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Abstract
This study shows multiple solutions, heat transfer characteristics, and stability analysis of the magnetohydrodynamic (MHD) 
flow of hybrid nanofluid caused by the nonlinear shrinking/stretching surface. To investigate the effects of high temperature 
on the porous surface, the energy dissipation function and porous term are considered in the momentum and energy equa-
tions. We used Tiwari and Das’s model for nanofluid in which water is considered as a base fluid. A new kind of fluid is made 
in which two kinds of nanoparticles, namely copper (Cu) and iron oxide ( Fe3O4 ), are considered. The system of ordinary 
differential equations (ODEs) is obtained by applying similarity transformations on the modeled of partial differential equa-
tions. Both shooting and Runge–Kutta fourth-order methods are employed to solve the resultant ODEs. The equations for 
stability analysis have been derived and then solved by using a three-stage Lobatto IIIa formula for the smallest eigenvalue. 
It is noticed that the obtained value is in a good agreement with the previously published literature, hence validating the 
results of the shooting method. Furthermore, parametric studies also have been conducted and found that dual solutions 
only exist on the shrinking surface. In addition, it is also observed from the profile that dual solutions exist only for the 
case of suction where bc1 = −3.0582 , bc2 = −3.0788, and bc3 = −3.1249 are the critical values for the respective values of 
�Fe3O4

= 0.5%, 5%, 1% . Moreover, the velocity of hybrid nanofluid decreases (increases) in the first (second) solution when 
both magnetic and permeability coefficient parameters are increased.
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List of symbols
T0	� A constant
T∞	� Ambient temperature
′	� Differentiation with respect to

Ec	� Eckert number
�hnf	� Effective density of hybrid nanofluid
�nf	� Effective density of nanofluid
�hnf	� Effective dynamic viscosity of hybrid nanofluid
�nf	� Effective dynamic viscosity of nanofluid
�∗	� Electrical conductivity
f 	� Fluid fraction
M	� Hartmann/magnetic number(
�cp

)
hnf

	� Heat capacitance of the hybrid nanofluid(
�cp

)
nf

	� Heat capacitance of the nanofluid
hnf	� Hybrid nanofluid
Nu	� Local Nusselt number
Re	� Local Reynolds number
B	� Magnetic field
nf	� Nanofluid fraction
�Cu	� Nanoparticle volume fraction of the copper
�Fe3O4

	� Nanoparticle volume fraction of the iron oxide
K	� Permeability parameter
K1	� Porous parameter
m	� Positive constant
Pr	� Prandtl number
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Cf	� Skin friction coefficient
�1	� Smallest eigenvalue
�	� Stability transformed variable
vw	� Suction/injection velocity
T	� Temperature
khnf	� Thermal conductivity of the hybrid nanofluid
knf	� Thermal conductivity of the nanofluid
t	� Time
�	� Transformed variable
�	� Unknown eigenvalue
Tw	� Variable temperature at the sheet
u, v	� Velocity components
uw	� Velocity of shrinking/stretching surface
b	� Suction parameter and blowing parameter

Introduction

In the present decade, researchers are interested in mixing 
up different nanoparticles with different base fluids in order 
to enhance the thermal conductivity of regular fluids such 
as water, propylene glycol, ethylene glycol, and kerosene 
oil. The resultant fluids, known as nanofluids, have different 
characteristics and can be used in biomedical applications in 
cooling, engineering, process industries, and cancer therapy. 
Thermal conductivity and heat transfer of convectional fluids 
are enhanced by dispersing the solid particles in the recent 
advances in nanotechnology and engineering. It is worth 
to highlight that the heat transfer coefficient increases as 
expected after the suspension of these particles. Physically, 
it is possible because the thermal conductivity of solid parti-
cles, such as metal and carbon nanotubes, is higher than that 
of regular base fluids. Therefore, heat transfer and thermal 
conductivity are enhanced. There are many advantages of 
these fluids such as better wetting, sufficient viscosity, and 
more stability [1]. Some commonly used nanoparticles are 
oxides ( Al2O3 ), metals (Al, Ag, Cu), nitrides (AlN, SiN), 
nonmetals (graphite, carbon nanotubes), carbides (SiC), etc. 
Generally, the diameter of these nanoparticles is between 
1–100 nm. According to experimental studies by research-
ers [2–8], 5%, 10%, …, 55% volume fraction of nanopar-
ticles are considered for a better rate of heat transfer and 
thermal conductivity of base fluids. It is discovered that the 
maximum effective rate of heat transfer is possible when 
the volume fraction of nanoparticles is 5%. There are many 
applications where nanofluids are used effectively such as 
fuel cell, transportation, biomedicine, and nuclear reactors. 
[9–11]. The better cooling performance, the higher thermal 
conductivity and the rate of heat transfer can be achieved 
by using a magnetic force. As an instance, continuous strips 
and drawing filaments can control the cooling rate with the 
help of electrically conducting nanofluids [12, 13]. Ferroflu-
ids can be defined as the electrically conducting nanofluids 

where base fluids contain nanoparticles such as Hema-
tite, Magnetite, Cobalt Ferrite or other compounds having 
iron. The thermal conductivity of nanofluids depends upon 
numerous factors such as size, shape, and volume fraction 
of the solid particles, the surrounding temperature, and base 
fluid [14–16].

It can be seen that many researchers considered different 
fluids and particles in order to enhance thermal conductiv-
ity. Lund et al. [17] considered sodium alginate as a base 
fluid in their studies and found dual solutions. Water-based 
nanofluid was studied by Bhatta et al. [18] and concluded 
that “enhancement in the heat transfer coefficient is noted 
due to the interaction of buoyancy parameter”. Hayat et al. 
[19] examined a nanofluid by considering two base fluids, 
namely kerosene oil and water with carbon nanotubes as the 
nanoparticles. Selimefendigil et al. [20] investigated Fe3O4/
water nanofluid in the channel and found that when the vol-
ume fraction of nanoparticles is 12–15%, Nusselt number 
increases more effectively. TiO2/water nanofluid was inves-
tigated by Kristiawan et al. [21] and stated that this nanofluid 
enhances the heat transfer rate and decreases the pressure. 
Dero et al. [22] examined Cu/water nanofluid and found 
dual solutions. Further, they performed a stability analysis 
to observe a stable solution. Some other development of 
nanofluid can be seen in these articles [23–29]. It is observed 
from the previous studies that the thermal conductivity of 
copper particles is higher as compared to the alumina and 
other solid nanoparticles. Further, solid particles of iron 
oxide are important to consider when the magnetic effect is 
incorporated. Therefore, both copper and iron oxide particles 
have been considered in this study in order to enhance the 
heat transfer rate effectively.

There are two fluid models in the computational fluid 
dynamics (CFD), namely Buongiorno’s model [30] and 
Tiwari and Das’s model [31]. Both models have been used 
intensively when researchers deal with nanofluid by numeri-
cal approaches. Due to the presence of nonlinearity in the 
governing equations, many researchers attempted to find 
multiple solutions as they have many applications in vari-
ous fields of science. Khashi’ie et al. [32] successfully found 
dual solutions for three-dimensional MHD flow of nano-
fluid. Moreover, they considered Buongiorno’s model and 
examined the effect of thermophoresis and Brownian motion 
parameters. Mixed convection flow of water-based nanofluid 
was investigated by Jamaludin et al. [33]. Further, Tiwari 
and Das’s model [31] has been used to deal with govern-
ing equations, and they found dual solutions in the ranges 
of various parameters and performed stability analysis. Ali 
et al. [34] examined the MHD flow of micropolar nanofluid 
and found triple solutions. By performing stability analy-
sis, they claimed that only the first solution is stable. Many 
important related references of non-uniqueness of solutions 
of nanofluids can be seen in these articles [35–41].
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It can be concluded from the above-mentioned studies 
that researchers are still interested in searching for new kinds 
of fluids that are more capable of enhancing thermal conduc-
tivity and heat transfer rate. In this regard, researchers intro-
duced new kinds of nanofluids called “hybrid nanofluids” 
recently. They believed that these fluids offer better ther-
mal conductivity as compared to simple nanofluids. Hybrid 
nanofluid is the extension of nanofluid in which two different 
kinds of nanoparticles are suspended in a single base fluid 
[42]. There are many applications in numerous fields such 
as generator cooling, nuclear system cooling, drug reduc-
tion, biomedical, electronic cooling, the coolant in machin-
ing, and refrigeration where these kinds of fluid can be used 
effectively [43]. Ahmed et al. [44] studied hybrid nanofluid 
by considering nanoparticles and water as a base fluid and 
found a single solution. Devi and Devi [45] examined the 
hydromagnetic flow of Cu − Al2O3/water hybrid nanofluid 
over the stretching surface and found a single solution. 
Their work was then extended by Waini et al. [46] for the 
multiple solutions. In the same year, the unsteady flow of 
hybrid nanofluid was examined by Waini et al. [47] and dual 
solutions were successfully noticed. There are only a few 
researchers who considered hybrid nanofluids for multiple 
solutions [48–53].

Motivated by the above works, our prime objective of this 
study is to find multiple solutions of hybrid nanofluid in the 
presence of magnetic, porous, and viscous dissipation effect 
over nonlinear permeable shrinking/stretching surfaces theo-
retically by employing of Tiwari and Das’s model [31] which 
has not been studied before. Two different kinds of nanopar-
ticles are considered, namely Cu (copper) and Fe3O4 (iron 

oxide) in base fluid (water). It is expected that these findings 
would help those who are interested in increasing the heat 
transfer rate through experiments and finding multiple solu-
tions for hybrid nanofluids.

Problem formulation

We have considered the two-dimensional laminar flow of 
electrically conducting hybrid nanofluid on nonlinearly 
shrinking/stretching surfaces with the effect of porous and 
viscous dissipation. Water is assumed as a base fluid, and cop-
per and magnetite are considered as nanoparticles. Further, 
it is also assumed that the magnetic field effect is constant 
B = B0x

(1−m)∕2 and applied in the perpendicular direction to 
hybrid nanofluid flow. It is also supposed that base fluid and 
the nanoparticles are in thermal equilibrium. The surface is 
stretched and shrunk along a velocity uw(x) = axm , where a is 
a constant and m is a power index. Velocity of wall mass suc-
tion is vw(x) = −b

√
c�x(m−1)∕2 as seen in Fig. 1. The external 

forces and pressure gradients are ignored. By considering all 
the above assumptions, the governing equations of momentum 
and heat boundary layers in the model of Tiwari and Das [31] 
can be written as:

(1)
�u

�x
+

�v

�y
= 0

(2)u
�u

�x
+ v

�u

�y
=

�hnf

�hnf

�2u

�y2
−

�hnf

�hnf

u

K1

−
�∗B2u

�hnf

Fig. 1   Physical models and 
coordinate systems
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The subjected boundary conditions are

In this study, the following subsequent definitions are 
used [49–51], which are given in Table 1. Table 2 is con-
structed for the thermophysical features of nanomaterials 
and base.

Now, the following variables of similarity transformation 
are introduced as:

(3)u
�T

�x
+ v

�T

�y
=

khnf(
�cp

)
hnf

�2T

�y2
+

�hnf(
�cp

)
hnf

(
�u

�y

)2

(4)
{

v = vw(x), u = uw(x), T = Tw as y → 0

u → 0, T → T∞ as y → ∞

(5)

⎧⎪⎪⎨⎪⎪⎩

v = −

�
c�(m+1)

2
x(m−1)∕2

�
f (�) +

m−1

m+1
�f �(�)

�

u = cxmf �(�), � = y

�
c(m+1)

2�
x(m−1)∕2

�(�) =

�
T − T∞

���
Tw − T∞

�

The implementation of Eq. (5) into Eqs. (1–3) leads to the 
subsequent equations

Subject to boundary conditions

In the above equations, we have

(6)

f
���
+ �

1

{
f
��

f −
2m

(m + 1)

(
f
�
)2}

−
2

(m + 1){
M
(
1 − �

Cu

)2.5(
1 − �

Fe3O4

)2.5
+ K

}
f
�
= 0

(7)
�2

Pr
�

��

+ ��f −
4m

(m + 1)
�f � + �3Ec

(
f ��
)2

= 0

(8)

{
f (0) = −b

√
2

m+1
, f �(0) = �, �(0) = 1

f �(�) → 0, �(�) → 0 as � → ∞

(9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M =
�∗B2

0

c�f
,K =

�f

cK1x
m−1

, � =
a

c
, Pr =

�f

�f
, Ec =

c2�f

T0
�
�cp

�
f

�1 =
�
1 − �Cu

�2.5�
1 − �Fe3O4

�2.5��
1 − �Fe3O4

��
1 − �Cu + �Cu

�
�Cu

�
�f

��
+ �Fe3O4

�
�Fe3O4

�
�f

��

�2 =

�
khnf∕kf

�
��

1 − �Fe3O4

��
1 − �Cu + �Cu

(�cp)Cu

(�cp)f

�
+ �Fe3O4

(�cp)Fe3O4

(�cp)f

�

�3 =
1

�
1 − �Cu

�2.5�
1 − �Fe3O4

�2.5��
1 − �Fe3O4

��
1 − �Cu + �Cu

(�cp)Cu

(�cp)f

�
+ �Fe3O4

(�cp)Fe3O4

(�cp)f

�

Table 1   Thermophysical 
properties of hybrid nanofluid

Properties Hybrid nanofluid

Dynamic viscosity �hnf =
�f

(1−�Cu)
2.5
(
1−�Fe3O4

)2.5

Density �hnf =
(
1 − �Fe3O4

)[(
1 − �Cu

)
�f + �Cu�Cu

]
+ �Fe3O4

�Fe3O4

Thermal conductivity
khnf =

kFe3O4
+2knf−2�Fe3O4

(
knf−kFe3O4

)

kFe3O4
+2knf+�Fe3O4

(
knf−kFe3O4

) ×
(
knf

)

where knf =
kCu+2kf−2�Cu(kf−kCu)

kCu+2kf+�Cu(kf−kCu)
×
(
kf

)

Heat capacity (
�cp

)
hnf

=
(
1 − �Fe3O4

)[(
1 − �Cu

)(
�cp

)
f
+ �Cu

(
�cp

)
Cu

]
+ �Fe3O4

(
�cp

)
Fe3O4

Table 2   The thermophysical properties of the base fluid (water) and 
the nanoparticles [13, 63]

Fluids �/kg m−3
cp/J kg−1 K−1 k/W m−1 K−1

Iron oxide ( Fe3O4) 5180 670 9.7
Copper (Cu) 8933 385 400
Water ( H2O) 997.1 4179 0.613
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The interesting physical quantities are the skin friction 
coefficient Cf and local Nusselt number Nux : 

By applying Eq. (9) in Eq. (10), we have

where Re = cxm

�f
 is local Reynolds number.

Stability analysis

There is a problem to know which solution is more stable 
when more than one solution exists in any fluid model. 
Researchers created a new method by introducing a new 
dimensionless time variable � [47, 48, 54, 55] in which they 
performed the stability analysis of solutions mathematically. 
This study is carried out by many researchers in their stud-
ies, some of them can be seen in these references [56–59]. 
The first step of performing the stability of the solution is to 
change the governing Eqs. (2–3) in unsteady form.

Equation (5) with new dimensionless variables for the 
unsteady problem can be written as

By putting Eq. (14) into Eqs. (12–13), we have:

(10)

Cf =
2�hnf

�fu
2
w

(
�u

�y

)
|y = 0 , Nux = −

xkhnf

kf
(
Tw − T∞

)
(
�T

�y

)
|y = 0

(11)

√
ReCf =

1�
1 − �Cu

�2.5�
1 − �Al2O3

�2.5
�

(m + 1)

2
f
��
(0);

�
1

Re
Nux = −

khnf

kf

�
(m + 1)

2
��(0)

(12)
�u

�t
+ u

�u

�x
+ v

�u

�y
=

�hnf

�hnf

�2u

�y2
−

�hnf

�hnf

u

K1

−
�∗B2u

�hnf

(13)
�T

�t
+ u

�T

�x
+ v

�T

�y
=

khnf(
�cp

)
hnf

�2T

�y2
+

�hnf(
�cp

)
hnf

(
�u

�y

)2

(14)

⎧⎪⎪⎨⎪⎪⎩

v = −

�
c�(m+1)

2
x(m−1)∕2

�
f (�) +

m−1

m+1
�f �(�)

�

u = cxmf �(�), � = y

�
c(m+1)

2�
x(m−1)∕2

�(�) =

�
T − T∞

���
Tw − T∞

�
, � = cxm−1t

The new corresponding boundary conditions are

The unknown functions are needed to define; these func-
tions depend on the time parameter, in order to obtain the 
stability of solutions

where f0(�) and �0(�) are the small relatives of F(�, �) and 
G(�, �) , respectively, which indicate the steady solutions of 
Eqs. (6–7). Further, � is the unknown eigenvalue param-
eter, which will provide the infinite number of the values 
of eigenvalue. By introducing Eq. (18) into Eqs. (15–16), 
we get

The steady solutions of the equation can be obtained by 
keeping � = 0 , where F(�, �) and G(�, �) are reduced to F0 

(15)

f
���
+ �1

{
f
��

f −
2m

(m + 1)

(
f
�
)2}

−
2

(m + 1)

{
M
(
1 − �Cu

)2.5(
1 − �Fe3O4

)2.5
+ K

}
f
�

−
2�1

m + 1

[
1 + (m − 1)�

�f

��

]
�2f

����
= 0

(16)

�2

Pr
�

��

+ ��f −
4m

(m + 1)
�f � + �3Ec

(
f
��
)2

−
2

m + 1

[
1 + (m − 1)�

�f

��

]
��

��
= 0

(17)

⎧
⎪⎨⎪⎩

f (0, �) = −b

�
2

m+1
,
�f (0,�)

��
= �, �(0, �) = 1

�f (�,�)

��
→ 0, �(�, �) → 0 as � → ∞

(18)
{

f (�, �) = f0(�) + e−��F(�, �)

�(�, �) = �0(�) + e−��G(�, �)

(19)

�3F

��3
+ �1

{
f0
�2F

��2
+ F

d
2
f0

d�2
−

4m

(m + 1)

df0

d�

�F

��

}

−
2

(m + 1)

{
M
(
1 − �Cu

)2.5(
1 − �Fe3O4

)2.5
+ K

}
�F

��

+
2�1

m + 1

[
1 + (m − 1)�

df0

d�

]
�
�F

��
= 0

(20)

�2

Pr

�2G

��2
+

d�0

d�
F +

�G

��
f0 −

4m

(m + 1)

(
�0

�F

��
+ G

df0

d�

)

+ 2Ec�3
d
2
f0

d�2
�2F

��2
+

2

m + 1

[
1 + (m − 1)�

df0

d�

]
�G = 0
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and G0 , respectively, in Eqs. (19–20). In order to find the initial 
decay or growth of the solutions, we have to solve the follow-
ing system of linearized eigenvalue problems

Subject to boundary conditions

(21)

�1F
���

0
+ �1

{
f0F

��

0
+ F0f

��

0

}

−
2

(m + 1)

{
M
(
1 − �Cu

)2.5(
1 − �Fe3O4

)2.5
+ K

}
F

�

0

+
2�1

m + 1

(
� − 2mf

�

0

)
F

�

0
= 0

(22)

�2

Pr
G

��

0
+ �

�

0
F0 + G

�

0
f0 + 2Ec�3f

��

0
F

��

0

−
4m

(m + 1)
�0F

�

0
+

2

m + 1

(
� − 2mf

�

0

)
G0 = 0

(23)
{

F0(0) = 0,F
�

0
(0) = 0,G0(0) = 0

F
�

0
(�) → 0,G0(�) → 0 as � → ∞

We followed the procedure of the Mustafa et al. [60] and 
Lund et al. [61], in which they stated that the one boundary 
condition should be relaxed to find the values of eigenvalue. In 
this problem, F�

0
(�) → 0 as � → ∞ is converted into F��

0
(0) = 1.

Results and discussion

The prime concern of the current segment is to demystify the 
physical importance of numerical results presented in graphi-
cal representation. Flow along with heat transfer and viscous 
dissipation of H2O-based hybrid nanofluid ( Cu − Fe3O4 ) over 
a nonlinear shrinking sheet has been inspected numerically 
with Runge–Kutta fourth order along with the shooting tech-
nique. In this study, the thermophysical properties of Devi 
and Devi [45] have been used as it has been proven that their 
results have good agreement with the experimental results of 
Suresh et al. [62]. Henceforth, we expect that these results 
would provide good direction and understanding in order to 
enhance the rate of heat transfer numerically and experimen-
tally. We compared the results of coefficient of skin friction for 
Al2O3 − Cu∕H2O hybrid nanofluid for different values of �Cu 
when �Al2O3

= 0.1, S = 0, Pr = 6.135, � = 1,M = � = 0 with 
Devi and Devi [63] and Lund et al. [53] in order to validate 
the results of the current study (refer to Table 3) and found 
in excellent agreement. The effects of the suction parameter 
along with solid volume fraction of Cu and Fe3O4 are pre-
sented in Figs. 2–5. In Fig. 2, it can be noticed that multiple 
solutions exist only for the case of suction by the various inten-
sities of copper-type nanoparticle. In this regard, the critical 
values of suction parameter b for �Cu = 0.005, 0.05, 0.1 , are 
bc1 = −3.2064, bc2 = −3.0788, and bc3 = −3.0019 , respec-
tively. Moreover, the skin friction coefficient is increased 
(decreased) by incorporating the copper-type nanoparticles in 
the base fluid for the first (second) solution. Physically, we can 
interpret that the velocity of nanofluid near the surface declines 

Table 3   The compression of 
√
ReCf with Devi and Devi [63] and 

Lund et al. [53]

m �Cu Devi and Devi [63] Lund et al. [53] Present results

1 0.005 − 1.327310 − 1.325862 − 1.3258
0.02 − 1.409683 − 1.404648 − 1.4046
0.04 − 1.520894 − 1.511257 − 1.5112
0.06 − 1.634279 − 1.620177 − 1.6201

1.5 0.02 – − 1.491175 − 1.4911
0.04 – − 1.604352 − 1.6043

2.5 0.02 – − 1.585037 − 1.5850
0.04 – 1.705327 1.7053

Fig. 2   Skin frictions plot with b 
for different �Cu
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as the solid volume fraction rises in the base fluid from 0.5% 
to 1% only for the case of the first solution.

In the same manner, the combined effect of the suction 
parameter and solid volume fraction of Fe3O4 is plotted in 
Fig. 3. From this profile, it observed that the skin friction 
coefficient decreases (increases) by the rise in the solid vol-
ume fraction of Fe3O4 in the base fluid for the first (sec-
ond) solution. Therefore, we can conclude that the effect of 
Fe3O4 nanoparticles on the skin friction coefficient is totally 
opposite to the effect of copper type nanoparticles. Hence, 
the velocity near the solid surface increases (decreases) in 
the first (second) solution. Moreover, it is also observed 
from this profile that dual solutions exist only for the case 
of suction and critical values of suction parameter b for 
�Fe3O4

= 0.05, 0.5, 0.1 are bc1 = −3.0582 , bc2 = −3.0788, and 
bc3 = −3.1249 . Figure 4 shows the effect of heat transfer 

coefficient −��(0) with variation of b by variation of �Cu . 
It is noticed that there are regions of two solutions b ≤ bc , 
and no solution range is b > bc . Here, bc is the critical value 
of b (10% volume fraction) where the dual solution exists. 
Moreover, it is noticed from this profile that the heat transfer 
coefficient decreases by simultaneously enhancing �Cu and 
b . It is worth to notice that due to the instability of the sec-
ond solution, singularities exist as shown in the upper half 
of the graphs. The same scenario can be depicted in Fig. 5 
for �Fe3O4

.
Figure 6 presents the effects of various values of �Cu - and 

�Fe3O4
-type nanofluids. The effects of magnetic parameter 

M on velocity profile f �(�) are shown in Fig. 7. Clearly, it 
is seen that the velocity of the hybrid nanofluid increases 
as the intensity of the magnetic parameter rises gradually 
for the first solution and decreases for the second solution. 

Fig. 3   Skin frictions plot with b 
for different �Fe3O4
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Fig. 4   Heat transfer rate plot 
with b for different �Cu
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Generally, we can say that boundary layer thickness inclines 
monotonically for the first solution and decreases for the sec-
ond solution due to the Lorentz force which creates the resis-
tivity on the fluid flow inside the boundary layer. Hence, the 
motion of solid nanoparticles diminishes. Figure 8 presents 
the effects of permeability coefficient on velocity profile. It 
is seen that at higher values of permeability the velocity of 
hybrid nanofluid deaccelerates in the first solution and accel-
erates for the second solution. The impact of power index m 
can be seen in Fig. 9 on velocity profile. It is perceived that 
as power index m ≥ 1 , the boundary layer thickness rises 
gradually and therefore velocity of the hybrid nanoparticles 
increases for both solutions.

Figure 10 elucidates the effect of �Cu and �Fe3O4
 on tem-

perature profile �(�) . It is realized from this graph that for the 
case of simple viscous fluid where the intensity of �Cu and 
�Fe3O4

 are negligible (i.e., �Cu = �Fe3O4
= 0 ), the temperature 

profile is much lower. In other words, the thermal bound-
ary layer thickness of viscous fluid is lower as compared to 
hybrid nanofluid. Moreover, it is worthy to notify that the 
thermal boundary layer becomes thicker for a 5% suspension 
of nanoparticles of Cu and Fe3O4 in the base fluid. Simi-
larly, the upshot of the magnetic parameter M on tempera-
ture profile is depicted in Fig. 11. In the first solution, the 
temperature of the hybrid nanofluid increases as the strength 
of the magnetic parameter M increases. From the physical 
aspect, we can say that the rise in the magnetic parameter 

Fig. 5   Heat transfer rate plot 
with b for different �Fe3O4
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produces the Lorentz force which contributes to increase in 
the temperature of the fluid due to the slowdown of the fluid 
motion. Similar behavior of temperature profile can be seen 
in Fig. 12 for the variation of permeability parameter K . 
Outcomes of power index m and Eckert number Ec on tem-
perature profile are plotted in Figs. 13 and 14, respectively. 
From these graphs, it is noticed that the temperature profile 
of hybrid nanofluid is directly proportional to power index 

m and Eckert number Ec. Physically, the thickness of the 
thermal layer, as well as the temperature of the fluid increase 
due to the high intensity of kinetic energy as Eckert number, 
is directly proportional to the kinetic energy.

Finally, Table 4 gives the values of the smallest eigenvalue 
for variation of suction parameter. It can be concluded easily 
that the first solution is the stable one as the sign of the value 
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of the smallest eigenvalue is positive which shows the initial 
decay, while in the second solution, the sign of the values of 
the smallest eigenvalue is negative, indicating the existence 
of the initial growth of disturbance which causes the solution 
to be unstable.

Conclusions

In the current study, 2D steady MHD f low of 
Cu − Fe3O4∕H2O hybrid nanofluid over the nonlinear 
stretching/shrinking surface has been examined. The 
effects of energy dissipation function and porous term 
also have been taken into account. Similarity variables 
are used to change the partial differential equations (PDEs) 
into ODEs. ODEs are solved by employing the shooting 
method with the RK fourth-order method. For the stability 
of solutions, a three-stage Lobatto IIIa formula has been 
used to find the values of the smallest eigenvalue. In light 
of the present examination, the following points are the 
major findings of this study.
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Table 4   The smallest eigenvalues � for the several val-
ues of suction parameter b at �Cu = �Al2O3

= 0.05 
m = 5, Pr = 6.2, Ec = M = K = 0.1 and � = −1

b �

First solution Second solution

− 4 1.6135 − 1.2369
− 3.8 1.3074 − 1.0891
− 3.6 1.0087 − 0.8257
− 3.4 0.8523 − 0.6393
− 3.2 0.4237 − 0.5286
− 3 0.0530 − 0.0904
− 3.0788 0.0009 − 0.0023
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1.	  There is a region of dual solutions that depend upon the 
suction and stretching/shrinking parameters, respectively.

2.	 The results of the stability analysis reveal that the first 
solution is more stable as compared to the second solu-
tion.

3.	 The rate of heat transfer reduces when suction and solid 
volume fraction of copper are increased.

4.	 The thickness of the hydrodynamic boundary layer 
increases for the intensive impact of the magnetic field, 
permeability, and power index parameter in the first 
solution, while reverse nature of velocity profiles is 
noticed in the second solution when the magnetic field 
and permeability parameters have risen.

5.	 The temperature of hybrid nanofluid is high in the first 
solution when the magnetic field, power index param-
eter, and Eckert number increase.
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