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Abstract
Porous domain filled with nanoliquid was scrutinized in the current article. Magnetic force and permeability were considered 
as main effective variables, and their influences were involved in momentum. Also, energy equation has a source term related 
to radiation. Outputs were achieved with CVFEM simulation. As permeability augments, forces against the flow decline. So, 
stronger eddy appears and temperature gradient augments. Structure of fluid gets affected more significantly by Ha when 
permeability increases. Nu increases by increments of Da related to greater velocity of nanomaterial, and similar tendency 
for Nu has been reported with rise of Ra. With intensification of Ha, Nu reduces because of lower distortion of isotherms. 
The adverse impact of Lorentz force reduces when radiation impact is neglected.

Keywords Radiation · Nanoliquid · Lorentz · Porous space · Numerical

Introduction

Unique features and wonderful heat transfer capability of 
nanomaterial are because of small size and sizable surface 
space. Nanomaterials as a suspended part into base liquid 
modify its thermal and physical characteristics [1–7]. Nano-
fluids demonstrated as a surplus to novel thermal transfer 
medium. The colloidal combination of nanoparticles that 

were suspended in base liquid indicated better heat perfor-
mance rather than pure fluids [8–15]. A numerical inves-
tigation was carried out by Purusothaman et al. [16] to 
consideration of 3D normal convection in cooler in a way 
that isothermal heaters with 3 × 3 array were put on one of 
vertical walls in the enclosure filled by nanofluid. Results 
revealed that cooling performance reached the highest rate 
by Cu–H2O nanofluid in comparison with  AL2O3–H2O one. 
In addition to, the volume concentration of solid nanopar-
ticles and Rayleigh number increased by the increment of 
normal Nusselt number. Babazadeh et al. [17] examined 
the role of imposition of MHD on nanopowder migration 
through a domain contains two sheets. They assumed that 
homogeneous fluids exist in domain and plates can move 
vertically. Researchers have conducted many researches on 
nanofluids [18–28] and tried to show the effective role of 
carrier fluid. Aly [29] considered the circular chambers in a 
porous channel with full of nanofluid to study of thermodif-
fusion behavior on free convection. Studies showed that the 
establishment and size of cells in the enclosure are consider-
ably controlled by Darcy parameter, Rayleigh number, posi-
tions and sizes of the internal circular cylinders. Moreover, 
there was well agreement between the numerical outcomes 
and experimental tests.

Hussein and his friends [30] studied the flow of natural 
convection under the situation of hydrodynamic-magneto 
in the curved T formed chamber with the presence of 
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nanofluids with various nanoparticles dimension. They 
indicated that  Nuave went up when the tilted angle, Ra, 
heat source position and nanoparticles fraction concentra-
tion increased. However, the increase in Hartmann num-
ber and length of heat source led to a decrease in average 
Nusselt number. Scientists have done numerous studies on 
numerical approaches [31–42], and this work helps them 
to reduce the experimental cost. Abdallaoui and colleagues 
[43] considered a chamber with the shape of isosceles 
triangle which was located in a quadrangular enclosure 
with full of water–silver nanofluid and studied the char-
acteristics of free convection using LBM. They changed 
silver’s volume concentration in range between 0 and 0.1 
and location of heated triangular chamber vertically. As a 
consequence, the amount of stream performance was influ-
enced considerably by the heated block position as well as 
volume fraction of nanoparticles. Evidently, the nanopar-
ticles existence improves the flow momentum and hence 
convection rate. A simulation was carried out by Boualit 
et al. [44] to investigation of the rate of free convection 
in a chamber while filled with nanomaterial. As a result, 
nanoparticles diameter was effective on thermal transfer 
solely when thermal scattering was considerable. In order 
to quantify the thermal transfer severity with regard to 
particle diameter, concentration and Rayleigh number, a 
relation with 99.94% confidence coefficient was presented. 
Numerous researches have been conducted by researchers 
about thermal units [45–55], and they focus on achieving 
the best design. A simulation research has been scruti-
nized by Kahwaji et al. [56] to evaluation of heat transfer 
of square chamber which was mounted in a conduit full 
of CuO–H2O. As a result, gradual augment in normal Nu 
with enhancement in the concentration of powders was 
observed.

3D normal convective thermoregulation of heaters with 
the type of quad flat non-lead (QFN) that were put in porous 
chamber, leaked by  H2O–Cu nanofluid, was examined math-
ematically by Purusothaman [57]. The results revealed that the 
nanofluid impact from total Nu grew with augment of Darcy. 
However, the impact decreased with growth of Ha. The total 
Nu obtained its highest amount in chamber side aspect ratio 
between 3 and 1.5 with regard to Da. Sheremet and his col-
leagues [58] analytically studied a porous horizontal tubular 
ring that filled by nanofluid and specified its stream perfor-
mance at various Rayleigh number. It is shown that addition 
of nanomaterial into the net  H2O altered the flow behavior at 
low Ra. Various analyses have been presented by designers 

in thermal units [59–69] in recent decade. Vijaybabu and his 
friends [70] carried out examination on heat transfer proper-
ties and flow of a penetrable chamber with the shape of tri-
angle which put in a channel which was full of  H2O–Al2O3 
nanofluid. They found that the nanofluid volume fraction had 
control of heat or friction irreversibility. Da enhancement 
increased the heat transportation, while it decreased the tem-
perature monotony.

In the current investigation, convective treatment of 
nanoliquid with involving Lorentz force was performed. 
Porous medium was involved, and to insert its impact on equa-
tions, non-Darcy law was applied. With considering homoge-
neous nanoliquid and adding radiation term, final equations 
can be achieved and to solve them, CVFEM was selected. The 
main outputs are contours and innovative formula for Nu.

Formulation of problem

The current simulation domain consists of one circular 
cold and one square hot cylinder. Permeable zone was full 
of nanoliquid which was produced by hybrid nanopowders 
and water [1], and features of new fluid were obtained by 
homogenous approach [1]. In momentum equations, Lorentz, 
buoyancy and permeability impacts were imposed and energy 
equation has extra source due to radiation modeling. As it can 
be observed from Fig. 1, enclosure has symmetric boundary 
condition which allows us to present just half of it in contours. 
No slip condition and impermeable walls were other assump-
tions and PDEs can be introduced as:

(1)
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Hybrid nanofluid Porous media
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Fig. 1  Geometry of this article filled with hybrid nanomaterial
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Nanoliquid which was utilized in the current article has 
features same as material mentioned in [1]. Two-phase 
approach needs greater computational cost, and we did not 
use such model and prefer to employ single-phase method 
with involving experimental formulas in prediction of fea-
tures [1].

It is better to reduce number of scalars and for this fact; 
we tried to omit ∇p with considering vorticity definition.

Definition of parameters was as follows:

Based on above, the last form of equations is:
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To evaluate Nu, the following formulas can be 
implemented:

The current 2D geometry was modeled by means of 
CVFEM. Final equations do not have ∇p, and such steady 
formulations were simulated with this approach which was 
basically belong to Sheikholeslami [55]. He applied such 
approach for various problems (thermal units). Triangular 
gird of this method boosts us to consider complex geometry, 
and Table 1 is illustrated to depict the sensitivity of grid.

Results and discussion

In current attempts, geometry with one upper cold was scru-
tinized which is full of hybrid nanomaterial and buoyancy 
force due to existence of below hot wall affects the behavior 
of carrier fluid and create circulation. In outputs, the half of 
domain was demonstrated because it is symmetric. For con-
trolling the migration of nanopowders, horizontal magnetic 
field was added externally which produces constant Lorentz 
forces and its impacts were added in momentum equations. 
Besides, radiation term based on Rosseland approach was 
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Table 1  Nuave with alteration of grid size at Ra = 105 , Rd = 0.8, Da = 100,

Ha = 60 and � = 0.003

61 × 181 51 × 151 81 × 241 71 × 211 91 × 271

18.2307 18.2285 18.2322 18.2314 18.2358
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involved and CVFEM was imposed for solving equations. 
For the aim of testing accuracy of simulation, square domain 
filled with nanomaterial was considered same as [71], and 
outcomes are demonstrated in Fig. 2 and indicates nice con-
cordance. In rest outputs, contours and new formula for Nu 
were presented.

Variations of Ψ with changing permeability when Ha = 0 
and Ha = 20 are illustrated in Fig. 3. To change the perme-
ability of region, Da can be changed in modeling. Greater Da 
means faster speed of nanomaterial and stronger power of 
vortex. Additionally, this graph proves that augmenting Ha 
makes the impact of Da to become weaker. Flow structure 
is noticed to be function of both Da and Ha. Structures of 
flow and temperature distribution are illustrated in Figs. 4 
and 5. When Ra = 105, Da = 0.01, two rotating circulations 

have been generated, of which the lower one is weaker. They 
rotate in reverse direction of each other. Generating such 
vortexes helps to produce thermal plume which enforces the 
isotherm become denser close to hot wall. As Ha grows, 
the vortexes become weaker and direction of affecting ther-
mal plume changes. It means that ∇T near the bottom wall 
becomes more than right wall. As Da increases to 100, two 
vortexes convert to one counter clockwise stronger vortex 
and thermal plume over a circular wall disappears. Due to 
shape of inner surface, new vortex stretches along its surface 
and imposition of Ha guides to lower values of Ψ and center 
of vortex shifts downward. Distortion of isotherm declines 
with growth of Ha. In case of Da = 100, thermal plume 
over the cold surface shifts to vertical symmetric line and 
makes the isotherms denser near this region. One main aim 
of design of thermal unit is the highest Nu. Thus, based on 
simulation data, we performed new formula for this function.

In this formula, not only Da and Ha but also Ra and Rd 
have been considered as variables. Augmentation of Nu with 
intensification of Da is due to easier movement of nanomate-
rial. Growth of Ha creates stronger resistance for nanomate-
rial flow and velocity declines and thinker boundary layer 
leads to lower Nu. As buoyancy forces elevate, the distor-
tion of isotherm intensifies and higher Nu can be achieved. 
Formulation of Nu shows direct relation of Nu with Rd, and 

(13)

Nuave = 8.98 + 4.77Rd + 0.46Da∗ − 0.53Ha∗

− 0.36Ha∗ log(Ra) + 0.29Da∗Rd

+ 0.36 log(Ra) Da∗ − 0.31RdHa∗

− 0.2Da∗ Ha∗ + 4.73 log(Ra)

Fig. 2  Verification of tempera-
ture profile with old article [71]
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Fig. 4  Thermal and 
hydraulic behavior with 
the values of Ha at 
Ra = 105, Da = 0.01, Rd = 0.8
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this fact can be seen in graph. Nu can be more affected by 
Ha when Rd has greater value. Nu does not vary with Ha in 
the absence of radiation (Fig. 6).

Conclusions

As an output of employment of CVFEM for application 
with buoyancy and Lorentz forces, new formulation for Nu 
was suggested in the current attempt. Nanoliquid consists 
of hybrid nanopowders and  H2O. Imposition of stronger 
Lorentz force (greater Ha) leads to decline in Ψ values, 
and migration of carrier fluid weakens. Consequently, ∇T 

declines which indicates stronger conduction. Buoyancy 
force impact reduces with rise of Ha, and significance of 
convective term reduces. Impact of Ha is insignificant when 
Rd = 0. Also, Nu declines with rise of Ha due to lower ∇T. 
As permeability intensifies, stronger vortex provides denser 
isotherms and thinner layer leads to higher Nu.
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