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Abstract
Nonlinear convective flow and heat transfer characteristics are analyzed between stationary nonporous and porous rotating 
disks utilizing graphene nanoparticles in a water and ethylene glycol base fluid. Heat transfer characteristics are analyzed 
via incorporating thermal radiation and heat absorption/generation. The governing fluid equations are computed numeri-
cally using Runge–Kutta based shooting technique after employing appropriate transformations. Characteristics of sundry 
variables are elaborated graphically as well as through the construction of Table for water base and ethylene glycol based 
graphene nanoparticles. It is observed that improvements in nonlinear convection variable owing to temperature and heat 
generation variable improve wall friction in radial direction. Improvement in Hartman number decreased wall friction in radial 
and tangential directions along with Nusselt number in graphene/ethylene glycol and graphene/water nanofluid. Ethylene 
glycol based graphene nanofluid takes less time for execution as compared to water based nanofluid.

Keywords Nanofluid · Nonlinear thermal convection · Heat absorption · Thermal radiation · Nonporous disk 
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Nomenclature
u, v,w  Velocity components of fluid phase in r,�, z 

directions 
(
ms−1

)
T   Temperature of the nanofluid (K)
T1  Temperature at fixed impermeable disk (K)
T2  Temperature at rotating porous disk (K)
�  Kinematic viscosity 

(
m2 s−1

)
g  Acceleration due to gravity 

(
ms−2

)
�nf  Density of the nanofluid 

(
kgm−3

)
�f  Density of the base fluid 

(
kgm−3

)

�s  Density of the nanoparticles 
(
kgm−3

)
�f   Dynamic viscosity of the base fluid 

(
kg ms−1

)
�nf  Dynamic viscosity of the nanofluid 

(
kg ms−1

)
cpf  Specific heat capacity at constant pressure of the 

fluid ( J kg−1K−1)
knf  Thermal conductivity ( Wm−1K−1)(
�cp

)
nf

  Effective heat capacity 
(
kgm−3K−1

)
(�cp)p  Effective heat capacity of the particle medium 

( kgm−3K−1)
�nf  Diffusion coefficient (m2s−1)

�nf  Kinematic viscosity ( m2s−1)
�∗  Stefan–Boltzmann constant (W mK−4)

�  Electrical conductivity 
(
Sm−1

)
k∗  Mean absorption coefficient
M  Hartman Number
�  Nano particle volume fraction
Pr  Prandtl number
R  Radiation parameter
Q  Heat generation/absorption coefficient
�  Similarity variable
Cf  Skin friction coefficient
Nux  Local Nusselt number
Re  Local Reynolds number
l  Distance between two disks
Ω  Angular speed of the rotating disk
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�  Measure of the angular speed or momentum of 
the of the rotating porous disk

W   Suction velocity at which fluid is withdrawn 
from the rotating porous disk (Injection if W  is 
negative.)

�1  Thermal buoyancy variable
�t  Nonlinear convection variable
�  Heat generation variable

Introduction

In recent years, the problem of fluid flow flanked by the 
rotating surfaces has drawn substantial attention of the 
researchers owing to its numerous applications in engineer-
ing and industrial fields; for example, in rotating machin-
ery, thermal-power system, aeronautical systems, medical 
equipment, gas turbine rotors, storage devices in comput-
ers, air cleaning machines, crystal growth process and food-
processing technology. Wu et al. [1] took up experimental 
investigation of the flow over grooved rotating disk. Rizwan 
et al. [2] simulated numerically magnetite nanoparticles 
considering water as base fluid between two parallel disks. 
Turkyilmazoglu [3–5] investigated fluid flow over rotating 
moving disk. Rashidi et al. [6, 7] reported MHD nanofluid 
flow considering porous rotating disk. Qayyum et al. [8] 
took up comparative scrutiny of fluid flow over a rotating 
disk by considering five nanoparticles. Pourmehran et al. [9] 
reported rheological characteristic of metal-based nanofluid 
flow between rotating disks. Attia [10] studied steady flow 
considering porous medium on a rotating disk. Mellor et al. 
[11] investigated flow amid rotating and stationary disks. 
Kavenuke et al. [12] modeled flow amid porous rotating disk 
and a fixed impermeable disk. Awati et al. [13] studied the 
flow amid porous rotating and fixed impermeable disk.

Constant advancement in the electronic equipment fre-
quently faces the challenges pertaining to the thermal man-
agement from declining accessible to surface area for heat 
exclusion or from the improved phase of heat generation. 
These challenges could be conquered with modeling the 
cooling equipment with optimal geometry or by increasing 
heat transfer characteristics. Choi [14] suggested that nano-
fluid in this context will sort out all these issues. Sarafraz 
et al. [15] studied convective boiling heat transfer of CuO-
water/ethylene glycol nanofluid. Salari et al. [16] studied 
thermal behavior of aqueous iron oxide nanofluid on a flat 
disk. Kamalgharibi et al. [17] took up experimental study on 
the stability of CuO nanoparticles dispersed in different base 
fluids. Sajid et al. [18] studied thermal conductivity of hybrid 
nanofluid. Imtiaz et al. [19] demonstrated convective flow 
between rotating stretchable disks considering carbon nano-
tubes and thermal radiation effects. Salari et al. [20] stud-
ied boiling thermal performance of  TiO2 aqueous nanofluid 

on a disk copper block. Hayat et al. [21] reported induced 
magnetic field and melting heat transfer effects along with 
variable thickness on nanofluid flow along a rotating disk. 
Bachok et al. [22] portrayed flow and heat transport of nano-
fluid on a porous revolving disk. Ellahi et al. [23] carried 
out simulation of spherically shaped hydrogen bubbles with 
stenosis through a tube nozzle. Ellahi et al. [24] probed the 
impact of hybrid nanofluid flow with the slip effects. Naz-
ari et al. [25] investigated mixed convective non-Newtonian 
nanofluid in a lid-driven square cavity. Maleki et al. [26, 27] 
investigated flow and heat transfer in nanofluid considering 
various parameters. Giwa et al. [28] addressed heat, flow 
and mass transfer considering hybrid nanofluid. Peng [29] 
investigated energy performance along a U-shaped evacu-
ated solar tube via considering oxide nanoparticles. Ahmadi 
[30] took up machine learning approach to study dynamic 
viscosity of nanofluid. Yousefzadeh et al. [31] studied con-
vection in nanofluid in a cavity. Arasteh et al. [32] explored 
heat and fluid flow of nanofluid in a double-layered sinu-
soidal heat sink. Sarafraz et al. [33] investigated on thermal 
analysis and thermo-hydraulic characteristics of zirconia-
water nanofluid. Maleki et al. [34] addressed flow and heat 
transfer of pseudo-plastic nanofluid with viscous dissipation 
over a moving permeable plate. Thus, researchers [35–44] 
have observed anomalously that diffusion of nanometer-
sized solid particles in the base fluid shows high effective 
thermal conductivity, longer suspension time, larger surface 
area, lower clogging and erosion, significant energy saving 
and lower operating cost. Thermal conductivity of nano-
fluid is enhanced with suspension of metallic or non-metallic 
particles. Hence, carbon materials such as graphite nano-
particles, carbon nanotubes, exfoliated graphite, diamond 
nanoparticles, nanofibers, carbon black and graphene have 
gained more importance due to low density and large intrin-
sic thermal conductivity compared to metal/metal oxides.

Recent studies reveal that graphene, a perfect two-dimen-
sional lattice of carbon, has a very high thermal conductivity 
with many unique chemical, physical and mechanical prop-
erties. Hence, graphene material has emerged as a fascinat-
ing material of the carbon in the field of technology and sci-
ence. Graphene can be offered in granular form, and hence 
it could be dispersed in organic solvents, water and polymers 
which are advantageous in super conductors, lithium ion 
batteries, gas censors, fabrication of transparent conductive 
films, solar cells, advanced electronics, etc. Keeping this into 
view, the authors [45–49] studied flow, heat and mass trans-
fer with the inclusion of graphene nanoparticles on various 
flow configurations.

Constantly engineers and researchers are looking forward 
to scrutinize the fluids subjected to the thermal radiation 
as it has major influence in high-temperature processes, for 
instance, in nuclear power plants, gas turbines, satellites, 
power generation, combustion and polymer processing 
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industry. Mamatha et al. [50–53] portrayed non-Newtonian 
flow and heat transform over different geometry considering 
deferment of dust particles and nanoparticles. Sharma et al. 
[54] investigated buoyancy effects on unsteady convection 
radiating fluid over a vertically moving porous plate. San-
thosh et al. [55] studied radiated convective Carreau nano-
fluid flow with heat generation. Nayak et al. [56] investigated 
viscous dissipation and partial slip influence on the radiative 
nano-Tangent hyperbolic fluid over permeable Riga plate. 
Eid and Makinde [57] studied effects of solar radiation on 
a MHD nanofluid flow over a porous medium considering 
chemically reactive species.

The aim of the current theoretical model is to investi-
gate the nonlinear convective flow between the stationary 
nonporous and porous rotating disks utilizing graphene 

disk, the distance l is very small. Transverse magnetic field 
with strength B0 acts all along the z direction. The process 
of heat transfer occurs due to heat absorption/generation 
and thermal radiation. Path of fluid flow is indicated with 
arrows (see Fig. 1) heading towards the porous disk which 
is rotating with constant angular speed Ω about the z axis 
with the rotation speed Ω� , and � is a regulator which con-
trols rotation of the disk. When � = 0 no rotation takes place 
and 𝜀 > 0 rotation exists and (0 ≤ � ≤ 1) . Here, the suction 
velocity W  is assumed to be constant.

Considering the above said assumptions and following 
(Hayat et al. [17, 21] and Kavenuke et al. [12], the flow 
model is governed by the subsequent equations.

Boundary conditions (following Kavenuke et al. [12]) are 
given by

• With reference to fixed impermeable disk atz = 0

• With reference to porous disk atz = l

(1)
(
1

r

)
�

�r
(ru) +

�w

�z
= 0

(2)u
�u

�r
+ w

�u

�z
−

�
v2

r

�
+

1

�nf

�p

�r
=

⎛
⎜⎜⎜⎜⎝

�nf

�
�2u

�r2
+

�

�r
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+

�2u
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−
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+
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�
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T − T2

�
+
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��1

�
nf
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�
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+
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−
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0
v
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+
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1
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=
(
�nf
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r

)
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+

�2w

�r2
+

�2w
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u
�T

�r
+ w

�T

�z
= �nf

[(
1

r

)
�T

�r
+

�2T

�r2
+

�2T

�z2

]

+
Q(

�cp
)
nf

(T − T2) +
16

3

�∗

k∗

T3
2(

�cp
)
nf[

�2T

�r2
+

1

r

�T

�r
+

�2T

�z2

]
.

(6)

u(r, 0) = 0

v(r, 0) = 0

w(r, 0) = 0

T(r, 0) = T1

z = lz = 0

r

v

Ωε

Fig. 1  Geometry of flow model

nanoparticles in a water and ethylene glycol base fluid. Heat 
transfer distinctiveness is analyzed considering thermal radi-
ation and heat absorption/generation. The governing fluid 
equations are computed using Runge–Kutta based shooting 
method. Characteristics of sundry variables are elaborated 
graphically and through the construction of Table.

Mathematical formulation

Steady nonlinear nanofluid flow (water and graphene, ethyl-
ene glycol and graphene) between the stationary and porous 
disks is considered in this study. Nanofluid motion is gener-
ated by the rotary motion of porous disk as well as suction/
injection of nanofluid. Rotating and stationary disks are 
separated by the distance l . Compared to the radii of the 



1976 S. M. Upadhya et al.

1 3

Here, (u, v,w) specify the velocity components along the 
(r,�, z) directions, T  the temperature of the nanofluid, T1 the 
temperature at fixed impermeable disk, T2 the temperature at 
rotating porous disk, �nf represents the nanofluid kinematic 
viscosity, p the pressure and �nf the density of the nanofluid, 
�nf and 

(
�cp

)
nf

 signify the thermal diffusivity and effective 
heat capacity of nanofluid, Q the heat (generation, absorp-
tion), and Stefan–Boltzmann constant and coefficient of 
mean absorption are represented as �∗ and k∗.

Following Bachok et al. [22]

Here, � represents the solid volume fraction of the nano-
particles, 

(
�nf,�f

)
 indicate the nanofluid effective and base 

fluid dynamic viscosity, 
(
�nf, �f, �s

)
 signify the density of 

nanofluid, base fluid and density of the solid nanoparticles 
and 

(
knf, kf

)
 the thermal conductivity of nanofluid and base 

fluid, and (��)nf is volumetric thermal expansion coefficient.

(7)

u(r, l) = 0

v(r, l) = rΩ

w(r, l) = �W

T(r, l) = T2

.

(8)
�nf = ��s + (1 − �)�f, �nf = �f(1 − �)−2.5,

(
�cp

)
nf
= �

(
�cp

)
s
+ (1 − �)

(
�cp

)
f
,

knf

kf
=

−�(n−1)(kf−ks)+ks+(n−1)kf
ks+(n−1)kf+�(kf−ks)

, (��)nf = (1 − �)(��)f + �(��)s,

}
.

We considered the following transformations following 
Awati et al. [13] and Mellor et al. [11]:

Velocity components in terms of stream function are con-
sidered as

Similarity variable and physical stream function are

Thus, from (9) and (10) radial and axial velocity com-
ponents are

Tangential velocity and pressure variable are

Non-dimensional temperature is given by

Applying the transformation from Eqs. (11), (12) and (13) 
in Eqs. (1)–(7) and (8), one obtains

(9)u =
1

r

��

�z
, w = −

1

r

��

�r
.

(10)� =
z

l
=

Ωz

W
and �(r, n) = r2f (�)W.

(11)
u

r
= Ω

(
f �(�)

)
,

w

W
= −2(f (�)).

(12)v = rΩg(�), p =
1

2
�r2Ω2A + �W2P(�).

(13)�(�) =
T − T2

T1 − T2
.

(14)
⎡⎢⎢⎢⎣
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�
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⎤⎥⎥⎥⎦

d3f

d�3
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(16)

⎡⎢⎢⎢⎣

�
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�⎛⎜⎜⎜⎝
1

(1 − �)2.5
�
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�s

�f

�
⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

d2f

d�2
=

�
−P�(�) − 4f (�)

df

d�

�

(17)

⎡
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knf

kf

�
(1 − �) +

(�cp)s
(�cp)f

�

� +
4

3
R

⎤
⎥⎥⎥⎥⎦

d2�

d�2
= (Pr)(Re)

⎡
⎢⎢⎢⎢⎣

�
2f (�)

d�

d�

�
−

��(�)�
(1 − �) +

(�cp)s
(�cp)f

�

�
⎤
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f (0) = 0, �(0) = 1, g(0) = 0, f �(0) = 0

Method of Numerical solution

The nonlinear differential conditions (14)–(17) subject to 
conditions (18) originate from the third solicitation in f and 
the second solicitation in g and θ. These conditions can be 

seen numerically utilizing a fourth solicitation Runge–Kutta 
technique that consolidates a terminating framework and 
Newton–Raphson innovation. We portray here (� = �)

We also define the following:

Substituting conditions (20) and (21) by conditions (18) 
transformed to an arrangement of nine synchronous condi-
tions of the principal request as follows:

In a similar way we have converted other two equations 
with higher derivatives ( F′

5
,F′

7
 ) into initial value problem 

as mentioned above and the boundary conditions are given 
as follows:

(20)
f = Y1,

�f

��
= Y2,

�2f

��2
= Y3, g = Y4,

�g

��
= Y5, � = Y6,

��

��
= Y7

(1 − �)2.5
(
(1 − �) + �

�s

�f

)
= A1,

(
(1 − �) +

(
�(��)s

(��)f

))
= B1,

(
(1 − �) +

(
�cp

)
s(

�cp
)
f

�

)
= C1

.

(21)

f = F1,
�f

��
= F2,

�2f

��2
= F3, g = F4,

�g

��
= F5,

��

��
= F7.

(22)F1 = Y2,

(23)F2 = Y3,

(24)
F3 =

([(
F2

)2
− 2F1F3 − F2

4
− A

]
+ (M)F2 − F6�1

[
B1 + �tF5

])
.

Here, Re = W2

Ω�f
 signifies Reynolds number,M =

�B2
0

Ω�f
 Hart-

man number, �1 =
g�f(T1−T2)

rΩ2
 thermal buoyancy (or mixed 

convection) variable, A is the arbitrary constant,�t =
�1f(T1−T2)

�f
 

nonlinear convection variable owing to temperature, 
� =

Q

Ω(�cp)f
 heat generation variable, Pr = (�cp)f

kf
 Prandtl num-

ber, and R =
16�∗T3

2

3k∗kf
 is the radiation parameter.

Expression of coefficient of skin friction (radial and tan-
gential direction) and Nusselt number: Following Imtiaz 
et al. [19]

(18)�(1) = 0, f �(1) = 0, g(1) = 1, f (1) = −
(
�

2

)
.

Cfr

(
Re

) 1

2 =
1

(1 − �)2.5

d2f (0)

d�2
, Cf�

(
Re

) 1

2 =
1

(1 − �)2.5

dg(0)

d�
,

(19)Nu
(
Re

)− 1

2 = −
knf

kf

(
1 +

4

3
R
)d�(0)

d�
.

Here, �∞ is selected as �∞ = 1 . The unclear introductory 
conditions are taken as Y3(0) = s, Y5(0) = t and Y7(0) = p . 
We utilize the Newton–Raphson technique to discover s, t 
and q with the goal that the arrangements of the conditions 
(25) fulfill as far as possible conditions (18). Right now, start 
with the underlying evaluations (p(0), t(0), s(0)) through 

(25)F1(0) = 0, F2(0) = 0, Y4(0) = 0, Y6(0) = 1, Y2(1) = 1, Y4(1) = 1, Y2(1) = 1……
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the trigger strategy. The Newton–Raphson calculation is 
stretched out to incorporate the halfway subordinates of the 
components of every factor. This will create the subordinates 
of F(F1, F2, . . ., F5) on p, t and s as follows:

Thus, we need to find Fp = 0, Ft = 0, Fs = 0, simultane-
ously. Following Cebeci and Keller, these yield a system of 
algebraic equations which satisfy the boundary conditions 
when ξ = 0.

(26)

Fp(F6, F7, . . . F10), Ft(F11, F12, . . . F15),

Fs(F16, F17, . . . F20).

Table 1  Thermophysical features of base fluid (EG), water and nano-
particles (graphene) (Mamatha et al. [53])

Thermophysical 
properties

Water Ethylene glycol Graphene

�∕Kg m−3 997.1 1115 2250

k∕Wm−1K−1 0.613 0.253 2500

cp∕JKg
−1K−1 4179 2430 2100

Table 2  Coefficient of skin 
friction 

(
cf∕Re

1

2 , cg∕Re
1

2

)
 and 

Nusselt number 
(
−Nu∕Re−

1

2

)
 

for Graphene + H2O nanofluid

Re R M �t � cf∕Re
1

2 cg∕Re
1

2

(
−Nu∕Re−

1

2

)
Elapsed time (s)

0.1 0.046255 0.992487 2.887949 0.713823
0.2 0.083889 0.934527 4.381084
0.3 0.114505 0.878343 6.166715

0.5 0.024728 1.021418 2.290404 0.668670
1 0.024401 1.021421 3.535253
1.5 0.024075 1.021424 4.995193

1 0.024657 1.017207 2.290391 0.627631
5 0.024506 0.984380 2.290288
10 0.023461 0.945386 2.290168

0.1 0.024085 1.021421 2.290360 0.633488
0.2 0.024728 1.021418 2.290404
0.3 0.025372 1.021415 2.290448

0 0.024689 1.021418 2.323660 0.639627
0.5 0.024892 1.021416 2.154818
1 0.025108 1.021414 1.979244

Table 3  Coefficient of skin 
friction 

(
cf∕Re

1

2 , cg∕Re
1

2

)
 and 

Nusselt number 
(
−Nu∕Re−

1

2

)
 

for Graphene + EG nanofluid

Re R M �t � cf∕Re
1

2 cg∕Re
1

2

(
−Nu∕Re−

1

2

)
Elapsed time (s)

0.1 0.048561 0.992807 7.844818 0.658709
0.2 0.077066 0.935420 15.820617
0.3 0.101257 0.879769 24.045523

0.5 0.029529 1.021543 4.363944 0.499480
1 0.027491 1.021560 7.995235
1.5 0.025768 1.021573 12.894400

1 0.029454 1.017352 4.363862 0.477742
5 0.028873 0.984668 4.363231
10 0.028191 0.945836 4.362492

0.1 0.028673 1.021546 4.363627 0.459286
0.2 0.029529 1.021543 4.363944
0.3 0.030385 1.021540 4.364212

0 0.029354 1.021545 4.477382 0.478427
0.5 0.030304 1.021537 3.879228
1 0.031480 1.021527 3.187584
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Revamping the framework in condition (27) yields a grid 
condition AX = B: 

This lattice condition can be found by Cramer’s standard. 
The following estimation of p, t and can be computed by 
using the following formula:

(27)

f �
ζ
p + f �

t
t + f �

s
s + f � = 0, gζp + gtt + g�

s
s + � = 0,

�pp + �tt + ��
s
s + � = 0.

(28)
⎡⎢⎢⎣

f �
ζ
f �
t
f �
s

gζ gt gs
�ζ �t �s

⎤⎥⎥⎦

⎡⎢⎢⎣

p

t

s

⎤⎥⎥⎦
=

⎡⎢⎢⎣

−f �

−g

−�

⎤⎥⎥⎦
. When the estimations of p, t and s are known, we uti-

lized the Runge–Kutta strategy to tackle the main request of 
common differential conditions F1, F2,...,F20. For arrange-
ment, the most extreme supreme relative difference between 
two methods is employed inside a pre-doled out resilience 
𝜀 < 10−6 . In the process, the distinction meets the grouping 
criteria, the arrangement is projected to have amalgamated 
and the iterative procedure is ended.

(29)

p(new) = p(old) +
det

(
AB(I, J)

)
det(A)

,

t(new) = t(old) +
det

(
AB(I, J)

)
det(A)

,

s(new) = s(old) +
det

(
AB(I, J)

)
det(A)

.

Table 4  Comparison of d2f (0)

d�2
 for various values of Ω when 

M = �1 = � = Υ1 = Υ2 = � = 0, and Re = 1

Ω Stewartson [58] Imtiaz et al. [19] Present results

0.5 0.06663 0.06663 0.0667
0 0.09997 0.09997 0.09998
− 0.8 0.08394 0.08384 0.00848
− 1 0.06666 0.06666 0.06666

Table 5  Comparison of 
(
−

dg(0)

d�

)
 for various values of Ω when 

M = �1 = � = Υ1 = Υ2 = � = 0, and Re = 1

Ω Stewartson [58] Imtiaz et al. [19] Present results

0.5 0.50261 0.50261 0.5026
0 1.00428 1.00428 1.0043
− 0.8 1.80259 1.80259 1.80259
− 1 2.00095 2.00095 2.00096
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Fig. 2  Behavior of nanofluid axial velocity for various Re
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Fig. 3  Behavior of nanofluid radial velocity for various Re
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Validation of the numerical procedure

To check the numerical program, the outcomes were con-
trasted with those recently announced in the writing. We 
thought about the particular qualities of the stream param-
eters with the investigation consequences of existing writing. 
These examinations are contrasted in Tables 4 and 5. It is 
discovered that the examination is satisfactory and reliable 
with the current outcomes.

Results and discussion

The influence of relevant variables Re = 0.051, � = 0.02,

R = 0.5, � = 0.1, A = 0.4, M = 0.5, �t = 0.2, �1 = 0.2 
on velocities (axial f (�) , tangential g(�) and radial f �(�) ), 

temperature �(�) , skin friction 
(
cf(Re)

1

2 , cg(Re)
1

2

)
 and Nus-

selt number 
(
−Nu(Re)

−
1

2

)
 for Graphene + H2O and Gra-

phene + EG nanofluid are discussed in this section. Thermo-
physical features of water, ethylene glycol and graphene are 
illustrated in Table 1. The coefficient of skin friction (radial 
and tangential direction), and Nusselt number for Gra-
phene + H2O and Graphene + EG nanofluid are portrayed in 
Tables 2 and 3. In Tables 4 and 5, comparison of obtained 
results with the published results of Stewartson [31] and 
Imtiaz et al. [19] for various values of Ω is tabulated and 
excellent agreement is observed with the published results.

Figures 2–5 expose the influence of Reynolds number 
(Re) on axial f (�) , radial f �(�) tangential g(�) velocity and 
temperature �(�) . It is observed that intensification in Re 
ensures decrement in f (�),g(�) and �(�), whereas f �(�) 

(
)
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Fig. 5  Behavior of nanofluid temperature for various Re
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Fig. 6  Behavior of nanofluid axial velocity for various R
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Fig. 9  Behavior of nanofluid tangential velocity for various M
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Fig. 10  Behavior of nanofluid radial velocity for various M
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Fig. 11  Behavior of nanofluid axial velocity for various �t
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Fig. 12  Behavior of nanofluid radial velocity for various �t
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improves. Physically, higher Re ensures decay in the viscous 
nature of the fluid and thus less resistance is required for 
the fluid motion. Graphene + water based nanofluid shows 
higher boundary layer compared with Graphene + Ethylene 
glycol-based nanofluid. This nature may be because viscos-
ity of water is less compared with ethylene glycol. Figures 6 
and 7 portray the authority of radiation parameter (R) on 
axial f (�) velocity and temperature �(�) profile. It is prag-
matic that increment in R improves the f (�) velocity and 
reduces the �(�) profile in both Graphene + Ethylene glycol 
and Graphene + water nanofluid. It may be due to rotation 
of the disk. It is also evident that Graphene + water based 
nanofluid shows higher temperature distribution compared 
to Graphene + Ethylene glycol based nanofluid. Figures 8–10 
illustrate the influence of larger values of Hartman num-
ber (M) on f (�), f �(�), g(� ) velocity profiles. Existence of 
the Lorentz force decreases tangential and radial velocity 
distributions. Because of the rotation, larger value of M 
has no greater influence on axial velocity and thus velocity 
increases in this direction. Magnitude of velocity distribu-
tion is higher for Graphene + water based nanofluid in case 
of axial direction, whereas in tangential and radial direc-
tion magnitude of velocity distribution is higher for Gra-
phene + Ethylene glycol based nanofluid. Figures 11 and 
12 depict the influence of increasing values of nonlinear 
convection variable due to temperature 

(
�t
)
 on f (�) and 

f �(�) profiles. Improvement in �t increases f �(�) profiles 
and decreases f (�) profiles. In f (�) case Graphene + water 
profiles shows higher distribution in velocity, whereas in 
f �(�) case Graphene + Ethylene glycol mixture shows higher 
distribution in velocity. In Figs. 13–15, the results due to the 
improvement in heat generation variable (�) can be observed. 
Improvement in � lessens f (�) velocity profiles and improves 
f �(�) and �(�) profiles. Graphene + water nanofluid shows 

higher velocity distribution in case of f (�) similar to tem-
perature distribution �(�) profiles. However, Graphene + Eth-
ylene glycol based nanofluid depicts higher distribution in 
velocity in case of f �(�).             

The coefficient of skin friction (radial and tangential 
direction, 

(
cf(Re)

1

2 , cg(Re)
1

2

)
 ) and Nusselt number (

−Nu(Re)
−

1

2

)
 for Graphene + H2O and Graphene + EG nano-

fluid are portrayed in Tables 2 and 3. It is observed that 
improvement in Reynolds number (Re) improves cf(Re)

1

2 and 
the −Nu(Re)

(−1)

2  but decreases cg(Re)
1

2 for both nanofluid Gra-
phene + water and Graphene + Ethylene glycol. Increasing 
radiation parameter (R) diminishes cf(Re)

1

2 and elevates 
cg(Re)

1

2 and −Nu(Re)
(−1)

2  in both the nanofluid Gra-
phene + water and Graphene + Ethylene glycol. Improvement 
in Hartman number (M) decreases cf(Re)

1

2 and cg(Re)
1

2 and 
the −Nu(Re)

(−1)

2  in case of Graphene + water and Gra-
phene + Ethylene glycol nanofluid. Improvement in nonlin-
ear convection variable due to temperature 

(
�t
)
 and heat 

generation variable (�) elevates cf(Re)
1

2 and −Nu(Re)
(−1)

2  but 
decreases cg(Re)

1

2 in both the nanofluid Graphene + water 
and Graphene + Ethylene glycol. Ethylene glycol-based gra-
phene nanofluid takes less time for execution as compared 
to water based nanofluid.

Conclusions

Flow and heat transfer of graphene nanoparticles in water- 
and ethylene glycol based nonlinear convective flow between 
porous rotating disk and fixed impermeable are studied. The 
main results are as follows:

• Intensification in Re ensures decrement in f (�), g(�), �(�) 
profiles, whereas f �(�) profile improves.

• Increment in R reduces the �(�) profile in graphene and 
water mixture and graphene and ethylene glycol mixture.

• Existence of Lorentz force decreases tangential and radial 
velocity distribution.

• Ethylene glycol based graphene nanoparticles take less 
time for execution compared to water base.

• Improvement in �t increases f �(�) profiles and decreases 
f (�) profiles.

• Improvement in � lessens f (�) velocity profiles and 
improves f �(�) and �(�) profiles.

• Improvement in M  decreases skin fr ict ion (
cf(Re)

1

2 , cg(Re)
1

2

)
 along with −Nu(Re)

(−1)

2  in both the 
nanofluid graphene and ethylene glycol and graphene and 
water.

• Improvement in �t and � elevates cf(Re)
1

2 and Nusselt 
number but decreases cg(Re)

1

2 in both the nanofluid gra-
phene and water and graphene and ethylene glycol.
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