have published a note on the peristaltic flow 

with endoscopic effects on biviscosity fluid and produced the 
results that increasing viscosity factor and values of radius 
fraction enhance the peristaltic pumping. Bhatti and Zee-
shan [6] have concluded the study on heat and mass transfer 
phenomenon through a peristaltic transport of particle-liquid 
phase mixture along with boundary slip and declared the 
point that particles volume fraction affects the flow veloc-
ity in inverse manner. More studies on the peristaltic flows 
of various fluid models have been incorporated by a good 
number of researchers [7–9].

Nanotechnology has immense applications in industry 
since substances of nanometers’ dimension execute incom-
parable structural properties. Cho et al. [10] discuss that to 
improve the biodistribution of malignant growth drugs, nan-
oparticles have been assumed for absolute size and surface 
standards to enlarge their duration time in the circulation sys-
tem. In addition, they are organized to convey their stacked 
dynamic medications to malignant growth cells by specifi-
cally utilizing the exceptional pathophysiology of tumors, for 
instance, their upgraded porousness and maintenance influ-
ence and the tumor microenvironment. In the recent years, 
another part of fluid mechanics has raised, specifically nano-
fluid elements, which finds assorted applications in clinical 
science, energetics, medical and process frameworks engi-
neering. Beginning advancements were made by Choi [11] 
in the domain of energy execution improvement. Nanofluids 
as explained by Xuan et al. [12] are another class of liquids 
that are built by suspending nanoparticles in base heat trans-
porting liquids. The common examples of base fluid used for 
nanofluid are water, ethylene glycol and oil. Nanoliquids have 
their colossal commitment in heat move, similar to microelec-
tronics, energy components, pharmaceutical procedures and 
hybrid controlled motors, residential fridge, chiller, atomic 
reactor coolant, pounding and space innovation and a lot more 
circumstances. More literature on the exploration of nanofluid 
can be seen in refs. [13–15]. Investigation of nanofluid in the 
field of peristalsis has become the center of consideration by 
numerous analysts taking a shot at peristalsis, blood streams 
and numerous clinical issues. Awais et al. [16] have analyzed 
the hybrid nanofluid phenomenon of peristaltic stream and 
obtain the endoscopic effects on the flow. They have consid-
ered the Ostwald-de-Waele power-law model as a rheological 
fluid and examined that the effects of buoyancy factors are 
significant in the neighborhood of wavy tube and also the 
magnetic effects flourish the peristaltic mechanism along with 
nanomaterial taken in the flow. Sucharitha et al. [17] achieved 
the theoretical analysis for pumping flow of magnetized nano-
fluid in the light of Joule’s heating and found the conclusion 
that temperature of the system and nanoparticles are resisting 
the flow velocity. Recently, in [18], Riaz investigated the study 
of Eyring–Powell fluid model with mixing of nanoparticles 
in a three-dimensional rectangular channel and shown that 
thermal and mass transfer rate of Eyring–Powell fluid is lesser 
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than a Newtonian fluid, but it can be increased by high aspect 
ratio of the rectangular 3D channel.

Although many scientist have put their efforts on explor-
ing the mechanism of viscous fluids, more applicable fluids in 
industry and biological field are dependent on their rheological 
properties which can be determined by non-Newtonian mod-
els. There are so many nonlinear fluid models which have been 
presented in the literature, but the one which is incorporated 
by so many researchers is Carreau fluid due to its viscoelas-
tic nature and the importance of its Weissenberg number in 
physiological point of view. For instance, Akram [19] inves-
tigated analytically the influence of inclined magnetic field 
on the pumping transport of Carreau fluid saturated with 
nanoparticles in a two-dimensional channel. Hayat et al. [20] 
have analyzed the effects of mixed convection on wavy flow 
of nanofluid using Carreau model producing the result that 
Weissenberg number and power law index are affecting the 
shear stress inversely. Vajravelu et al. [21] have published the 
study on Carreau fluid through peristaltic phenomenon under 
the features of velocity slip along with magnetic environment 
by utilizing perturbation theory on small amplitudes of Weis-
senberg number and established the conclusion that slip of 
velocity is expanding the bolus volume. Kothandapani et al. 
[22] produced the investigation on peristaltic flow for electri-
cally conducting Carreau model fluid with the correspondence 
of porous medium through a tapered channel. They compared 
the features of Carreau fluid with the Newtonian model and 
found that Carreau fluid evaluated more pressure rise than a 
Newtonian fluid in 2D asymmetric channel. More peristaltic 
studies comprising the Carreau model can be found in [23, 24].

All the above examinations talk about the stream in two-
dimensional channels and pipes, yet the most widely rec-
ognized stream geometries utilized in modern and clinical 
gear are three-dimensional channels. Reddy et al. [25] have 
depicted the impact of aspect ratios on peristaltic stream in 
a rectangular pipe and assessed that the sagittal cross area 
of the uterus might be well estimated by a container of rec-
tangular cross segment as compared to a two-dimensional 
channel. Mekheimer et al. [26] have dissected the impact 
of parallel walls on peristaltic move through a nonuniform 
rectangular duct. Peristaltic stream of Carreau liquid in a 
rectangular channel has been shown by Nadeem et al. [27]. 
Later on, Mekheimer et al. [28] have determined the scien-
tific model of peristaltic transport through eccentric annuli. 
Remembering the present implication, authors come to real-
ize that peristaltic motion of nanofluid with non-Newtonian 
Carreau model has not been talked about in a three-dimen-
sional rectangular channel.

Keeping in mind the applications of nanofluid in three-
dimensional biological equipment and the physically exhi-
bition of the features of rheology through Carreau model, 
the authors are keen to present this examination to visualize 
the component of peristaltic phenomenon of non-Newtonian 

Carreau liquid model with nanoparticles fraction in a 3D 
rectangular channel. The modeled relations are demonstrated 
with the approximations of long wavelength and laminar 
assumption of the flow. All the relations for preservation 
of momentum, energy and nanoparticles fraction are made 
dimensionless by joining reasonable non-dimensional 
parameters. The ensuing exceptionally nonlinear and cou-
pled differential equations are assessed analytically with the 
assistance of (HPM). The physical highlights of appearing 
parameters are broke down through introducing the diagrams 
of vertical component of velocity profile, temperature fac-
tor, nanoparticles saturation, pressure rise and pressure gra-
dient curves. Three-dimensional graphical introduction is 
also given for velocity component. Lastly, the streamlines 
strategy is likewise displayed with the assistance of parallel 
lines which clarify the liquid bolus pattern.

Mathematical model

We assume the peristaltic flow of Carreau liquid with nano-
particles mechanism in a cross segment of three-dimensional 
Cartesian channel (Fig. 1). The stream is created by the 
proliferation of sinusoidal waves containing length � going 
along the vertical axis of the channel having consistent speed 
c. The equations for the mass, momentum, heat and nano-
particles volume fraction for Carreau model are portrayed 
as underneath.

X

Nanoparticles

λ

b

c

0
Z

Y

Fig. 1   Physical geometry for peristaltic flow in a vertical duct
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where D
Dt

=
�

�t
+ � ⋅ � represents the material time deriva-

tive, � denotes the stress strain mathematical model for Car-
reau fluid which is described as [27]

In the above model, � depicts the viscosity of the fluid, 
⋅

� 
implies the symmetric matrix of velocity gradient matrix, 
n denotes the power law index and Γ is the characteristics 
time. The peristaltic walls are represented through math-
ematical form as

where a is channel width and b assumes the amplitude of the 
waves, t is the time characteristic and X means the orienta-
tion of propagated wave.

Componential derivation

The parallel sides to XZ-plane are supposed to be static and 
do not account for any wavy motion. The lateral velocity is 
neglected due to no wave in the lateral (y-axis) direction of 
the frame. The equations representing three-dimensional flow 
problem in the form of Cartesian coordinates by choosing flow 
velocity � = (U,W) will capture the upcoming arrangement

(1)div � = 0,

(2)
�f

(

D�

Dt

)

= −�P

+ div �+�f��T

(

T − T0

)

+ �f��C

(

C − C0

)

,

(3)
�fcf

(

DT

Dt

)

= � ⋅ K�T

+ �pcp

(

DB

(

�C ⋅ �T
)

+
DT

T0

(

�T ⋅ �T
)

)

,

(4)
DC

Dt
= DB�

2C +
DT

T0
�2T ,

(5)� = �

(

1 +
(

Γ
⋅

�
)2

)
n−1

2 ⋅

�.

(6)Z = ±H(X, t) = ±a ± b cos
[

2�

�
(X − ct)

]

,

(7)
�U

�X
+

�W

�Z
= 0,

where � reflects the effective nanoparticles heat capacity and 
that of the base fluid ratio. Here, we suggest a new frame 
(x, y, z, u,w, p,T ,C) traveling with a wave velocity c relative 
to the fixed frame 

(

X, Y , Z,U,W,P,T ,C
)

 containing the 
transformations defined in [27]. Moreover, to lessen the 
number of including parameters, we propose the below-
defined transformations

(8)

�f

(

�U

�t
+ U

�U

�X
+W

�U

�Z

)

= −
�P

�X
+

�

�X
SXX +

�

�Y
SXY +

�

�Z
SXZ

+�fg�T

(

T − T0

)

+ �fg�C

(

C − C0

)

,

(9)0 = −
�P

�Y
+

�

�X
SYX +

�

�Y
SYY +

�

�Z
SYZ,

(10)
�f

(

�W

�t
+ U

�W

�X
+W

�W

�Z

)

= −
�P

�Z
+

�

�X
SZX

+
�

�Y
SZY +

�

�Z
SZZ,

(11)

�T

�t
+ U

�T

�X
+W

�T

�Z
= �f

(

�2T

�X2
+

�2T

�Y2
+

�2T

�Z2

)

+�

(

DB

(

�C

�X

�T

�X
+

�C

�Y

�T

�Y

+
�C

�Z

�T

�Z

)

+
DT

T0

(

(

�T

�X

)2

+

(

�T

�Y

)2

+

(

�T

�Z

)2
))

,

(12)

�C

�t
+ U

�C

�X
+W

�C

�Z
= DB

(

�2C

�X2
+

�2C

�Y2
+

�2C

�Z2

)

+
DT

T0

(

�2T

�X2
+

�2T

�Y2
+

�2T

�Z2

)

,

(13)

x = x�−1, y = yd−1, z = za−1, t = ct�−1, u = c−1u, w =
w

c�
,

� =
T − T0

T1 − T0
, � =

C − C0

C1 − C0

,

� =
a

�
, � =

b

a
, Br =

�fg�Ca
2

�c

(

C1 − C0

)

,

Gr =
�fg�Ta

2

�c

(
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)

, �f =
K

(�c)f
, p =

a2p

�c�
,

Nb =
�DB

�f

(

C1 − C0

)

, Nt =
DT

T0�f

(
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)

,

Sc =
�

�DB

, Pr =
�

��f
, S =

a

�c
S, div Re =

�ac

�
,

� =
�
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,

⋅

� =

⋅
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c
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d
, h =

H

a
, � =

a

d
.
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Incorporating the constraints of wave length a << 𝜆 and 
small Reynolds number div Re ⟶ 0 , we receive the 
reduced non-dimensional form of Eqs. (7) to  (12) in mov-
ing frame of reference

To get the particular solutions of above unknowns, we 
assume the below-defined boundary relations [29]:

where h = 1 + �[sec(2�x)]−1.

Special cases: It is to be noted that if we take Br = 0 = Gr, 
we recover the case without considering nanoparticles effect 
on Carreau fluid in a wavy rectangular duct [27] . Also, if we 
vanish the effect of lateral walls, i.e., � = 0, , we approach 
the case for two-dimensional channel.

Tools for solution

Here, the highly converging analytical technique HPM 
accounts for the results of unknown physical quanti-
ties appearing in the final equations found in above sec-
tion along with defined conditions at the boundaries. The 

(14)
�u

�x
+

�w

�z
= 0,

(15)

�2
�2u

�y2
+

�2u

�z2
+

n − 1

2
We2�4

�

�y

(

�u

�y

)3

+
n − 1

2
We2

�

�z

(

�u

�z

)3

+
n − 1

2
We2�2

�

�y

(

�u

�y

(

�u

�z

)2
)

+
n − 1

2
We2�2

�

�z
(

�u

�z

(

�u

�y

)2
)

+ Br� + Gr� =
dp

dx
,

(16)

�2
�2�

�y2
+

�2�

�z2
+ Nb

(

�2
��

�y

��

�y
+

��

�z

��

�z

)

+ Nt

(

�2
(

��

�y

)2

+

(

��

�z

)2
)

= 0,

(17)�2
�2�

�y2
+

�2�

�z2
+

Nt

Nb

(

�2
�2�

�y2
+

�2�

�z2

)

= 0.

(18)u = − 1 when (y, z) = (±1,±h(x)),

(19)� = (0, 1) when z = (h,−h),

(20)� = (0, 1) when z = (h,−h),

typical homotopy expressions for the problem are defined 
as [29–31]

Here, ũ, Θ and Ω speak to the evaluated answers for speed, 
temperature and nanoparticles profiles, separately. Addi-
tionally, q signifies the implanting parameter which has the 
range 0 ≤ q′ ≤ 1. Here, £ is chosen the linear differential 
operator which is selected here as £ = �2∕�z2 . We consider 
the subsequent initial approximation for ũ, Θ and Ω, orderly.

Let us define the series solution of the form

Putting Eqs. (26)-eq28 into Eqs. (21)-eq23 and collecting 
the coefficients of the exponents of q′, , we find the set of 
equations with the relevant boundary conditions.

(21)

(

1 − q
�)

£
[

ũ − ṽ0
]

+ q
�

(

£
[

ũ
]

+ �2
�2ũ

�y2

+
n − 1

2
We2�4

�

�y

(

�ũ

�y

)3

+
n − 1

2
We2

�

�z

(

�ũ

�z

)3

+
n − 1

2
We2�2

�

�y

(

�ũ

�y

(

�ũ

�z

)2
)

+
n − 1

2
We2�2

�

�z

(

�ũ

�z

(

�ũ

�y

)2
)

+BrΩ + GrΘ −
dp

dx

)

= 0,

(22)

(

1 − q
�)

£

[

Θ − �̃0

]

+ q
�

(

£[Θ] + �2
�2Θ

�y2
+ Nb

(

�2
�Ω

�y

�Θ

�y
+

�Ω

�z

�Θ

�z

)

+Nt

(

�2
(

�Θ

�y

)2

+

(

�Θ

�z

)2
)

= 0,

(23)

(

1 − q
�
)

£
[

Ω − �̃0
]

+ q
�

(

£[Ω] + �2
�2Ω

�y2
+

Nt

Nb

(

�2
�2Θ

�y2
+

�2Θ

�z2

))

= 0.

(24)ṽ0(y, z) = − 1 +
(

z2 − h2
)

+
1

�2

(

1 − y2
)

,

(25)�̃0 = �2
(

z2 − h2
)

+
h − z

2h
= �̃0.

(26)ũ(x, y, z) = u0 + q� ∗ u1 + q�2 ∗ u2 + ...

(27)Θ(x, y, z) = Θ0 + q� ∗ Θ1 + q�2 ∗ Θ2 + ...

(28)Ω(x, y, z) =Ω0 + q� ∗ Ω1 + q�2 ∗ Ω2 + ...

(29)

£
�

u0 − ṽ0
�

= £

�

Θ0 − �̃0

�

= £
�

Ω0 − �̃0
�

= 0

u0 = −1 when (y, z) = (±1,±h(x)), Θ0 = Ω0 = (0, 1) when z = (h,−h)

⎫

⎪

⎬

⎪

⎭

,
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The achieved final particular solutions up to second orders 
have been revealed over here

(30)

(

£
[

u1
]

+ �2
�2u0

�y2
+

n−1

2
We2�4

�

�y

(

�u0

�y

)3

+
n−1

2
We2

�

�z

(

�u0

�z

)3

+
n−1

2
We2�2

�

�y

(

�u0

�y

(

�u0

�z

)2
)

+
n−1

2
We2�2

�

�z

(

�u0

�z

(

�u0

�y

)2
)

+BrΩ0 + GrΘ0 −
dp

dx

)

= 0,

(31)

(

£
[

Θ1

]

+ �2
�2Θ0

�y2
+ Nb

(

�2
�Ω0

�y

�Θ0

�y
+

�Ω0

�z

�Θ0

�z

)

+Nt

(

�2
(

�Θ0

�y

)2

+
(

�Θ0

�z

)2
)

= 0,

(32)
(

£
[

Ω1

]

+ �2
�2Ω0

�y2
+

Nt

Nb

(

�2
�2Θ0

�y2
+

�2Θ0

�z2

))

= 0,

(33)
u1 = 0 when (y, z) = (±1,±h(x)), Θ1 = Ω1 = 0 when z = ±h(x).

(34)

u =
1

1440h2Nb�
4

(

11520h2c2
33
NbWe4y4(h2 − z2)

− 240hNb

(

296h5c2
33
We4y2 − c22h

2c33

We2y2z + c22c33We2y2z3 + 3h3c33We2y2

(

−4 + c22 − 2
dp

dx
− 112c33We2z2

)

+ h

(

−6 + y2
(

6 − 3c33

(

−4 + c22 − 2
dp

dx

)

We2z2 + 40c2
33
We4z4

)))

�2 + 5Nb

(

−896h8c2
33
We4 + 24h6c33We2

(

−12 − 7c22 + 14
dp

dx
+ 10c22y

2

)

+ 40c22h
5c33We2z

+ 32c22h
3c33We2z3 + 3Grc11z

4

− 72c22hc33We2z5 + 3h4(−96 + 5Grc11 − 96c33We2

(−4 + c22y
2)z2 + 128c2

33
We4z4)

+ 2h2(−144 − 9(−16 + Grc11)z
2 + 12c33We2(−36+

7Br + 7Gr − 14
dp

dx
+ 2c22y

2

)

z4 + 256c2
33
We4z6

))

�4

+ 8h
(

h2 − z2
)(

75Brh
3Nt

+ 158c22h
5c33NbWe2 − 7Grh

2Nbc11z

+ h
(

−15BrNt + 158c22h
2c33NbWe2

)

z2 + 3GrNb

c11z
3 − 52c22hc33Nb We2z4

)

�6

+ 16Grh
2Nbc11

(

14h6 − 15h4z2 + z6
)

�8
)

,

(35)

� =
1

720h3

(

15
(

6h3(4 + c11) + h2
(

−24 + c11(c44)
)

z

− 6h
(

c11
)

z2−c11(c44)z
3
)

− 60h
(

h2 − z2
)

(

12h2 + 2h(2Nb + Nt)z + c11 (c44)z
2
)

�2 + 16h2
(

h2 − z2
)

(

15h3Nb + h2c11(c44)z

+15hNbz
2 + 6c11(c44)z

3
)

�4 − 64h3c11(c44)
(

h6 − z6
)

�6
)

,

The volumetric flow rate q is described as

The average value of the above-defined flow rate per unit 
period is represented as

The pressure gradient factor dp/dx can be evaluated by utiliz-
ing Eqs. (37) and (38) and is displayed as

The numerical integration of the above-defined dp/dx over 
unit wavelength provides the pressure rise Δp which is 
described as

whose numerical data have been computed on symbolic 
software Mathematica by built in tool (NIntegrate) over a 
constant range of all included parameters. The variation in 
pressure rise data is available in Table 2. The substitutive 
parameters used in above expressions are summarized as

(36)

� =
1

24h2Nb

(

3Ntc11 z
2 − 24h4(Nb − Nt)�

2

+ 8h3Ntc11z�
2 − 8h6Ntc11�

4 − 4h
(

2N2
t
z3�2 + Nbz

(

3 + 2Ntz
2�2

))

+ h2
(

Nt

(

−3Nt − 24z2�2+ 8Ntz
4�4

)

+ Nb
(

12 − 3Nt + 24z2�2 + 8Ntz
4�4

)))

.

(37)q =

h(x)

∫
0

1

∫
0

u ∗ dydz.

(38)Q =

h(x)

∫
0

1

∫
0

(u + 1)dydz = q + h(x).

(39)

dp

dx
=

1

112h3c33NbWe2�2
(

5 + 21h2�2
)

(

−2688h3c2
33
NbWe4 + 35hNb

(

−48 + h2c33We2

(

−32 + 7c22 + 768h2c33We2
)

)�2

+ 12Nb(−7h
3(−20 + Grc11) + 210Q + 7

(

8 + 7c22
)

h5c33We2 + 544h7 c33
2We4

)

�4

− 3h5(224BrNt − 7GrNbc11+576c22h
2c33NbWe2

)

�6 − 256Grh7Nbc11�
8
)

.

(40)Δp =

1

∫
0

(

dp

dx

)

dx,
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Numerical results and graphical discussions

The investigative arrangements are assessed for the expres-
sions of linear momentum, temperature and nanoparticles 
volume fraction for Carreau liquid with the assistance of 
notable HPM up to second-order systems. In the current 
segment, all obtained articulations are introduced and talked 
about graphically to watch the varieties of different relevant 
parameters. The impacts of parallel walls executing waves 
(aspect ratio � ), Weissenberg number We, power law param-
eter n, average volume flow rate Q, amplitude proportion 
� , the Brownian motion parameter Nb , the thermophoresis 
parameter Nt , local temperature Grashof number Gr and local 
nanoparticle Grashof number Br on the profiles of velocity 
u, temperature � , nanoparticles volume fraction � , pressure 
gradient dp/dx and pressure rise Δp are given the showcase 
of graphs for dual and triple dimensions. The consequences 
of present examination are likewise contrasted and that of 
introduced in past writing with tables and graphs. The catch-
ing bolus statue is also joined through drawing figures of 
streamlines for different developing parameters.

Table 1 and Fig. 2 indicate the variation of velocity u to 
see the comparison of the present work with the study of 
Nadeem et al. [27], and it is very obvious from this table and 
figure that if we neglect the effects of nanofluid, we recover 
the results of Nadeem et al. [27] . It is also observed here 
that in the presence of nanoparticles phenomenon, velocity 
profile is dropping. Table 2 contains the variation in pressure 
rise Δp by considering the special cases for Newtonian fluid 
and Carreau fluid in rectangular duct � = 0.5 and square 
duct � = 1. It is appeared from this table that pressure rise 
increases for Carreau (non-Newtonian) fluid as compared 
with Newtonian fluid and also the pressure rise falls down 
in a square duct.

Figures 3a, b account for the two- and three-dimensional 
analysis of velocity profile u for the variation in aspect ratio 
� and mean volume flow rate Q. It is noted here that veloc-
ity is an increasing function of both � and Q,  and also it 
is observed from three-dimensional graph that velocity is 
decreasing with increasing aspect ratio. The three-dimen-
sional graph emphasizes that an increasing aspect ratio gives 
rise to the length of the channel and on the other hand, width 
will be reduced and due to this reason fluid will travel faster 
in the axial direction but will face a reduction in velocity 
along the lateral walls. However, from the same graph, it is 

(41)
c11 = Nb + Nt, c22 = Gr + Br, c33 = n − 1, c44 = Nb + 2Nt.

also considerable that there is no change in velocity of fluid 
along lateral direction ( y−axis). It is observed from Fig. 4a, 
b that velocity has opposite behavior with the parametric 
change in Gr and Br. One can analyze from Figs. 5a, b to 
6a, b that increase in n and Nb shows increase in velocity 
profile height, while increase in We and Nt gives decrease 
in velocity distribution. It follows some physical aspects 
that when we increase the concentration of nanoparticles 
through Brownian diffusion, the fluid speed flourishes due 
to increase in its temperature, but oppositely an increase in 
thermal transfer through thermophoresis factor reduces the 
velocity accordingly.

Figure 7 implies the influence of aspect ratio � (showing 
the variation in lateral walls) on temperature distribution �. 
It is seen that temperature profile is decreasing with � and 
also the variation of � is nonlinear, i.e., for z < 0.5, curves 
are launching down but as we go further those are elevating 
up to z = 1.2. It is due to the reason that large aspect ratio 
decreases the volume of the duct which produces the high 
speed flow reducing its temperature. It is concluded from 
Fig. 8 that temperature curves are varying directly with Nb 
and Nt. It is also seen that variation in curves is linear for 
Nb = 1 and Nt = 0.2 but nonlinear for the other values of Nb 
and Nt. It can be described through physical aspect that an 
increase in Brownian parameter Nb gives rise to the Brown-
ian motion which enhances the temperature of the nano-
fluid and same is the reason for enlargement of temperature 
against the thermophoresis parameter which lifts the thermal 
variance with its increasing effects. Figure 9 comprises the 
effects of lateral walls for nanoparticles concentration � in 
the section z ∈ [−h, h] , and it is illustrated here that veloc-
ity is directly proportional to �. It is also observed that the 
curves are bending down with � = 0.1 and � = 0.2 while 
lifted up with � = 0.3 and � = 0.4. To observe the variation 
of � with Nb and Nt, Fig. 10 is sketched. It is measured here 
that � profile is diminishing with Nb while lifting up with Nt.
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The variation in pressure rise Δp with the correspond-
ing change in � and Nt is shown by drawing the graph of 
Δp versus flow rate Q in Fig. 11. It is important to note 
that we discuss the (Δp − Q) plane into four regions, namely 
peristaltic pumping (Δp > 0,Q > 0), retrograde pumping 
(Δp > 0,Q < 0), free pumping (Δp = 0) and augmented 
pumping (Δp < 0,Q > 0). It is executed from Fig. 11 that 
in retrograde pumping region, Δp rises up with the increase 
in � while for augmented pumping, it slides down with �, 
and also the free pumping region occurs at Q = 0. It can 
also be predicted here that peristaltic pumping rate increases 
for Nt. We can also extract from Fig. 12 that same behavior 

is reported with n and Gr, only the difference is that pres-
sure rise is increasing in the peristaltic pumping region and 
the height of Δp profile reaches about 30 which was 23 in 
the previous graph. Figure 13 depicts the very similar atti-
tude of Δp with � and Br except the fact that pressure rise 
curves are fallen down for � and Br. However, the behavior 
of pressure rise distribution is quite opposite with Nb and We 
(see Fig. 14). It can be discussed that peristaltic pumping 
decreases with both the parameters. Also in the augmented 
pumping part, the curves are reversed. It is to be noted that 
free pimping region occurs at Q = 0.2 and peristaltic pump-
ing region is 0 < Q < 0.2. It is also very obvious to see that 
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in Fig. 14, that height of the pressure rise curves approaches 
80, i.e., pressure rise is approaching its maximum altitude. 
It is also observed that variation in pressure curves is linear 
with all parameters.

Pressure gradient profile dp/dx under the variation of � 
and Q is disclosed in Fig. 15. It is found here that pres-
sure gradient is an inverse function of � and Q. It can also 
be described that pressure gradient has maximum height at 
x = 0.5 and much pressure gradient is observed in the mid-
dle part to maintain the flow as compared with the corner 
regions. Figure 16 denotes that dp/dx is varying directly with 
Br and Gr. It is observed that pressure gradient curves are 
rising up with power law index n but fetching down with 
Weissenberg number We (see Fig. 17). It can be mentioned 
from Fig. 18 that pressure gradient is inverse function of Nb 
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while direct variation with Nt is observed. Also, the variation 
is smooth and continuous with Nb and Nt.

Trapping scheme
The phenomenon of trapping bolus (a circulating hole 

followed by continuous streamlines moving forward as the 
flow progresses) is discussed through Figs. 19–24. Figure 19 
contains variation in trapping bolus with aspect ratio �. It is 
derived here that for � = 0.7, we have only one central bolus 
which is converted into two separate boluses for � ≥ 0.8. 
It is also noted that more streamlines are appeared with 
increasing aspect ratio �, which reflects the physics of flow 

We = 0.30

We = 0.40
We = 0.35

Nb 0.2

Nb 0.7

2 1 0 1 2

40

20

0

20

40

60

80

Q

p

Fig. 14   Curves of pressure rise Δp with We and Nb at 
� = 0.9, n = 0.7,Nt = 0.4,Gr = 0.5,� = 0.1,Br = 0.5
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Fig. 21   Trapping boluses for values of We,   (a) for We = 0.7, (b) for We = 0.8, (c) for We = 0.9. The other parameters are Br = 0.9, Gr = 0.1, 
Nt = 0.5, � = 0.9, n = 0.9,Nb = 0.9, � = 0.1, Q = 0.5, y = 0.1
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Fig. 22   Trapping boluses for values of Nb, a for Nb = 0.5, b for Nb = 0.7, c for Nb = 0.9. The other parameters are Br = 0.9, Gr = 0.1, Nt = 0.5, 
We = 0.6, n = 0.9, � = 0.9, � = 0.1, Q = 0.5, y = 0.1
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Fig. 23   Trapping boluses for values of �, a for � = 0.1, b for � = 0.2, c for � = 0.3. The other parameters are Br = 0.9, Gr = 0.1, Nt = 0.5, 
We = 0.6, n = 0.9,Nb = 0.9, � = 0.9, Q = 0.5, y = 0.1
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Fig. 24   Trapping boluses for values of Q,   a for Q = 0.5, b for Q = 0.6, c for Q = 0.7. The other parameters are Br = 0.9, Gr = 0.6, Nt = 0.5, 
We = 0.6, n = 0.9,Nb = 0.6, � = 0.1, � = 0.9, y = 0.1

Table 1   Validity of the present results through comparison with the existing literature when 
� = 0.6, x = 0, y = 1, n = 0.5,We = 0.03, � = 0.64,Q = 0.5

z velocity u for Nadeem et al. [27] velocity u for present work velocity u for present work
when Gr = Br = Nb = Nt = 0 Gr = Br = Nb = Nt =0.5

− 1.6 −1.00000 − 1.00000 − 1.00000

− 1.2 − 1.70755 − 1.70753 − 1.92739

− 0.8 − 2.30448 − 2.30445 − 2.52271

− 0.4 − 2.69926 − 2.69922 − 2.86069

0.0 − 2.83695 − 2.83691 − 2.97918

0.4 − 2.69926 − 2.69926 − 2.88528

0.8 − 2.30448 − 2.30447 − 2.55910

1.2 − 1.70755 − 1.70752 − 1.95492

1.6 − 1.00000 − 1.00000 − 1.00000

Table 2   Variation in pressure rise when � = 0.08,Gr = 0.5,Br = 0.5,Nb = 0.5,Nt = 0.5,We = 0.03

Q Δp for Newtonian fluid Δp for Newtonian fluid Δp for Carreau fluid Δp for Carreau fluid
when n = 0, � = 0.5 when n = 0, � = 1 when n = 0.5, � = 0.5 when n = 0.5, � = 1

(Rectangular duct) (Square duct) (Rectangular duct) (Square duct)

− 2.0 4.55628 4.36531 15.5315 13.0876
− 1.6 3.65084 2.92362 13.7206 10.2043
− 1.2 2.74540 1.48194 11.9097 7.32089
− 0.8 1.83997 0.04024 10.0989 4.43752
− 0.4 0.93452 − 1.4014 8.28798 1.55414
0.0 0.02909 − 2.8431 6.47710 − 1.3292

0.4 − 0.8763 − 4.2848 4.66623 − 4.2126

0.8 − 1.7817 − 5.7265 2.85535 − 7.0959

1.2 − 2.6872 − 7.1681 1.04448 − 9.9793

1.6 − 3.5926 − 8.6098 − 0.7663 − 12.862

2.0 − 4.4980 − 10.051 − 2.5772 − 15.746
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pattern that when we reduce the channel width by increas-
ing the length presses the fluid which results in increasing 
the number of boluses but reduces their dimensions due to 
narrow enclosure, while Fig. 20 shows the opposite behavior 
of trapping bolus with the increasing effects of Gr. Figure 21 
shows that for We = 0.7, we have a very tiny bolus in the 
lower part which also gets larger as we increase the value 
of Weissenberg number but enclosed by less streamlines. It 
can been observed from Fig. 22 that for Nb = 0.5, we have 
two boluses one at above the center line and the second one 
is below and it is depicted that the lower bolus reduces its 
size for Nb = 0.7 and then increases again for Nb = 0.9 and 
the same attitude is seen for upper bolus. In Fig. 23, it is 
seen that the both upper and lower boluses are reduced in 
size with increasing values of amplitude ratio �. With the 
increase in flow rate Q,  upper bolus is getting larger while 
lower is shrinking in size (see Fig. 24).

Conclusions

In the current investigation, peristaltic stream of a non-New-
tonian (Carreau) nanofluid has been considered in a cross 
area of rectangular conduit to depict the scientific outcomes 
under convective heat transfer features and nanoparticles sat-
uration. The main interest to discuss this study is to explore 
the viscoelastic features of Carreau fluid along with the 
enhancing thermal conductivity through nanoparticles and 
keeping in mind the three-dimensional nature of industrial 
and medical equipment. All the administering equations are 
planned under the approximations of long wavelength and 
low Reynolds number. The stream is estimated in a wave 
casing of reference moving with a steady speed c normal 
axis of the channel. Explanatory outcomes are acquired by 
utilizing HPM, and the impacts of every physical parameter 
showing up in the current examination are talked about with 
detail. A velocity of Newtonian fluid and generalized (Car-
reau) fluid are compared in the study too. Special cases have 
also been reported for two-dimensional channel and square 
duct. The finishing up focuses got from the above perception 
are expressed as 

1.	 It is calculated that velocity profile goes linearly with 
aspect ratio, power law index, Brownian motion factor 
and average flow rate. On the other hand, it is reciprocal 
function of local nanoparticles Grashof number, local 
temperature Grashof number, thermophoresis parameter 
and Weissenberg number.

2.	 Temperature curves are showing inverse relation with 
aspect ratio, but direct link is depicted in case of Brown-
ian motion factor and thermophoresis representative.

3.	 It is emphasized that nanoparticles volume fraction var-
ies upward with larger variation in aspect ratio and ther-

mophoresis parameter, but opposite scene is reported 
against Brownian motion parameter.

4.	 One can find from above measurements that peristal-
tic pumping curves are showing direct proportionality 
with the aspect ratio, power law index, amplitude ratio, 
thermophoresis parameter, local nanoparticles and local 
temperature Grashof numbers; however, they are sup-
pressing against Weissenberg number and Brownian 
motion parameter.

5.	 It is measured that pressure gradient trajectories are 
exhibiting inverse relation with aspect ratio, flow rate, 
Weissenberg number and Brownian motion parameter 
while giving higher with power law parameter, thermo-
phoresis parameter, local nanoparticles and local tem-
perature Grashof numbers.

6.	 The results are declaring that the trapping circular 
boluses are becoming larger with local nanoparticles 
Grashof number, Weissenberg number and flow rate 
while shrinking with amplitude ratio, Brownian motion 
parameter and aspect ratio of the channel.

7.	 It is computed that the present results are in well agree-
ment with the previous literature [27] and pressure rise 
increases in rectangular duct as compared with square 
duct. Also, the velocity is decreasing in the presence of 
nanoparticles phenomenon.

8.	 It is also presented that Newtonian fluid moves faster 
than the Carreau fluid if we incorporate the effects of 
nanoparticles concentration along with their temperature 
distribution. The important feature of this study is that a 
3D rectangular duct produce higher pumping order than 
a square shaped duct.
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