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Abstract
The current and potential applications of bioconvection renewed drive for theoretical research on synthesis and process 
control in biofuel cells and bioreactors. Thus, this work devoted to solving the problem of free convection in micropolar 
boundary layer fluid flow and heat transfer past a vertical flat stretching plate within a porous medium. Scaling group of 
transformation was performed to achieve the appropriate similarity solutions, which was later applied to modify the governing 
boundary layer system to a nonlinear ordinary differential equations system. The Runge–Kutta method in association with 
the shooting technique in the Maple software exercised to attain the numerical solutions. There is a strong dependence of 
momentum transportation on the increment of the Darcy number, the suction/injection parameter and the Grashof number, 
respectively. The temperature distribution within the thermal boundary layer aided by augmenting the magnitude of the 
microrotation density.
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List of symbols
A1  Micropolar parameter
b̃  Chemo taxis constant (m)

Cw  Dimensionless concentration at the surface of the 
sheet

C∞  Dimensionless ambient concentration
D  Mass diffusivity 

(

m2 s−1
)

h  Dimensionless angular velocity
I0  Vortex viscosity parameter

K  Variable of reaction rate 
(

s−1
)

Kc  Reaction rate parameter
L  Characteristics length (m)
n  Number of motile microorganisms
n1  Positive constant
N  Microrotation velocity (m s−1)
p  Pressure 

(

N m−2
)

qm  Mass flux 
(

kg m−2 s−1
)

qw  Surface heat flux 
(

W m−2
)
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Qc  Constant heat generation/absorption 
(

J m−3 K−1 s−1
)

qn  Microorganism flux 
(

mol s−1 m−2
)

Ra  Rayleigh number
Re  Local Reynolds number
Rb  Bioconvection Rayleigh number
Tf  Convective surface temperature (K)
Tw  Wall temperature (K)
T∞  Ambient temperature (K)
ūe  External flow velocity 

(

ms−1
)

ue  Dimensionless external flow velocity
x, y  Dimensionless coordinate along and normal to the 

plate

Greek symbols
�  Thermal diffusivity 

(

m2 s−1
)

�i  Constants
�  Volumetric thermal expansion coefficient 

(

K−1
)

�  Spin gradient viscosity
�  Stretching/Shrinking parameter
�0  Micro‑rotational density parameter
�  Small perturbation
�  Dimensionless similarity variables
(�)  Kinematic viscosity of the fluid 

(

m2 s−1
)

�f  Fluid density 
(

kgm−3
)

�m  Microorganism density 
(

kgm−3
)

�p  Nanoparticles mass density 
(

kgm−3
)

�f∞  Ambient fluid density 
(

kgm−3
)

�∞  Constant fluid density 
(

kgm−3
)

�  Ratio of nanoparticle heat capacity to the base fluid 
heat capacity

�w  Wall skin friction or shear stress (N m−2)
�  Dimensionless concentration
�  Dimensionless motile microorganism
�  Stream function
�
◦

  Micropolar spin gradient viscosity 
(

kgm s−1
)

Superscripts
()∗  Transformed variables

Subscripts
∞  Condition at the free stream
w  Condition at the surface (wall)

Introduction

Dense motile agents, such as microorganism, cause biocon‑
vection to occur. This happens upon their migration against 
gravity within a bulk fluid in response to stimuli. These self‑
propelled motile agents are basically a bit denser as com‑
pared to water. Hence, their upward migration creates a com‑
bination of asymmetric mass transfer and surface instability 
in the bulk fluid. All in all, the upward‑downhill movement 
of microorganism produces a current, which is described 

as bioconvection. The steady boundary layer flow and heat 
transfer over a stretching sheet has attracted great interest of 
several researchers because of its many practical applica‑
tions including wire drawing, rubber sheets, melt–spinning 
and plastic production. The initiated work of Sakiadis [1, 2] 
in expressing the laminar and turbulent boundary layer flow 
issue along with a constantly moving flat plate is so required 
because it is beneficial in the polymer engineering. Crane [3] 
reviewed the study of Sakiadis [1, 2] by changing the surface 
velocity according to the length of the fluid flow.

In the meantime, Carragher and Crane [4] carried out 
a series of investigation on similar studies, which focuses 
on gyrotactic bioconvection. Further, established the exist‑
ence of stability for gyrotactic microorganism using the 
continuum assumption at the surface of the fluid. Moreover, 
conclusively proved the existence of strong hydrodynamic 
interaction between motile cellular organism and bulk fluid. 
They utilized about 85,000 microparticle beads in the effort 
to experimentally demonstrate the upward swimming of 
motile agents and bioconvection. Essentially, the upward 
swimming of the microorganism in the search of oxygen 
creates a torque balance. This have been mostly considered 
for utilization in nanofluids for passive control and thermal 
mixing [4].

Here is the modern literature that depicts the boundary 
layer flow over a moving surface with several impacts (see 
[5–13]). The boundary layer flow and heat transfer in the 
porous medium can be found in some practical applications 
like radioactive nuclear waste materials, separation proce‑
dure in chemical manufacturing, ground water pollution and 
filtration [14]. Ranganathan and Viskanta [14] initiated the 
issue of mixed convection flow over a vertical flat plate in a 
porous medium, and then extended by researchers in various 
setting [15] and in the bioconvection flow under different 
circumstances [16–18]. However, problems of the non‑New‑
tonian bioconvection fluid flow and heat transfer received 
less attention from the researchers. Most works induced the 
nanofluids to enhance the performance of the heat transfer 
properties. Thus, the current problematic devoted to check‑
ing the behaviour of heat transfer characteristics of the 
micropolar fluid in a porous medium along with the pres‑
ences of the microorganisms under the influences of heat 
generation/absorption and viscous dissipation, which is new 
to the scope of the bioconvection flow. The present work is 
essential as the biophysical properties of the fluid, distri‑
bution of motile constituents of the fluid and permeability 
features of the porous media may possess a crucial role in 
process control, involving bioreactors using fluid‑containing 
microorganism embedded in a porous medium.

Active microorganism starts a collective natural pro‑
cess named bioconvection that is influenced by biochemi‑
cal elements like temperature or light. It is related to the 
characteristics of the atmosphere [19]. Among its distinctive 
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manner to exhibit its sensitivity is by responding fast and 
recognized as “taxis,” which represents the motion of the 
microorganisms away from the stimulus source (negative 
taxis) or to the stimulus source (positive taxis). Reaction of 
microorganisms to gravity is recognized as gravi‑taxis [20]. 
The bioconvection procedure happened once the response 
of the microorganisms, that are slightly denser than water 
upswimming. As soon as further microorganisms gather at 
the superior area, that part turns out to be denser until at 
one point the suspensions become unbalanced and provoke 
the density reversal. Therefore, the microorganisms fell and 
made the bioconvection. The microorganisms can survive 
without the existence of water. They can be found in soil and 
vegetation [21]. The bioconvection phenomenon is useful in 
different applications in the bio‑microsystems like enzyme 
biosensors [22], production of biodiesel, synthesis of other 
products in photobioreactors, and grey water treatment [23]. 
Both common kinds are usually exploited during the biocon‑
vection experimentations, and diverse sorts of microorgan‑
isms have the particular direction of the system [23]. In the 
hypothetical investigation, the conservative mathematical 
model relied on oxytactic bacteria and bottom‑heavy alga. 
Researcher progress concerning bioconvection was theoreti‑
cally clarified in the subsequent literature: [24–33]. Con‑
cerning the boundary layer flow, Kuznetsov [34] focused on 
the issue of bioconvection flow along a horizontal surface 
in a nanofluid comprising a gyrotactic microorganism and 
described the perturbation solutions. Then, many research‑
ers studied the bioconvection boundary layer flow and heat 
transfer under various settings and effects. One of them is by 
examining the phenomena of the bioconvection flow and its 
heat transfer properties in the micropolar fluid.

The micropolar fluid is a sort of non‑Newtonian fluid 
that has rotating microstructures [35] and accentuates the 
confined impacts from the microstructure and the intrinsic 
motion of its fluid components [36]. This unique micropolar 
fluid has many practical applications in the industrial sec‑
tors such as clean and polluted engine lubricant, colloids 
and polymeric suspensions, thrust bearing technologies and 
radial diffusion paint rheology [36]. Eringen [37] established 
the model for the micropolar fluid, and then Peddieson and 
McNitt [38] examined the behaviour of the micropolar 
fluid within the vicinity of the boundary layer flow. Sub‑
sequently, many studies have been conducted to enhance 
the theoretical work of the micropolar fluid, for instance, 
in squeezing flow [39, 40], dusty fluid [41] and nanofluid 
[42–44]. The biophysical properties of the fluid, distribution 
of motile constituents of the fluid and permeability features 
of the porous media may possess a crucial role in process 
control, involving bioreactors using fluid‑containing micro‑
organism embedded in a porous medium. Thus, this study 
scrutinizes the free bioconvection transport of motile micro‑
organism flowing in a micropolar fluid enclosed in a porous 

microstructure past a stretching/shrinking surface. The 
present study investigates the micropolar parameter effect 
on the transport of momentum, microorganism and mass 
in a micropolar fluid immersed in the porous media. The 
Darcian model is implemented in the investigation of the 
variable permeability impact on the distribution of micro‑
organism within the fluid domain. Some process conditions 
such as suction and injection, stretching/shrinking state were 
selected and considered in the bulk of micropolar fluid flow. 
Then, the scaling group of transformation was utilised to 
obtain its impact on velocity, temperature and concentration 
fields. Not only that, the scaling group of transformation was 
solved numerically by introducing the Runge–Kutta proce‑
dure, assisted by the shooting method. The procedure has 
been explored to study the nano‑bioconvectional transport 
of microorganism in nanofluid [37–40].

Ziabakhsh et al. [45] is the first work which had discov‑
ered the analytical solution for the problem of the boundary 
layer flow along with the effect of heat generation past a 
permeable stationery sheet in the micropolar fluid. Then, 
Uddin et al. [46] probed the boundary layer backward flow 
and heat transfer past an exponentially permeable sheet in a 
micropolar fluid and managed to obtain the non‑uniqueness 
solutions when the act of suction dominates the surface of 
the sheet. El‑Aziz [47] explored the impact of the viscous 
dissipation in mixed convection flow of the micropolar fluid 
past a stretching surface and determined that an increment 
of the viscous dissipation effect reduces the rate of convec‑
tive heat transfer. Mutlag et al. [48] analysed the problem of 
the free convection micropolar fluid flow over a stretching 
vertical flat surface in a porous medium with the slip effects 
and concluded that the sheet permeability reduces the fluid 
temperature. It has been found that the impacts of the heat 
generation/absorption and viscous dissipation have not been 
considered in the free convection bioconvection micropolar 
fluid flow past a permeable stretching surface in a porous 
medium. Therefore, the present work extends the work of 
Mutlag et al. [48] by including the influences of heat genera‑
tion/absorption and viscous dissipation while eliminating the 
slip effects. Moreover, new similarity variables are presented 
in this work, and the numerical solutions are generated by 
the finite difference scheme in the shooting technique. These 
efforts are the main contribution of the present work. The 
effects of the pertinent parameters are presented graphically 
and discussed in detail.

Mathematical model

Figure 1 shows a steady two‑dimensional free convective 
boundary layer flow of a micropolar fluid past a mov‑
ing impermeable stretching/shrinking plate embedded 
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in a Darcy porous medium with gyrotactic microorgan‑
isms. This study utilizes assumptions involving boundary 
layer such as (1) continuity equation (Eq. 1), (2) angular 
momentum boundary layer (Eq. 2), (3) thermal boundary 
layer (Eq. 3), concentration boundary layer (Eq. 4), and 
microorganism boundary layer (Eq. 5). Inside the bound‑
ary layer, the fluid temperature, the concentration, angular 
momentum and the density of motile microorganisms are 
expressed by T , C, N  and n , respectively. These assump‑
tions aim to understand the dynamics of micropolar fluid 
flow for the given physical problem. The micropolar fluid 
moves with a constant velocity and flows under no‑slip 
boundary conditions. The viscous dissipation and heat 
generation are also incorporated. According to these con‑
ditions and rules, the governing boundary layer equations 
can be expressed as [45, 46]:

(1)∇ ⋅ V⃗ = 0,

(2)

𝜌

(

DV⃗

Dt̄

)

= −∇p + (𝜇 + 𝜅) ∇2 ��⃗V + 𝜅(∇N) + 𝜌g⃗ −
𝜇

kp
V⃗ ,

(3)𝜌j
(

DN

Dt̄

)

= 𝛾 ∇2N + 𝜅
(

−2N + ∇ × V⃗
)

,

(4)DT

Dt̄
= 𝛼∇2T +

(

𝜇 + 𝜅

𝜌cp

)

(

∇V⃗
)2

+
Q
(

x̄

L

)

𝜌cp

(

T − T∞
)

,

(5)
DC

Dt̄
= Dm

(

∇2C
)

− K
(

x̄

L

)

(

C − C∞

)

,

where D

Dt̄
=

𝜕

𝜕t̄
+ V⃗ ⋅ ∇ is the material derivative, 

∇ =
𝜕

𝜕x
i⃗ +

𝜕

𝜕y
j⃗, ∇2 is the Laplacian operator, t̄ is the dimen‑

sional time, V⃗ =
⟨

u⃗, v⃗
⟩

 is the velocity vector, p is the pres‑
sure, g⃗ is the vector of gravity acceleration applied to the 
flow, kp is the permeability of the porous media, � is the 
dynamic viscosity, � denotes the fluid density, � denotes the 
thermal diffusivity of the fluid, � is the microrotation viscos‑
ity coefficient, j symbolizes the micro‑inertia density, � is 
the spin gradient viscosity, cp denotes the specific heat at a 
constant pressure, Q

(

x̄

L

)

 is the variable heat generation/

absorption, and K
(

x̄

L

)

 is the variable reaction rate. In 
Eq. (6), b̃ is the chemo taxis constant, and Wc:maximum cell 
swimming speed.

By applying the Oberbeck–Boussinesq approximation:

where �n is the coefficient of microorganism expansion, �T is 
the coefficient of thermal volume expansion, g is the accel‑
eration due to gravity. The corresponding boundary condi‑
tions are given as follows:

(6)Dn

Dt̄
+

b̃Wc

ΔC
(∇n ⋅ ∇C) = Dn∇

2n,

(7)
𝜕ū

𝜕x̄
+

𝜕v̄

𝜕ȳ
= 0,

(8)

ū
𝜕ū

𝜕x̄
+ v̄

𝜕ū

𝜕ȳ
=

(

𝜇 + 𝜅

𝜌

)

𝜕2ū

𝜕ȳ2

+ g𝛽T
(

T − T∞

)

+ g𝛽C
(

C − C∞

)

+ g𝛽n
(

n − n∞
)

+
𝜅

𝜌

𝜕N̄

𝜕ȳ
−

𝜈

kp
(ū),

(9)ū
𝜕N̄

𝜕x̄
+ v̄

𝜕N̄

𝜕ȳ
=

𝛾

𝜌j

𝜕2N̄

𝜕ȳ2
−

𝜅

𝜌j

(

2N̄ +
𝜕ū

𝜕ȳ

)

,

(10)

ū
𝜕T

𝜕x̄
+ v̄

𝜕T

𝜕ȳ
= 𝛼

𝜕2T

𝜕ȳ2
+

(

𝜇 + 𝜅

𝜌cp

)(

𝜕ū

𝜕ȳ

)2

+
Q
(

x̄

L

)

𝜌cp

(

T − T∞
)

,

(11)ū
𝜕C

𝜕x̄
+ v̄

𝜕C

𝜕ȳ
= Dm

𝜕C

𝜕ȳ
− K

(

x̄

L

)

(

C − C∞

)

,

(12)ū
𝜕n

𝜕x̄
+ v̄

𝜕n

𝜕ȳ
+

b̃Wc

C̄w − C̄∞

[

𝜕

𝜕ȳ

(

n
𝜕C

𝜕ȳ

)]

= Dn

(

𝜕2n

𝜕ȳ2

)

,
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Fig. 1  Schematic diagram of the present model
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Here Uw is the velocity of the moving plate, � is the 
dimensionless stretching/shrinking parameter, and Vw

(

x̄

L

)

 
is the suction/injection slip factor. The boundary condi‑
tions in Eq. (13) convey the state at the surface of the 
moving surface (ȳ = 0) and the setting far from the moving 
sheet (ȳ → ∞) . For example, the state of moving sheet is 
expressed with ū = 𝜆Uw , the sheet permeability signified 
by v̄ = Vw

(

x̄

L

)

 , the state of spin condition of the micropo‑
lar fluid is given by N̄ = −n1

𝜕ū

𝜕ȳ
 , where n1 is the boundary 

parameter and when n1 = 0 , the microstructures near the 
moving surface does not rotate, while n1 = 0.5 elucidates 
weak rotation of the microstructures, and n1 = 0.5 is suit‑
able for turbulent boundary layer flow. At the wall, surface 
temperature, volume fraction, and density of motile micro‑
organisms are denoted by Tw, Cw and nw, , respectively, and 
in the distance far from the wall (free stream) they are, 
respectively, denoted by T∞, C∞ and n∞, , respectively. 
These conditions are essential to investigate the biocon‑
vection flow of a micropolar fluid past a permeable moving 
surface.

Non‑dimensionalisation of the governing 
equations

The conversion of the governing equations into dimension‑
less form is achieved via the subsequent dimensionless vari‑
ables [48, 49]:

where L is the characteristics length of the plate and Re is 
the Reynolds number. The stream function is signified by � 
and defined as u =

��

�y
 and v = −

��

�x
. Next, substitute Eq. (14) 

into Eqs. (7)–(12) to decrease the equation number and inde‑
pendent variables. This substitution satisfied the continuity 
equation, while other equations can be expressed as 
follows:

(13)

ū = 𝜆Uw, v̄ = Vw

(

x̄

L

)

,

N̄ = −n1
𝜕ū

𝜕ȳ
, T = Tw, C = Cw , n = nw at ȳ = 0,

ū = 0, N̄ = 0, T → T∞, C → C∞, n → n∞ = 0 as ȳ → ∞.

.

(14)

x =
x̄

L
, y =

ȳ

L

√

Re, u =
ū

Uw

, v =
v̄

Uw

√

Re,

N =
N̄L

Uw

√

Re

, 𝜃 =
T − T∞

Tw − T∞
,

𝜙 =
C − C∞

Cw − C∞

, 𝜒 =
n

nw
, Re =

UwL

𝜈
,

The boundary conditions in Eq. (13) become

Applications of the scaling group 
of transformations

The solution to the partial differential equations (PDEs) 
(15)–(19) subject to the boundary condition (20) is quite 
strenuous to be achieved directly due to its complexity and 
the solution being computationally expensive. This reason 
motivates us to employ the scaling group transformation. It 
is also a structured procedure to convert PDEs into the ordi‑
nary differential equations (ODEs). The scaling group trans‑
formation method premised on the invariance of the PDEs 
and the associated boundary conditions. First and foremost, 

(15)

��

�y

�2�

�x�y
−

��

�x

�2�

�y2
=

(

� + �

�

)

Re

UwL

�3�

�y3

+
g�T

(

�
(

Tw − T∞
))

L

U2
w

+
g�C

(

�
(

Cw − C∞

))

L

U2
w

+
g�n

(

�
(

nw − n∞
))

L

U2
w

+
�Re

�UwL

�N

�y
−

�L

kpUw

(

��

�y

)

,

(16)

��

�y

�N

�y
−

��

�x

�N

�y
=

�Re

�jUwL

�2N

�y2
−

�L

�jUw

(

2N +
�2�

�y2

)

(17)

��

�y

��

�x
−

��

�x

��

�y
=

�Re

UwL

�2�

�y2
+

(

� + �

�cp

)

UwRe

LΔT

(

�2�

�y2

)2

+
L

Uw�cp
Q(x)�,

(18)
��

�y

��

�x
−

��

�x

��

�y
=

Dm

�

�2�

�y2
−

L

Uw

K(x)�,

(19)

𝜕𝜓

𝜕y

𝜕𝜒

𝜕x
−

𝜕𝜓

𝜕x

𝜕𝜒

𝜕y
+

b̃Wc

𝜈

[

𝜒
𝜕2𝜙

𝜕y2
+

𝜕𝜙

𝜕y

𝜕𝜒

𝜕y

]

=
Dn

𝜈

𝜕2𝜒

𝜕y2
.

(20)

��

�y
= �,

��

�x
=

Vw(x)
√

Re

Uw

, � = 1, � = 1, � = 1 ,

N = −n1
�2�

�y2
aty = 0

��

�y
= 0, N = 0, � → 0, � → 0, � → 0 as y → ∞.
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the independent and dependent variables must be scaled out 
to find the invariant solution, as follows:

In this case, � is a parameter, while �i(i = 1, 2,… 16) are 
arbitrary real numbers with not all zero concomitantly at 
the same time. Therefore, transforming Eqs. (15)–(19) and 
boundary conditions Eq. (20) in (*) form,

With respect to the boundary conditions from (20) in the 
following (*) form:

The system (22)–(27) remain invariant after applying the 
scaling group transformation in Eq. (21) if �i ’s is correlated 
such as follows:

(21)

�∶ x∗ = xe��1 , y∗ = ye��2 ,�∗ = �e��3 , �∗

= �e��4 ,�∗ = �e��5 ,�∗ = �e��6 ,

N∗ = Ne��7 , k∗
p
= kpe

��8 ,Q∗ = Qe��9 ,K∗

= Ke��10 , j∗ = je��11 ,

�∗ = �e��12 ,V∗
w
= Vwe

��13 , �∗
T
= �Te

��14 , �∗
c

= �ce
��15 , �∗

n
= �ne

��16 .

(22)

��∗

�y∗
�2�∗

�x∗�y∗
−

��∗

�x∗
�2�∗

�y∗2
=

(

� + �

�

)

Re

UwL

�3�∗

�y∗3

+
g�∗

T

(

�∗
(

Tw − T∞
))

L

U2
w

+
g�∗

C

(

�∗
(

Cw − C∞

))

L

U2
w

+
g�∗

n

(

�∗
(

nw − n∞
))

L

U2
w

+
�Re

�UwL

�N∗

�y∗
−

�L

k∗
p
Uw

(

��∗

�y∗

)

,

(23)

��∗

�y∗
�N∗

�x∗
−

��∗

�x∗
�N∗

�y∗
=

�∗Re

�j∗UwL

�2N∗

�y∗2
−

�L

�j∗Uw

(

2N∗ +
�2�∗

�y∗2

)

,

(24)

��∗

�y∗
��∗

�x∗
−

��∗

�x∗
��∗

�y∗
=

�Re

UwL

�2�∗

�y∗2

+

(

� + �

�cp

)

UwRe

LΔT

(

�2�∗

�y∗2

)2

+
L

Uw�cp
Q∗(x) �∗ = 0,

(25)
��∗

�y∗
��∗

�x∗
−

��∗

�x∗
��∗

�y∗
=

Dm

�

�2�∗

�y∗2
−

L

Uw

K∗(x)�,

(26)

𝜕𝜓∗

𝜕y∗
𝜕𝜒∗

𝜕x∗
−

𝜕𝜓∗

𝜕x∗
𝜕𝜒∗

𝜕y∗
+

b̃Wc

𝜈

[

𝜒∗ 𝜕
2𝜙∗

𝜕y∗2
+

𝜕𝜙∗

𝜕y∗
𝜕𝜒∗

𝜕y∗

]

=
Dn

𝜈

𝜕2𝜒∗

𝜕y∗2
,

(27)

��∗

�y∗
= �,

��∗

�x∗
=

V∗
w
(x)

√

Re

Uw

,

�∗ = 1, �∗ = 1, �∗ = 1 ,N∗ = −n1
�2�∗

�y∗2
at y = 0,

��∗

�y∗
= 0, N∗ = 0, �∗ → 0, �∗

→ 0, �∗
→ 0 as y → ∞.

and the boundary conditions (27) become

The linear system in Eqs. (28) and (29) are resolved and 
thus produced the following expression:

The group of conversions in Eq. (21) can be expressed in 
the form of �2 when relying on Eq. (30),

Expanding (31) via the Taylor’s series in power of � 
and by ignoring the greater power of �, the resulting for‑
mulation can be attained:

When the variances between the novel and the origi‑
nal variables are identified as differentials while equating 
every word, the subsequent formulations can be achieved:

(28)

− �1 − 2�2 + 2�3 = �3 − 3�2 = �4 + �14 = �5 + �15

= �6 + �16 = �7 − �2 = �3 − �8 − �2,

− �2 − �1 + �3 + �7 = �12 + �7 − �11 − 2�2

= �7 − �11 = �3 − �11 − 2�2,−�1 − �2 + �3

+ �4 = −2�2 + �4 = 2�3 − 4�2 = �9 + �4,−�1

− �2 + �3 + �5 = −2�2 + �5 = �10 + �5,

− �1 − �2 + �3 + �6 = −2�2 + �5 + �6

= −2�2 + �5 + �6 = �6 − 2�2,

(29)

�3 − �2 = 0, �3 − �1 = �13, �4 = 0,

�5 = �6 = 0, �7 = �3 − 2�2,

�3 − �2 = 0, �4 = �5 = �6 = �7 = 0.

(30)

�1 = 2�2, �2 = �3, �4 = �5 = �6 = 0, �7 = �13 = �17 = −�2,

�8 = �11 = �12 = 2�2, �9 = �10 = �14 = �15 = �16 − 2�2.

(31)

� ∶ x∗ = xe2��2 , y∗ = ye��2 ,�∗ = �e��2 , �∗ = �,�∗ = �,�∗ = � ,

N∗ = Ne−��2 , k∗
p
= kpe

2��2 ,Q∗ = Qe−2��2 ,K∗ = Ke−2��2 , j∗ = je2��2 ,

�∗ = �e2��2 ,V∗
w
= Vwe

−��2 , �∗
T
= �Te

−2��2 , �∗
c
= �ce

−2��2 , �∗
n
= �ne

−2��2 .

(32)

x∗ = x(1 + 2��2), y∗ = y(1 + ��2), �∗ = �(1 + ��2),

�∗ = �(1 + 0), �∗ = �(1 + 0),

�∗ = �(1 + 0), N∗ = N(1 − ��2),

k∗
p
= kp(1 + 2��2), Q∗ = Q(1 − 2��2),

K∗ = K(1 − 2��2), j
∗ = j(1 + 2��2), �

∗ = �(1 + 2��2),

�∗
T
= �T(1 − 2��2), �

∗
C
= �C(1 − 2��2),

�∗
n
= �n(1 − 2��2), V∗

w
= Vw(1 − ��2).

(33)

1

2

dx

x
=

dy

y
=

��

�
= −

dN

N
=

1

2

dkp

kp
=

1

2

dj

j
=

1

2

d�

�

= −
dVw

Vw

= −
1

2

d�T
�T

= −
1

2

d�C
�C

= −
1

2

d�n
�n

= −
1

2

dQ(x)

Q(x)
= −

1

2

dK(x)

K(x)
.
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Resolving each consequently from Eq. (18) leads to the 
next similarity conversion:

The thermal volume expansion is symbolised by �T
◦

 , 
�C

◦

 is the concentration expansion, �n
◦

 is the microorgan‑
ism expansion, Vw

◦

 is the suction/injection slip factor, j◦ is 
the micro‑inertia density, �◦ is the micropolar spin gradi‑
ent viscosity, kp◦ is the permeability of the porous media, 
Q

◦

 is the constant heat generation/absorption, and K
◦

 is 
the constant reaction rate. The substitution of (35) into 
(15)–(20) leads to the resulting system of ordinary dif‑
ferential equations:

Here A1 =
�

�
 is the micropolar parameter, Gr =

2Lg�T0ΔT

U2
w

 

is the Grashof number,Grn =
2Lg�C0ΔC

U2
w

 is the Grashof number 

for the mass transfer parameter, Grm =
2Lg�n0nw

U2
w

 is the Gra‑
shof number for the microorganism transfer parameter, 
Da =

kp0
Uw

�L
 is the Darcy number (permeability parameter), 

�0 =
�0
�j0�

 is the microrotational density parameter, I0 =
2L�

�j0Uw

 

is the vortex viscosity parameter, Ec = U2
w

cpΔT
 is the Eckert 

number [50], Qc =
2Q0L

Uw�cp
 is the heat generation or absorption 

parameter, Pr = �

�
 is the Prandtl number [50], Le = �

Dm

 is the 
Lewis number, Kc =

2LK0

Uw

 is the chemical reaction parameter, 
Pe =

b̃Wc

Dn

 is the Peclet number, and Lb =
�

Dn

 is the bioconvec‑
tion Lewis number. The boundary conditions (20) can be 
stated as

(34)

� =
1
√

2

x−
1

2 y, � =
√

2f (�)x
1

2 , � = �(�), � = �(�),

� = �(�), N =
1
√

2

h(�)x−
1

2 , Q(x) = x−1Q◦ ,

K(x) = x−1K◦ , kp = xkp◦ , j = xj◦ , � = x�◦ ,

�T = x−1�T◦ , �C = x−1�C◦ , �n = x−1�n◦ , Vw = x−
1

2 Vw◦ ,

(35)

(

1 + A1

)

f ��� + f f �� + Gr � + Grn� + Grm� + A1h
� −

2

Da
f � = 0,

(36)�0 h
�� + h f � + f h� − 2I0

(

2h + f ��
)

= 0,

(37)��� + Pr f �� + Pr Ec
(

1 + A1

)

f ��2 + PrQc� = 0,

(38)��� + Pr Le f�� − Pr LeKc� = 0,

(39)� �� + Pr Lb� �f − Pe
(

� ��� + ��� �
)

= 0.

The notation ( � ) denotes differentiation with respect to 
�, fw =

√

2(Vw)0
√

Re

Uw

 is the suction/injection slip parameter 
where fw < 0 implies injection, while fw > 0 connotes suc‑
tion. The physical quantities which are highly considered in 
this investigation are the local Nusselt number 

(

Nux̄
)

 , that 
can be identified as follows:

The skin friction 
(

𝜏x̄
)

, the heat flux 
(

qx
)

 , the mass flux 
(

qm
)

, and the motile microorganisms flux 
(

qn
)

 along with 
the stretching surface are given by

By using (34) and the dimensionless expressions in 
Eqs. (41) and (42), the related physical quantities can be 
defined as follows:

where the local Reynolds number is denoted by Rex̄ =
Uw x̄

𝜈
.

Solving approach and validation

The shooting method in the Maple software resolves the 
mathematical model in the form of the system of nonlinear 
ODE’s (35)–(40). This numerical approach capable in solv‑
ing non‑Newtonian fluid transport problems, for instance see 
Thumma and Mishra [51]. The first procedure in applying 
the shooting method begins with the step of transforming 
the reduced mathematical model (35)–(40) into a system of 
first‑order ODE’s as is shown in the following expression:

(40)

f (0) = fw, f �(0) = �, h(0) = −n1f
��(0), �(0) = 1,

�(0) = 1, �(0) = 1,

f �(∞) = h(∞) = �(∞) = �(∞) = �(∞) = 0.

(41)

Cfx̄
=

𝜏x̄

𝜌U2
w

, Nux̄ =
x̄qx

k
(

Tw − T∞
) ,

Shx̄ =
x̄qm

D
(

Cw − C∞

) , Nnx̄ =
x̄qn

Dn

(

nw
) .

(42)

𝜏x̄ =

[

(𝜇 + 𝜅)
𝜕ū

𝜕ȳ
+ 𝜅N̄

]

ȳ=0

, qx = −k

(

𝜕T

𝜕ȳ

)

ȳ=0

,

qm = −D

(

𝜕C

𝜕ȳ

)

ȳ=0

, qn = −Dn

(

𝜕n

𝜕ȳ

)

ȳ=0

.

(43)

Cfx̄

√

Rex̄ =
1
√

2

�

1 + A1

�

1 − n1
��

f ��(0),
Nux̄
√

Rex̄

= −
1
√

2
𝜃�(0),

Shx̄
√

Rex̄

= −
1
√

2
𝜙�(0),

Nnx̄
√

Rex̄

= −
1
√

2
𝜒 �(0),
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Next, designating an iterative scheme with the conver‑
gence criterion (when the difference of two consecutive 
approximations is ≤ 10−5 ) assist in determining the right 
numerical solutions. The competence of the shooting 
method is then validated by comparing several values of the 
skin friction coefficient 

(

−f ��(0)
)

 reported by Ishak et al. [52] 
and is presented in Table 1. Table 1 shows that the present 

(44)

f �(�) = p, h�(�) = r, ��(�) = s, ��(�) = t, � �(�) = l, p�(�) = q,

q�(�) =
1

(1 + A1)

[

(2∕Da)p − A1r − Grn� − Grm� − Gr� − fq
]

,

r� = (1∕�0)
[

2I0(2h + q) − fr − hp
]

,

s� = −Pr
[

sf + Ec
(

1 + A1

)

q2 + Qc�
]

,

t� = Pr Le Kc� − f t Pr Le,

l� = Pe(� Pr Le Kc� − � f t Pr Le + t l) − Pr Lb l f ,

f (0) = fw, p(0) = �, h(0) = −n1q(0), �(0) = 1,

�(0) = 1, �(0) = 1,

p(∞) = h(∞) = �(∞) = �(∞) = �(∞) → 0.

numerical output is in perfect agreement with the numerical 
results produced by Ishak et al. [52] which is numerically 
resolved by using the Keller‑box technique with the conver‑
gence of 0.00001. Thus, the shooting method is a reliable 
approach to solve boundary value problems.

Results and discussion

Throughout the computation process, the values of the gov‑
erning parameters are fixed initially as follows:

and Gr = Grn = Grm = 0.5. The value for A1, �0 and I0 is set 
as 0, 0.1 and 0.001, respectively, so that the fluid is able to 
reflect the micropolar feature in the laminar boundary layer 
flow. Moreover, the current work attempts to examine the 
behaviour of a nitrogen gas containing polymers [15] and 
hence Pr is set to 0.71 at 500 K [53]. Qc and Ec are fixed as 
0.1, respectively, so that the influence of the heat generation 
and dissipation is present in the fluid flow. Table 2 displays 
the decrement of the reduced skin friction coefficient 
�

Cfx̄

√

Rex̄

�

 as the micropolar parameter 
(

A1

)

 increases past 
the permeable stretching sheet. The increment in A1 
enhances the microrotation viscosity coefficient which then 
decreases the wall shear stress past a stretching sheet in the 
porous media, which then reduces the value of Cfx̄

√

Rex̄ . 
The negative values of Cfx̄

√

Rex̄ signify that the stretching 
flat plate inflict the drag force on the micropolar fluid. Next, 
the increment in A1 enhances the value of Nux̄Re

−1∕ 2

x̄
. The 

increment in A1 reduces the thermal conductivity of the 
micropolar fluid, which upsurges the heat flux past a perme‑
able stretching sheet. Eventually, the rate of heat transfer 

A1 = 0.2, I0 = 0.001, Pr = 0.71, �0 = Qc = Ec = 0.1,

Le = Lb = 1, n1 = 0.5, Da = 0.5,

Table 1  Comparison values of the skin friction coef‑
ficient, −f ��(0) for different values of A1 when Gr = 0,

Da = 1, n1 = 0.5, Pr = 0.71, I0 = �0 = � = Ec = 1, fw = 0

A1 −f ��(0)

Ishak et al. [52] (Keller‑box 
method)

Present results 
(shooting 
method)

0.0 0.6276 0.62756
0.5 0.5704 0.56111
1.0 0.5217 0.51188
2.0 0.4523 0.44258
4.0 0.3694 0.36201

Table 2  Numerical values 
of Cfx̄

√

Rex̄ and Nnx̄Re
−1∕ 2

x̄

 
for various values of 
A1, Da, fw, �, Gr, Pe and Lb

A1 Da fw � Gr Pe Lb Cfx̄

√

Rex̄
Nnx̄
√

Rex̄

0.4 0.5 0.5 1 0.5 0.1 1 − 1.39050 0.51326
0.8 − 1.55010 0.52118
0.2 0.4 − 1.50711 0.49310

0.6 − 1.36584 0.52108
0.5 0.2 − 1.16822 0.39200

0.4 − 1.25944 0.46848
0.5 1.3 − 1.87432 0.54678

1.6 − 2.45379 0.58372
1 1 − 1.16254 0.52323

2 − 0.88482 0.54809
0.5 0.3 − 1.30930 0.55642

0.6 − 1.02228 0.62826
0.1 0.4 − 1.27910 0.25623

0.6 − 1.28945 0.34486
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augments. Table 2 also exhibits the rise of Cfx̄

√

Rex̄ when 
Da increases from 0.4 to 0.6. The increment of Da indicates 
the enhancement of the permeability of the porous medium. 
This state contributes to the increment in the fluid velocity 
in the porous medium, which is communicated by the veloc‑
ity profiles in Fig. 2a. The momentum boundary layer thick‑
ness increases and affects the wall shear stress to increase 
when Da elevate. Thus, the values of Cfx̄

√

Rex̄ increase. The 
increment in Da depreciates the fluid temperature (see 
Fig. 2b) and increases the temperature gradient. The steeper 
thermal profile implies the increment in convective heat 
transfer along the moving surface. Therefore, an improve‑
ment in the heat transfer rate when Da increases is under‑
lined. Table  2 exhibits the decrement in the value of 
Cfx̄

√

Rex̄ as fw increases. The increment of fw from 0.2 to 
0.4 explains the dominance of suction at the surface of per‑
meable moving sheet. Physically, the act of suction traps the 
slowing down molecules in the fluid regime and improves 
the slow fluid flow on the moving sheet. However, in the 
porous medium, the increment in fw is found to reduce local 

wall shear stress and the fluid velocity declines in conjunc‑
tion with the stretching surface. The momentum boundary 
layer thickness becomes thinner as the suction intensity aug‑
ments, which then results in the reduction of Cfx̄

√

Rex̄. In 
terms of the heat transfer characteristics, a rise in fw reduces 
the temperature of the micropolar fluid past the stretching 
surface. The temperature profiles in Fig. 3b display that the 
stronger influence of suction on the moving plate is noted in 
a thinner thermal boundary layer thickness and increases the 
thermal gradient. These outcomes then rise the wall heat flux 
and encourage Nux̄Re

−1∕ 2

x̄
 to rise.

Table  2 exposes the decrement in Cfx̄

√

Rex̄  when � 
increases. The addition in the value of � implies that the rate 
of stretching increases and the characteristic length of the 
sheet become more extensive than before. Now, when the 
sheet stretches in the porous medium, the velocity of the 
micropolar fluid close to the wall increases before it declines 
as the fluid flow gets farer from the stretching sheet (see 
Fig. 4a). When the velocity profiles converge at � = 15, the 
micropolar f luid velocity decreases as � increases. 

Fig. 2  a Effect of Da over the 
velocity distributions and b 
thermal distributions
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Fig. 3  a Effect of fw over the 
velocity distributions and b 
thermal distributions

0.8

0.6

0.4

0.2

0

ƒw = – 0.2, 0.4, 0.6, 0.8, 1.0 ƒw = 0.2, 0.4, 0.6, 0.8, 1.0

0 5 10 15 0 5
η

10 15

11

0.8

0.6

0.4

0.2

0

η

(a) (b)

f′ 
( η

)

θ  
( η

)



1952 K. Naganthran et al.

1 3

Eventually, the momentum boundary layer thickness turns 
out to be thicker and thus lessening the values of Cfx̄

√

Rex̄. 
Moreover, numerical results in Table 2 pose the enhance‑
ment in the value of Nux̄Re

−1∕ 2

x̄
 when � increases. The incre‑

ment in � increases the surface area of the permeable sheet, 
and it stimulates the micropolar fluid temperature to decrease 
(see Fig. 4a). The thermal gradient increases and reduces the 
thermal conductivity of the fluid, which then provokes better 
rate of heat transfer past the permeable sheet. However, 
Table 3 illustrates a significant convective heat transfer 
enhancement when Ec increases. Normally, Ec is used to 
determine the dissipation effects in the fluid flow, and when 
the value of Ec increases, some changes will take place in 
the fluid regime. Firstly, it raises the fluid velocity and 

reduces the thermal capacity of the fluid. This is factually 
true as when Ec increases, the micropolar fluid temperature 
increases and reduces the thermal gradient (see Fig. 5a). The 
wall heat flux at the surface of the stretching surface 
decreases since the thermal conductivity of the fluid 
increases. Hence the rate of convective heat transfer 
decreases.

Figure 5b demonstrates the thermal profiles when Qc 
varies from negative to positive values (increase). When 
the value of Qc is less than zero, it suggests the heat 
absorption situation to the fluid flow, and when it occurs, 
the temperature of the micropolar fluid decreases (see 
Fig. 5b), and this increases the wall heat flux along with 
the stretching surface. Conversely, when the value of Qc is 
more than zero, it indicates the situation where the heat is 

Fig. 4  a Impact of � over the 
velocity distributions and b 
thermal distributions
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Table 3  Numerical values of 
the local Nusselt number and 
the local Sherwood number for 
when the pertinent parameters 
vary

A1 Da fw � Ec Pr Kc Le Lb Nux̄
√

Rex̄

Shx̄
√

Rex̄

0.2 0.5 0.5 1 0.05 0.71 0.5 0.5 1 0.41394 0.17291
0.4 0.41650 0.17572
0.2 0.4 0.39118 0.16126

0.6 0.431310 0.18239
0.5 0.6 1.31780 1.23702

0.8 1.63616 1.38815
0.5 1.3 0.43381 0.19060

1.6 0.44531 0.20837
1 0.1 0.39373 0.17301

0.15 0.37355 0.17310
0.05 2 0.97889 0.32692

5 2.12165 0.60035
0.71 1 0.42100 0.09251

2 0.43048 0.01223
0.5 0.75 0.40899 0.22854

1 0.40500 0.27922
0.5 0.4 0.42504 0.18177

0.6 0.42030 0.17762
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generated to the fluid regime. The rise in positive values 
of Qc results in the rise in the micropolar fluid temperature, 
and this is shown in Fig. 5b. The thermal boundary layer 
thickness increases and enhances the rate of heat transfer. 
Figure 6a views the increment in the concentration as Kc 
varies from the negative to positive values. The negative 
value of Kc entails the non‑destructive chemical reactions, 
while positive values of Kc denote the situation of destruc‑
tive chemical reaction. Based on the concentration profile 
in Fig. 6a, it is apparent that the dominance of the non‑
destructive chemical reaction reduces the concentration of 
the micropolar fluid and its boundary layer thickness 
reduces. Consequently, the mass flux past the permeable 
stretching sheet increases and enhances the value of 

Shx̄Re
−1∕ 2

x̄
 or the rate of mass transfer along the surface of 

the sheet. Meanwhile, also from Fig. 6a, the increment of 
Kc > 0 results in the increment in the fluid concentration, 
which then later induces the concentration boundary layer 
thickness to be thicker. This state then affects the wall 
mass flux to decrease and induce the value of Shx̄Re

−1∕ 2

x̄
 to 

decrease (see Table 3).
Figure 6b displays the decrement in the density of motile 

microorganisms when Da increases. The increment in Da 
reduces the characteristics length of the moving sheet, and this 
affects the density of the motile microorganisms to decrease. 
The density of motile microorganisms’ boundary layer thick‑
ness decreases (see Fig.  6b) and increases the motile 

Fig. 5  a Effect of Ec over the 
thermal distributions and b 
Impact of Qc over the thermal 
distributions
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microorganisms’ flux over the stretching sheet. Hence, the 
local density of the motile microorganisms or Nnx̄Re

−1∕ 2

x̄
 

increases when Da increases (see Table 2).

Conclusions

This study is devoted to contribute the theoretical work in 
the scope of bioconvection micropolar fluid in a porous 
medium past a stretching permeable surface. The effects 
of chemical reactions, heat generation/absorption and dis‑
sipation have been evaluated in this model. The present 
work may be tested under the influence of the nanoparti‑
cles (see [54]) and under different shape of surface.

Some of the important deductions can be highlighted 
from the generated numerical findings as follows:

• The reduced skin friction coefficient 
�

Cfx̄

√

Rex̄

�

 

decreases but the local Nusselt number 
(

Nux̄Re
−1∕ 2

x̄

)

 
increases when the micropolar parameter 

(

A1

)

 rises past 
the permeable stretching sheet.

• The reduced skin friction coefficient 
�

Cfx̄

√

Rex̄

�

 and the 

local Nusselt number 
(

Nux̄Re
−1∕ 2

x̄

)

 augments when the 
permeability parameter (Da) increases past the permeable 
stretching sheet.

• The reduced skin friction coefficient 
�

Cfx̄

√

Rex̄

�

 

decreases but the local Nusselt number 
(

Nux̄Re
−1∕ 2

x̄

)

 
increases when the suction parameter 

(

fw
)

 increases.
• The increment in Ec affects he local Nusselt number 

(

Nux̄Re
−1∕ 2

x̄

)

 to increase.
• The strong impact of the destructive chemical reaction 

reduces the local Sherwood number 
(

Shx̄Re
−1∕ 2

x̄

)

.
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