
Vol.:(0123456789)1 3

Journal of Thermal Analysis and Calorimetry (2021) 143:2329–2341 
https://doi.org/10.1007/s10973-020-09723-7

Thermal analysis of an Eyring–Powell fluid peristaltic transport 
in a rectangular duct with mass transfer

Arshad Riaz1

Received: 19 March 2020 / Accepted: 16 April 2020 / Published online: 20 May 2020 
© Akadémiai Kiadó, Budapest, Hungary 2020

Abstract
The present investigation establishes with analytical relevance for the thermal analysis in biological transport of Eyring–
Powell fluid through a noncircular horizontal 3D channel. The relevant equations are physically exhibiting the problem 
under the lubrication mechanism. The wave frame analysis for the current study is considered to have a steady format of the 
problem. The resulting equations are presented with their analytic treatment by couple of series and closed-form techniques 
jointly. The aspects of different flow parameters are presented through plotting two- and three-dimensional curves of veloc-
ity expression, pressure gradient profile, peristaltic pressure data, temperature curves and mass distribution. The circulating 
bolus variation is also disclosed for the physical parameters to observe the stream lines pattern. It is observed from obtained 
graphical aspects that transfer of heat and mass is reduced for Eyring–Powell fluid model than a Newtonian fluid, but the 
same is enhanced with the aspect ratio of the three-dimensional rectangular channel.

Keywords Heat and mass transfer · Peristaltic flow · Eyring–Powell fluid · Rectangular channel · Analytical solutions

Introduction

The most commonly used fluid models considered in engi-
neering applications incorporate the Newtonian fluids; 
rather, large-scale analytical and experimental investigations 
have been presented for heat transfer behavior of Newto-
nian fluids [1–3]. However, in many industries including the 
chemical, pharmaceutical, biological and food industries, 
it is visualized to encounter non-Newtonian fluids depend-
ing on different stresses and viscosity models [4–6]. In [7], 
Waqas et al. have produced the theoretical data for Car-
reau–Yasuda nanofluid model by introducing thermal radia-
tions and slip of the second order. They have also manipu-
lated the impacts of chemical reaction and bioconvection 
and obtain the report that Weissenburg is reducing the flow 
velocity magnitude. Abolbashari et al. [8] talked about the 
modeling of Casson liquid with nanoparticles incursion and 
discussed the results for entropy generation through ana-
lytical approach. The study of Bhatti and Rashidi [9] came 

for Williamson fluid to visualize the results of diffusion of 
heat along with radiation in the presence of nanoparticles 
through a porous shrinking and stretching sheet. They have 
applied the numerical methods to measure the readings. The 
model introduced by Eyring–Powell [10] somehow contains 
more complex mathematical structure, but it has certain 
benefits as compared with other viscoelastic fluid models. 
The kinetic theory of liquids is the origin of this model not 
the empirical expressions as most of the models make base. 
The Newtonian characteristics can also be derived from this 
model at low and large shear stress.

Recently, the study of peristaltic flows has achieved an 
immense concentration and interest of huge number of 
researchers due to their significant employments and appli-
cation in many useful fields like physiology, engineering 
and the chemical factories. In the field of fluid mechanics, 
peristaltic flows of various types of viscous and nonlinear 
physical models have been suggested by a large number of 
physicists, mathematicians and engineering researchers by 
considering peristaltic pumping. A huge bit of literature is 
available for the study of such fluids under peristaltic motion 
[11–13]. To incorporate the wavy mechanism of viscoelas-
tic stress models, the researchers have been predisposed in 
introducing different fluid models in various types of flow 
geometries. Most of the containers adjusted in industries 
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and clinical laboratories are exhibiting three dimensions 
in space. To discuss the behavior of peristaltic transport in 
certain geometries having space frame of references, a small 
number of researchers are motivated to deal with rectangu-
lar channels and cylinders. Reddy et al. [14] proposed the 
influence of moving sides on a fluid in a Cartesian peri-
staltic conduit and concluded the theory that the straight 
transactional side of the uterus is preferably observed by an 
enclosure of rectangular faces besides a channel with a two-
coordinate system. Mekheimer et al. [15] have investigated 
the eccentricity of two cylinders with peristaltic transport 
mathematically. Stokesian peristaltic mechanism in a three-
dimensional asymmetric tube is unveiled in [16]. Aranda 
et al. [17] talked about the Stokesian peristaltic scheme in a 
closed three-dimensional tube and executed the observation 
that 3D flexible tube is affecting the results of the peristaltic 
pumping through its closed ends and the way the peristal-
tic waves blow toward outside the cavity. Abbas et al. [18] 
have utilized the outcomes of nonuniform three-dimensional 
geometry with elastic walls for the wavy mechanism of 
Tangent hyperbolic fluid and developed the result that fluid 
travels relatively slower in due to walls compliance. It can 
be found in the literature that only a few studies have been 
reported on the pumping flow of viscoelastic fluids in three-
dimensional Cartesian channels. The wide range of its appli-
cations and benefits in clinical and engineering perspectives 
emphasizes that this geometry must me more discussed for 
various models of the physical fluids.

In the field of peristaltic wonders, incorporations of ther-
mal and mass exchange have been examined by numerous 
specialists. Nadeem et al. [19] introduced thermal blood 
analysis in a diverging tube for third-grade fluid. The rela-
tion among wavy structure with heat exchange over move-
ment of a viscous liquid in a bidimensional magnetized and 
porous channel is assumed in [20]. Ogulu [21] analyzed 
thermal and concentration change phenomenon of blood 
through a solitary lymphatic vein under a uniform mag-
netized environment. Mekheimer and Abd Elmaboud [22] 
dissected the heat impact with magnetic field on pumping 
terminology of a viscous liquid across a vertically oriented 
annulus through lubrication assumptions. In the studies of 
three-dimensional thermally conducting mass transfer flows, 
most of the time the observing representative conservation 
equations become linear/nonlinear partial differential equa-
tions or more specifically coupled system of three equations 
which cannot be tackled by exact methods. In such situa-
tions, the most appropriate analytical technique to be used 
is homotopy perturbation method firstly introduced by He 
[23, 24] which was efficiently implemented for nonlinear 
ordinary differential equations.

To the best of authors’ information, the subject of thermal 
impacts and mass exchange attributes on peristaltic stream of 
Eyring–Powell liquid in a duct segment is yet to break down. 

Remembering the above conversation, we chose to explore the 
investigation of thermal and mass transfer examination for the 
peristaltic stream of Eyring–Powell liquid model in a three-
dimensional cross-area of a rectangular duct. The constitutive 
set of equations are formatted within the sight of small wave 
amplitude and negligible Reynolds number presumptions with 
the analytical arrangements produced through homotopy per-
turbation method by using the method of eigenfunction. On the 
other hand, the data of pressure rise are interpolated through 
numerical treatment. The subsequent information is used to 
examine the graphical highlights of every relevant parameter 
showing up in the examination. The flow pattern is addition-
ally shown through streamlines.    

Mathematical formulation

Let us approach the wavy-type flow in a cross-face of Carte-
sian channel with three faces containing the non-Newtonian 
Eyring–Powell fluid under the environment of thermal and 
mass exchange. The width of the section is 2d, and the alti-
tude is 2a which can be viewed in Fig. 1. The geometrical 
suppositions are as follows: The temperatures T0 , T1 and mass 
concentrations C0 , C1 are assigned to the horizontal sides of 
the channel, correspondingly. The upward and downward ori-
ented boundaries are assumed to create long peristaltic waves 
as compared to the amplitude.

Mathematically, the walls suggest the relations [14]

Here, the wave amplitude is given by b, � is showing the 
wavelength, c gives speed with which wave is propagated, 
t chooses the time measurements and x exhibits the wave 

Z = ϝ�(X, t�) = ±

⎛⎜⎜⎜⎝
a +

1

b−1 sec
�

2�

�(X−ct�)−1

�
⎞⎟⎟⎟⎠
.

Fig. 1  Geometrical structure of the container
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direction. The walls normal to y-axis do not contribute in 
creating waves due to their stable manufacturing. The con-
stitutive model of fluid taken is described by [10]

where the viscosity is suggested by �,while � and c1 are the 
fluid material representatives. Let �� = U� +W� be the fluid 
velocity vector for current flow. The flow is governed by 
the conservation laws described through their mathematical 
form below:

The above-mentioned parameters are such that K ′ represents 
the thermal conductivity, C′ shows the specific heat, Tm gives 
the average temperature, KT suggests the thermal–diffusion 
ratio and D predicts the mass diffusibility coefficient. Trans-
forming the coordinates into a new coordinate system of a 
newly taken wave frame, we relate through the following 
transformations:

Suggesting the subsequent dimensionless strategy, we obtain

(1)

� = �grad�� +
1

�1
arcsin h

(
c−1
1
grad��

)
,

sinh−1
(
c−1
1
grad��

)
≈ c−1

1
grad��

−
1

6

(
c−1
1
grad��

)3
,

|||c
−1
1
grad��|||

5 ≦ 1,

(2)�XU + �ZW = 0,

(3)
�
(
�t�U + U ∗ �XU +W ∗ �ZU

)
+ �XP = �XSXX + �YSXY + �ZSXZ,

(4)�YP = �XSYX + �YSYY + �ZSYZ ,

(5)
�
(
�t�W + U ∗ �XW +W ∗ �ZW

)
+ �ZP

= �XSZX + �YSZY + �ZSZZ,

(6)

C
�(
�t�T + U ∗ �XT +W ∗ �ZT

)
=

K
�

�

(
�XXT + �YYT + �ZZT

)

+
1

�

(
SXY�YU + SXZ�ZU

)
,

(7)

(
�t�C + U ∗ �XC +W ∗ �ZC

)
= D

(
�XXC + �YYC + �ZZC

)

+
DKT

Tm

(
�XXT + �YYT + �ZZT

)
.

(8)
(
x�, y�, z�, u�,w�, p�

)
=
(
X − ct�, Y , Z,U − c,W,P

)
.

The amounts M1 and K hint the non-dimensional quantities 
of the liquid. Joining the dimensionless amounts with the 
relations (2)–(7) and utilizing the requirements of laminar-
ity of the stream (Re → 0) and small amplitude (� → ∞) 
approximations, the final form of the upcoming flow equa-
tions (in the wake of skipping the bars) in newly introduced 
frame can be separately composed as:

In the above expression, Pr shows the Prandtl number, Ec 
gives the Eckert number, Sr means the Soret number and Sc 
depicts the Schmidt number. The concerning dimensionless 
surface conditions for the considered scenario are stated as 
[14]:

It is to be mentioned here that the above-discussed prob-
lem relates to the two-dimensional channel when � → 0 and 
� = 1 generates the square shape duct readings. It can also be 

(9)

⃖⃗x = 𝜆−1x�, ⃖⃗y = d−1y�, ⃖⃗z = a−1z�,

⃖⃗u = c−1u�, �⃖⃗w = (𝛿c)−1w�, t = 𝜆−1ct�, h = a−1ϝ,
p =

a2p�

𝜇c𝜆
, 𝜃 =

T − T0

T1 − T0
, 𝜎 =

C − C0

C1 − C0

,

Re =
𝜌ac

𝜇
, 𝛿 =

a

𝜆
, 𝜙 =

b

a
, S =

a

𝜇c
S, 𝛽 =

a

d
,

M1 =
1

𝜇𝛽1c1
,K =

M1c
2

6c2
1
a2

, Pr =
𝜇C

�

K
�
,

Ec =
c2

C
�
(
T1 − T0

) , Sc =
𝜇

𝜌D
, Sr =

𝜌DKT

(
T1 − T0

)

𝜇Tm
(
C1 − C0

) .

(10)�xu + �zw = 0,

(11)
�2�yyu + �zzu −

3K

1 +M1

(
�4
(
�yu

)2
�yyu

+
(
�zu

)2
�zzu

)
=

1

1 +M1

�xp,

(12)
�2�yy� + �zz� + PrEc

((
1 +M1

)(
�2
(
�yu

)2

+
(
�zu

)2)
− K

(
�4
(
�yu

)4
+
(
�zu

)4))
= 0,

(13)�2�yy� + �yy� + SrSc
(
�2�yy� + �zz�

)
= 0.

(14)
u(∓1, z) + 1 = 0 and u(y,∓h(x)) + 1 = 0 with h(x) = 1 + � ∗ cos 2�x,

(15)� =

{
0 at z = h

1 at z = −h
,

(16)� =

{
0 at z = h

1 at z = −h
.
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analyzed that limiting K and M1 to zero regenerates proper-
ties of linear fluid.

Solution strategy

The finalized sets of equations (11) and (15) are being han-
dled by HPM [23, 24]. The homotopy for the unknown pro-
files mentioned in the above equations is structured as:

For further analogy, we have taken Lvel = �2
�2

�y2
+

�2

�z2
 and 

Ltemp =
�2

�z2
 as the linear operators. The initial approximations 

are chosen as:

Applying perturbation on the involved parameter q for the 
variables u and � , we have

(17)

Lvel
(
u − û0

)
+ q

[
Lvel(u) − 3K

(
1 +M1

)−1
(
�4
(
�u

�y

)2
�2u

�y2
+

(
�u

�z

)2
�2u

�z2

)
−

1

1 +M1

�p

�x

]
= 0,

(18)

Ltemp

(
� − �̂0

)
+ q

[
Ltemp

(
�
)
+ �2

�2�

�y2

+ PrEc

((
1 +M1

)(
�2
(
�u

�y

)2

+

(
�u

�z

)2
)

−K

(
�4
(
�u

�y

)4

+

(
�u

�z

)4
))]

= 0.

(19)û0(y, z) =
1 − y2 + �2

(
z2 − h2 − 1

)
�2

, �̂0 =
1 − z∕h

2
.

(20)u = u0 + qu1 + q2u2 +⋯

(21)� = �0 + q�1 + q2�2 +⋯

Injecting expressions (20) and (21) into relations (17) and 
(18) and then composing the terms involving coefficients 
of nonnegative increasing integral powers of q, we collect

From Eqs. (19) and (22–25), we gain the following results:

Now, switching the eigenfunction expansion technique on 
Eq. (27), the closed form of u1 can be observed as follows:

(22)Lvel
(
u0
)
− Lvel

(
û0
)
= 0,

(23)
u0 + 1 = 0 when y ± 1 = 0, u0 + 1 = 0 when z ± h(x) = 0,

(24)Ltemp

(
�0
)
− Ltemp

(
�̂0

)
= 0,

(25)�0 = 0 at z = h(x), �0 = 1 at z = −h(x).

(26)
u0 = û0(y, z) = −1 +

1

�2

(
1 − y2

)
+ z2 − h2(x),

�0 = �̂0 =
h(x) − z

2h(x)
,

(27)

�2
�2u1

�y2
+

�2u1

�z2
−

3K

1 +M1

(
�4
(
�u0

�y

)2
�2u0

�y2

+

(
�u0

�z

)2
�2u0

�z2

)
−

1

1 +M1

�p

�x
= 0,

(28)u1 = 0 when y = ±1 and u1 = 0 when z = ±h(x),

(29)

�2�1

�z2
+ �2

�2�0

�y2
+ PrEc

((
1 +M1

)(
�2
(
�u0

�y

)2

+

(
�u0

�z

)2
)

−K

(
�4
(
�u0

�y

)4

+

(
�u0

�z

)4
))

= 0,

(30)�1 = 0 when y = ±1, �1 = 0 when z = ±h(x).

(31)u1 =

∞∑
n=1

an(y) cos (2n − 1)
�

2h(x)
z,
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where an(y) is summarized as:

Here, �n = (2n − 1)�∕2h(x) , n ∈ Z+ suggest the eigenvalues 
and ��

n
=

�ny

�
 . The expression of temperature profile is evalu-

ated as:

The particular complete solutions are achieved when q ⟶ 1 
which are observed as:

(32)

an(y) =

(
4 cos (n�)

(
cosh

(
��
n

)
− sinh

(
��
n

))((
−1(1 − 2n)2

dp

dx
�2

(
��n

)2
− 24K

(
−8h2(x)

(
��n

)2
+ [�(1 − 2n)]2

(
−2�2 − �2

n
+ h2(x)

(
��n

)2)))(
cosh

(
�n
�

)
− sinh

(
�n
�

))

+

(
(1 − 2n)2

dp

dx
�2

(
��n

)2
+ 24K

(
−8h(x)2

(
��n

)2
+ �2(1 − 2n)2

(
−2�2 − y2�2

n
+ h2(x)

(
��n

)2)
))
(
cosh

(
��
n

)
− sinh

(
��
n

))
+

(
(1 − 2n)2

dp

dx
�2

(
��n

)2
+ 24K

(
−8h2(x)

(
��n

)2
+ �2(1 − 2n)2

(
−2�2 − y2�2

n
+ h2(x)

(
��n

)2)))(
cosh

(
2�n
�

+ ��
n

)
−

sinh

(
2�n
�

+ ��
n

))
+

(
(1 − 2n)2

dp

dx
�2

(
��n

)2
− 24K

(
−8h2(x)

(
��n

)2
+ �2(1 − 2n)2

(
−2�2 − �2

n
+ h2(x)

(
��n

)2)))(
cosh

(
�n
�

+ 2��
n

)
+ sinh

(
�n
�

+ 2��
n

)))

∕

((
1 +M1

)
(2n − 1)3�3�2�4

n

(
1 + cosh

(
2�n
�

)
+ sinh

(
2�n
�

)))
.

(33)

�1 =
1

105�6
8EcK

(
1 +M1

)
Pr

(
420y6

(
z2 − h(x)2

)
+ 70y4

(
z4 − h(x)4

)
�2

+28y2
(
z6 − h(x)6

)
�4 + 15

(
z8 − h(x)8

)
�6
)
.

The closed-form series solution of concentration profile can 
be calculated from Eq. (13) along with boundary conditions 
(16) and is found as:

where

(34)u = u0 + u1 +⋯

(35)� = �0 + �1 +⋯

(36)

� = f (x, y, z) +

∞∑
n=1

(
cn cosh

(
�n
�
y

)
+ dn sinh

(
�n
�
y

))
cos

(
�nz

)
,

f (x, y, z) =
1

240h(x)(x, t)�6
(h(x) − z)

(
105�6 − 64Ech(x)K

(
1 +M1

)
PrScSr(h(x) + z)

(
−105y6 + 35y4

(
37h(x)2 − 8z2

)
�2 + 7y2

(
13h(x)4 − 2h(x)2z2 − 2z4

)
�4

+
(
3h(x)6 − 4h(x)4z2 − 4h(x)2z2 − 4z6

)
�6
))
,

cn =
−1

(2n − 1)9�9�6

(
2 sec h

(
�n
�

)((
a2 + b2 − 1

)
(1 − 2n)8�8�6 − 512Ech(x)

2K
(
1 +M1

)

PrScSr
(
−49152h(x)6�6 + 768h(x)4(1 − 2n)2�2�4

(
y2 + 8h(x)2�2

)
+ (1 − 2n)6�6

(
y2 + h(x)2�2

)(
y4 + h(x)4�4

)
− 32h(x)2(1 − 2n)4�4�2

(
4y4 + 3h(x)2y2�2

+ 4h(x)4�4 cos (n�)
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and

The volumetric flow rate F is calculated as:

The instantaneous flux is found by

The average value of volumetric rate of flow per single wave 
circulation is defined by

The pressure profile dp/dx is extracted through entertaining 
results (37) and (39) which is composed as:

The pressure rise Δp is found by numerical integration on 
Mathematica by making use of the integral below:

dn =
2
(
b2 − a2

)
cos[n�] cos h

(
�n
�

)

(2n − 1)�
.

(37)F =

h(x)(x)

∫
0

1

∫
0

u(x, y, z)dydz.

(38)Q =

h

∫
0

1

∫
0

(u + 1)dydz = F + h(x).

(39)

Q =

⃖⃗T∫
0

Qdt

⃖⃗T
= F + 1, ⃖⃗T being assumed the time period.

(40)

dp

dx
=

(
−(1 +M1)(2n − 1)4�2�3

n

(
1 + cosh

(
2�n�

−1
)
+ sinh

(
2�n
�

))(
−2h(x)3

3
− Q +

2h(x)

3�2

+

[
(1 +M1)(2n − 1)4�2�2�5

n

(
1 + (cosh+ sinh)

(
2�n
�

))]−1(
64h(x)K

(
−24h(x)2�2�2

n

(
−� +

(
� − �n

)
cosh

(
2�n
�

)
+
(
� − �n

)
sinh

(
2�n
�

))
+ �2(−2n + 1)2

(
�3
n

(
1 + cosh

(
2�n
�

)
+ sinh

(
2�n
�

))
+
(
3�3

(
h(x)2�2

n
− 2

)
− 3��2

n

)(
−1 + cosh

(
2�n
�

)

+ sinh

(
2�n
�

))
− 3�2�n

(
h(x)2�2

n
− 2

)(
1 + cosh

(
2�n
�

)
+ sinh

(
2�n
�

)))))

∕(8h(x)(1 − 2n)2(
(
� − �n

)
−
(
� + �n

)
cosh

(
2�n
�

)
+
(
� − �n

)
sinh

(
2�n
�

)))
.

(41)Δp =

1

∫
0

(
dp

dx

)
dx.

Graphical investigations

In this portion of the article, we explained the results 
manipulated graphically for velocity, pressure rise, pres-
sure gradient, temperature distribution, concentration pro-
file and stream functions to discuss the contribution of per-
tinent parameters. Tables are also presented to watch out 
the numerical variation in the profiles of velocity, tempera-
ture and concentration for Newtonian and non-Newtonian 
Eyring–Powell model. Tables 1, 2 and 3 correspond to the 
variations of velocity u, temperature � and concentration � , 
respectively. The velocity profile u is sketched in Figs. 2–4 
against the space coordinate z under the alteration of the 
parameters � , K and M1 for both two and three dimensions. 
Figures 5–7 are displayed to consider the behavior of pres-
sure rise curve Δp for � , M1 and � . The variational distribu-
tion of dp/dx is revealed in Figs. 8–11 to depict the influence 
of the quantities � , K, M1 and Q. The temperature distribu-
tion � is shown in Figs. 12–14 under the variation of � , Ec 
and M1 , respectively. Figures 15–17 imply the effects of � , 
Sc and M1 on mass concentration distribution. The stream 
functions are portrayed in Figs. 18–20 to examine the small 
rounded mass (called bolus) shape phenomenon.

Figure 2(a,b) shows the readings of velocity profile 
u under the parameter � . It is to be mentioned here that 

velocity is increasing when we enlarge the magnitude of 
� . The treatment of velocity field for the parameter K is 
examined from Fig. 3a, b. We can depict here that the 
velocity is diminishing with the monotonic changes in K 
by keeping all other quantities constant. From Fig. 4a, b, 
it is admitted that the profile is varying linearly with the 
small values of M1 , but as we give larger magnitude to 
the parameter M1 , the velocity curves are coming near to 
each other.

Figure 5 indicates the alteration of pressure rise curves Δp 
for the parameter � . It is convincing that the pressure rise is 
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decreasing with the increase in � in the retrograde pumping 
region (Δp > 0 > Q) , while inverse scenario is reported in 
the pumping portion (Δp,Q > 0) and augmented pumping 
region (Δp,Q < 0) . We can describe through Fig. 6 that pres-
sure rise Δp is varying linearly with the change of parameter 
M1 in the retrograde pumping as well as peristaltic pumping 
areas, while reverse behavior is measured in the copumping 
region. The impact of pressure rise profile against the flow 
rate Q for the parameter � is displayed in Fig. 7. One can 
observe that the attitude of pressure rise distribution for � is 
quite parallel to that of the parameter M1.

To see the pressure gradient distribution dp/dx against 
the parameter � , Fig. 8 is shown. Here, we can suggest that 
pressure gradient gives the inverse behavior when someone 

increases the contribution of � . It is also resulted that much 
pressure gradient is examined in the middle of the chan-
nel, while in the corner regions, the pressure gradient has a 
minimum width. It shows that extensive amount of pressure 
change is required in the central part to balance the flow 
relative to the walls of the channel. Figure 9 deliberates that 
the pressure gradient dp/dx chooses the linear relation with 
the parameter K and pressure gradient curves become much 
closer to each other imminent to the walls. The influence of 
parameter M1 on pressure gradient profile dp/dx is shown in 
Fig. 10. One observes that the pressure gradient is increas-
ing with the increase in M1 in the region x ∈ [0.3, 0.7] , while 
inverse investigation is made in the rest of the region. Fig-
ure 11 discloses the variation of pressure gradient dp/dx 
with the flow rate Q. It is measured that pressure gradient is 
lessening with the flow rate and it becomes nominal at the 
nook of the domain.

Figure 12 shows the variation of temperature distribution 
� for the parameter � . It is mentioned here that temperature 
profile is getting larger while increasing the values of � . It 
is also noted here that the temperature curves are getting 
nearby to each other. Figure 13 ensures that the temperature 
distribution � is linearly proportional to the Eckert num-
ber � is linearly proportional to the Eckert number Ec . One 
can observe the variation of temperature profile � against 
the parameter M1 from Fig. 14 and can be seen that as we 
increase the values of M1 , the temperature curves are reduc-
ing their height. Figure 15 shows the variation of concentra-
tion profile � with the effect of aspect ratio � . It is derived 
from this figure that the more the aspect ratio, the larger 
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the concentration and more variation is seen in the middle 
of the channel as compared to the corners. It is depicted 
from Figs. 16 and 17 that concentration curves are varying 
inversely to the change in Schmidt number Sc and the fluid 
parameter M1 but is also observed that concentration profile 
is depending on Schmidt number more than that of M1.

In Fig. 18, the streamlines are appeared to observe the 
flow phenomenon in rectangular channel for the parameter � . 
It is observed that the number of trapping bolus is enhanced 

with rising intensity of � , while dimensions of the bolus are 
varying under the exceeding values of � . To see the stream-
lines for the parameter K, Fig. 19 is presented. It is con-
cluded from this graph that trapping boluses are contracted 
in size but do not change their quantity while we give large 
values to K. From Fig. 20, one can estimate that trapping 
boluses remain the same in number and dimensions when 
M1 ≤ 1 but decrease in magnitude and volume when M1 > 1.
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Conclusions

In the above discussion, the authors have investigated the 
heat and mass transfer analysis for a viscoelastic fluid model 
considered in a three-dimensional rectangular peristaltic 
channel. The problem is handled by collaborative imple-
mentation of HPM and eigenfunction expansion method. 
The flow becomes steady by transforming the observations 
in a wave frame. The lubrication approach has been made 
to encounter the laminar flow through small cross sections. 
The obtained analytical and numerical data have been 
sketched against different relating coordinates to verify the 
physical and theoretical effects of many pertinent features 
of the analysis on velocity component, pressure gradient, 
pressure rise, thermal and mass profiles. The main points 
squeezed from the above observations have been labeled 
below: 

1. The velocity profile is becoming larger by aspect ratio 
of rectangular duct, while it shows opposite facts for 
Eyring–Powell fluid parameters.

2. It is followed that peristaltic pumping is enhanced by 
increasing effect of aspect ratio and fluid factors.

3. It is evaluated from the above graphical measures that 
pressure gradient is varying inversely with aspect ratio 
and directly with non-Newtonian fluid parameter.

4. The temperature profile and mass concentration give lin-
ear behavior with aspect ratio and nonlinear with non-
Newtonian features.

5. It is finalized from streamlines that trapping boluses are 
increasing their numbers with the variation of aspect 
ratio but remains constant in numbers with the fluid 
model.
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