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Abstract
In current investigation, tape is used to augment pressure drop and heat rate inside heat exchangers in existence of nanofluid. 
To do this, the three-dimensional model of the twisted tape is chosen for our investigation. This study dedicated on the heat 
transfer intensifications when significant parameters such as pitching ratio, height ratio and inlet velocity are changed. In 
order to simulate this model, computational fluid dynamic method with the simple algorithm is applied with k–ε (RNG) 
model for the modeling of the non-laminar flow through the tube due to the presence of the turbulator. Obtained results show 
a reasonable agreement with experimental data. Our results show that the efficiency of the  H2O-CuO nanofluid consider-
ably increases as the Reynolds number augmented in the tube. Moreover, the rate of exergy declines (more than 35%) as the 
height ratio increased from 0.3 to 0.5.

Keywords Nanofluid · Turbulator · Pressure drop · Heat transfer · Heat exchanger · Turbulent flow

Introduction

Heat exchangers were the key element in the different sci-
ences such as food production, power plant, petrochemical 
and textile industries. In addition, in the driers and cooling 
systems, heat exchangers are widely applied [1–3]. In the air 
conditioners, heat exchangers also used to transfer heat from 
the main chamber [4–6]. Since this device is highly popu-
lar and essential in the industries, engineers and researcher 
have tried to find the efficient model of the heat exchanger 
according to the applications and limitations [7–9]. Indeed, 
heat transfer is significant process in which the efficiency of 

this process could highly advance the performance of the 
overall systems in power plant and petrochemical industries 
[10–13].

There are various types of heat exchangers in the indus-
tries. The main mechanism of the heat exchanger approxi-
mately similar in all types while applied techniques for the 
specific purpose varies in different types of heat exchangers 
[6, 14–16]. In fact, the limitations of applications, operating 
conditions and efficiency are the main factors that highly sig-
nificant in the design of each category of the heat exchang-
ers [17–21]. Meanwhile, the type of fluid play a significant 
role in the type of heat exchangers [10, 21–27]. Since the 
performance of heat exchanger highly associated with the 
base fluid in the heat exchangers, various types of base fluid 
are examined to improve the efficiency of heat exchangers 
[28–30]. Indeed, the heat capacity, thermal conductivity and 
natural heat convection are the main characteristics of the 
base fluid that highly effective in the performance of the heat 
exchangers [29–32].

In the last decade, the use of the tiny particles (in size of 
nano) within the pure fluid for example water shows signifi-
cant results in the heat transfer efficiency [33–35]. In fact, 
the existence of Ferro particles such as Al2O3 and Fe2O3 
significantly changes the heat performance and characteris-
tics of the base fluid which also alters the performance of 
the heat exchangers [36]. This technique varies the thermal 
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feature of the base fluid and it is known as nanofluid [37, 38]. 
Due to its effective performance, high amount of research 
has applied this method for developing the heat transfer rate 
in the various applications [39]. Indeed, the research stud-
ies in this category is extraordinary since it could offer new 
performance in the current heat exchangers. Hence, numer-
ous computational packages and software are develop for 
this purpose. Since the flow is not complex, the commercial 
software offer valuable information in this topic. The review 
of these paper requires a significant data collection since 
the published papers are extraordinary growing. The readers 
could follow the review papers for the study of this type of 
heat exchangers.

Scholars and researchers have also tried to modify the 
heat exchanger by the thermal characteristics of the nano-
fluid. There are two popular technique for increasing and 
developing the thermal performance of heat exchangers: 
Active and passive systems. Sheikholeslami et  al. [40] 
applied innovative turbulator to augment the heat rate of 
nanoparticles in the heat exchangers and condensers. They 
considered entropy generation in their simulations. They 
also developed numerical approach for estimation of the 
heat transfer in the compound turbulator [41]. They used 
irreversibility analysis for their investigations. The effect of 
hydrothermal characteristics and second law on the thermal 
performance of the nanofluid inside the tube is also studied 
by Shafee et al. [42]. They also disclose the impact of inno-
vative turbulators on the exergy loss inside a pipe [43].

Twisted tape is recognized as an effective way for the 
increasing of the heat transfer in diverse models [44, 45]. 
Several researches [46–48] have been conducted to probe the 
influence of the method on the various types of heat exchang-
ers and/or condensers such as tubular heat exchangers. They 
applied both computational and analytical approaches for 
the simulations of the heat transmission in different models. 
They findings is significant and reveal new aspects of the 
heat transfer in the nanofluid. In these researches, inclusive 
parametric investigations are done [4, 11, 42] to conceal 
the chief operative terms in the nanofluid flow. Although 
considerable researches have been performed in this topic, 
the impact of nanofluid exergy drop in the turbulator was 
not studies yet. It is also significant to observe all aspects of 
magnetic field in different sections of the heat exchangers 
with a turbulator. Since the cost of the computational tech-
nique is less than experimental one, numerical approach is 
conventionally used for the calculation of each modification 
in the heat exchangers.

In this research, CFD technique was employed to examine 
the effect of the turbulator on the thermal performance of 
the nanofluid through the tube. Current article tries to visu-
alize and disclose the flow style and temperature spreading 
to reveal the main significant changes due to presence of 
the tabulator inside the tube. Our focus is mainly on the 

nanofluid exergy drop inside the turbulator. Besides, com-
plete parametric evaluations are prepared to determine the 
power of the primary factors on the thermal performance of 
the nanofluid.

Computational modeling

Governing equation

To simulate the nanofluid inside the tube with turbulator, the 
main governing equation of the system should be initially 
determined. In fact, the initial step for any simulations is to 
define the main terms in the governing equations. Then, the 
reasonable computational model is chosen according to the 
main assumptions and boundary conditions of the real geom-
etry of the problem. It is worthy to note that the incidence 
of the turbulator change the main regime of the flow inside 
the tube and turbulence condition should be considered in 
our simulations.

Following equations are the main governing equations 
that are used for the modeling and simulation of the flow in 
our problem.
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Since the main significant terms of the nanofluid is asso-
ciated to the hydrothermal characteristic of the nanoparticles 
within the main fluid, we modified heat conductivity, heat 
capacity and density of the fluid according to the nanofluid 
characteristics. Hence,

(

�Cp

)

nf
, �nf, knf and �n f are calculated 

as follows:
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Grid generation and Boundary conditions

In this step, the grid should be generated for the computa-
tional method. As shown in the Fig. 1, unstructured grid 
is produces due the presence of the turbulator. In previous 
studies, full details of the applied grid are presented.

After determining the main governing equation and 
production of grid, the applied boundary condition of the 
problem should be defined. Figure 1 illustrates the model 
with the main size. As shown in the figure, the turbulator 
is presented in the middle of the tube and the nanofluid is 
entered from the left side. Therefore, we applied following 
boundary conditions for our model:

(13)vi = 0, ui = 0, Ti = cte,wi = cte, I = (Re)
−1

8 0.16

(14)
�v

�z
=

�u

�z
=
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�z
= 0,

�T

�z
= 0

Fig. 1  Nanomaterial inside a 
tube with turbulator
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Non-dimensional heat transfer is known as Nusselt num-
ber (Nu), and f is pressure drop in the following equation:

.

Computational technique

In order to simulate the nanofluid inside the tube with tabu-
lator, ANSYS software is applied as robust software to simu-
late this problem. The simple algorithm is chosen as a reli-
able numerical scheme for the simulation of incompressible 
flow inside the tube. In addition, k-ε (RNG) type is selected 
for the calculation of turbulent viscosity since the flow with 
nanoparticles is turbulent in our investigation. In Ref. [42] 
summarizes the information of simulation set up.

Results and discussion

In order to assess the acquired results, validation is the first 
step to ensure the method and approaches. Figure 2 illus-
trates the heat transfer rate in terms of h(x) for different x/D. 
In this figure, the results of our simulations are associated 
with experimental results of Kim et al. [43]. Obtained results 
clearly confirm the precision of the obtained data and the 
numerical discrepancy is less than 12% in different models.

Figure 3a depicted the contour of temperature, veloc-
ity and Xd in the three sections of Z = 0.3, 0.45 and 0.6 for 
PR = 15, BR = 0.3, Re = 5000. In addition, the streamline 
of these cross sections also presented. The gained fall-
outs clearly show that the temperature decreases along the 

(15)Nu =
hDh

k
, f =

Δp

�v2
m

2

L

Dh

,Xd = T0Sgen,total

turbolator. The results of the streamline visibly confirm that 
the flow becomes turbulent as nanofluid moves along the tur-
bulator. Figure 3b illustrates contour of temperature, velocity 
and exergy (Xd) in PR = 15, BR = 0.3, Re = 20,000. In this 
figure, the velocity of the nanofluid significantly increases 
and this considerably enhances the turbulence in the model. 
The results of exergy change also approve the high heat 
transfer in the vicinity of the tube wall. In high Reynolds 
number, the variation of the exergy increases along the tube. 
As shown in the figure, the high exergy region is limited in 
the entrance of the tube and the exergy rate augments in the 
vicinity of the tube wall at z = 0.6.

To recognize the main effect of turbulator, the effect 
of height ratio on the flow and temperature distribution 
is demonstrated in the Fig. 4a. In this model the size of 
the height ratio is increased from 0.3 to 0.5. The initial 
effect of this change is visible in the temperature penetra-
tion inside the model. Meanwhile, the intensity of the flow 
circulation highly increases along the turbulator. Figure 4b 
illustrates the influence of the inlet velocity in the flow 
pattern and temperature distribution of the model when 
Reynolds number is 20,000. The results of the exergy (Xd) 
is significant in the high inlet velocity. As depicted in the 
figure, the variation of the exergy in the tip of the turbula-
tor blade is higher than other sections. In addition, the high 
exergy region also occurs in the vicinity of the tube which 
is close to the blade of the turbulator.

Figure 5 demonstrates the impact of pitch ratio reduc-
tion on the flow structure and temperature distributions 
in different sections along the turbulator. As shown in 
the Fig. 5a, the streamline becomes more uniform as the 
pitch ratio declines to 5. In the high Reynolds number 
(Re = 20,000), the streamline change decreases along the 
tube.

Fig. 2  Verification with older 
paper [43]
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Fig. 4  Contours of T, Xd, and velocity for b Re = 20,000, a Re = 5000 when BR = 0.5, PR = 15
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299.201
299.409
299.617
299.826

300.242
300.034

300.451
300.659
300.867

Temperature

[K]
0.000
0.078
0.156
0.234
0.313
0.391
0.469
0.547
0.625
0.703
0.782
0.860
0.938
1.016

Velocity

[m s–1]

0.520
593.189
1185.859
1778.529
2371.198
2963.867
3556.537
4149.207
4741.876
5334.545
5927.215
6519.884
7112.554
7705.224

Xd

298.207
298.425
298.644
298.862
299.081
299.299
299.518
299.736
299.955

300.392
300.173

300.610
300.829
301.047

Temperature

[K]
0.000
0.064
0.127
0.191
0.255
0.318
0.382
0.446
0.509
0.573
0.637
0.700
0.764
0.828

Velocity

[m s–1]

0.370
632.816
1265.261
1897.707
2530.152
3162.597
3795.043
4427.488
5059.934
5692.379
6324.824
6957.270
7589.715
8222.161

Xd

298.284
298.466
298.648
298.831
299.013
299.195
299.377
299.559
299.742

300.106
299.924

300.288
300.470
300.653

Temperature

[K]
0.000
0.062
0.123
0.185
0.246
0.308
0.369
0.431
0.492
0.554
0.615
0.677
0.738
0.800

Velocity

[m s–1]

0.437
421.015
841.593
1262.171
1682.749
2103.326
2523.904
2944.482
3365.060
3785.638
4206.216
4626.794
5047.372
5467.950

Xd

Fig. 5  Contours of T, Xd, and velocity for a Re = 5000 b Re = 20,000 when PR = 5, BR = 0.3



208 T. D. Manh et al.

1 3

Conclusion

In this study, the effects of turbulator the thermal effi-
ciency of heat exchanger with nanofluid is simulated 
Computational fluid Dynamic (CFD). The key aim of this 
article is to examine the impact of significant factors such 
as pitch ratio (= 15, 5) , height ratio and inlet velocity on 
the hydrothermal characteristics of  H2O-CuO nanofluid in 
our model. The contours of temperature, velocity as well 
as streamline and exergy (Xd) are compared in the several 
distinctive operating conditions. Our findings evidently 
display that the turbulator strengthens the heat efficincy 
and this intensifies by the increasing of the inlet velocity.
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