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Abstract
In the present research, outputs of numerical modeling of hybrid nanomaterial flow structure and thermal behavior were 
investigated and in-house code was implemented for simulation. Radiation terms and Lorentz force terms were included in 
mathematical model. Outputs demonstrate the flow structure and isotherm style with altering important parameters. Depend-
ence of variables on Nu values was summarized in a new formula. More intensive convection should be accomplished with 
growth of buoyancy force and permeability. More smooth separation from the hot surface can appear with rise in perme-
ability. Besides, it is worth mentioning that augmenting Da leads to easier nanopowder migration and thinner boundary 
layer generation.
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Introduction

Investigating nanomaterials (which are fabricated by dis-
persion of nanoparticles into fluid) attracted more attention 
during the last decade because they are practical to control 
fluid stream and heat transfer rate in various-shaped chan-
nels or cavities. Open cavities are typically categorized 
into four regular coordinates: curvilinear, spherical, Carte-
sian and circular coordinates [1–10]. Based on the results 
of Kouloulias et al. [11], the metal oxide and the semi-
metal oxide raised the absorption specifications of carbon 

dioxide, and these procedures involving stream impedi-
ment might jeopardize the relevant process of dispersing 
the carbon dioxide. Numerically, the free convection of 
tilted wavy permeable tank accumulated with a nanoma-
terial at appearance of Lorentz effect has been surveyed 
by Bondareva et al. [12], and based on outputs, a rise in 
Ha results in reduction in Nu. Augmentation of efficiency 
is the main goal of several researchers [13–22], and they 
tried to suggest various methods. The free convection of 
a nanomaterial-accumulated annulus under the fixed heat 
flux was analyzed by Hu et al. [23] who concluded that 
suspending the nanoparticles in typical fluid changed the 
stream pattern. Based on their results, Nu had a positive 
correlation with the volume fraction of nanoparticles, 
radial ratio and Re. Additionally, they found that Nu is 
smaller for positive values of eccentricity compared to 
the other cases. The transient free convection in a wavy 
surface tank under tilted magnetic effect was scrutinized 
by Sheremet et al. [24] who utilized mathematical model. 
According to their outcomes, growth in Ha results in an 
increase in Nu. Also, reducing the tilted angle results in 
generation of weaker cell. Moreover, growing the wavy 
contraction ratio results in a growth in the amplitude of the 
wave. External free convection of nanomaterial flowing on 
a semiinfinite sheet numerically was simulated by Narahari 
et al. [25]. The authors discovered that the temperature, the 
velocity and the concentration of the nanoparticle evolve 
with time and they become stable when time progressed. 
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The local Nu increased slightly when the Brownian motion 
terms increased; however, it was reduced when the ther-
mophoresis terms grew. Based on their results, the impact 
of buoyancy ratio terms on the local Nu was negligible. 
Not only simulation tools but also the optimization tech-
niques are significant to reach the best design [26–35]. 
Sheikholeslami and Vajravelu [36] executed the magneto-
nanofluid behavior in cavity. They showed that the heat 
transportation is reduced by the presence of buoyancy 
forces. Kolsi et al. [37] analyzed the MHD flow of CNT/
H2O flowing in a cavity. They employed FEM for their 
analysis. They observed a linear growth in Nu in their unit. 
The interaction between nanoparticles at the existence of 
magnetic area and internal heat production along a vertical 
rough plate has been scrutinized by Mustafa et al. [38]. 
They discovered that  Cf and Nu were subtractive functions 
of the amplitude of wavy sheet. Several external forces 
have been involved in domains to control the flow rate 
[39–51]. The impact of isoflux obstacle inside a container 
accumulated with air on the free convection was investi-
gated by Hussain [52]. Based on their results, both heat 
functions and heat lines methods are applied effectively 
for introducing the buoyancy effect in wavy tanks accumu-
lated with nanofluid. Several publications were published 
about hydrothermal efficiency [53–73]. Uddin and Rah-
man [74] analyzed the transient free convective stream of 
nanomaterial in a container. The author concluded that 
the nanoparticles were uniformly suspended inside a basis 
fluid as the particles diameter ranged from 1 to 10 nm. The 
mean Nu soared when the nanoparticles’ volume fraction 
increased; however, it plummeted when the nanoparticles’ 
diameter grew.

Considering the above brief review, the topic of simu-
lating nanomaterial transportation in existence of magnetic 
field is significant. The current research was devoted to 
CVFEM modeling of hybrid nanomaterial within a perme-
able chamber with imposing of external Lorentz. Outputs 
in view of thermal and flow-style behaviors were analyzed, 
and various cases were involved to demonstrate the role of 
effective variables.

Formulation of problem

The representation of 2D chamber is illustrated in Fig. 1. 
The hot wall was located in right side and left surface is 
cold and rest walls are adiabatic. The testing fluid is hybrid 
nanomaterial, which includes hybrid nanopowders (iron 
oxide and MWCNT) and water [75]. The zone is porous 

and impact of permeability was added as source term of 
momentum. Additionally, negative effect of magnetic field 
on transportation of nanomaterial was involved in the model. 
Steady two-dimensional PDEs which must be solved are: 

Greater thermal features can be obtained if two nanopow-
ders are mixed together. So, we utilized hybrid nanopowders 
in the current research. According to [75], to estimate the prop-
erties of hybrid nanomaterial, we can employ the previous 
experimental data which are more realistic. In this approach, 
homogenous model is involved and computational cost is 
reduced in this modeling.
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To decrease the number of unknown scalars, we introduced 
new parameter (vorticity) as below:

Definition of variables can be written as:

So, the last format of formulation can be presented as:

To complete the definition of formulation, we need to 
introduce the below parameters: 

The best function to evaluate the strength of convection 
is Nu:
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After reducing pressure terms, the final dimensionless equa-
tions should be solved and CVFEM in-house code was devel-
oped for this goal. This code was written by Sheikholeslami 
[76]. He employed this approach for various fields of fluids and 
published it in various journals. He published his experience 
as a reference book. Grid independency procedure is vital in 
numerical simulation, and one example is provided in Table 1. 
The best grid is that size in which Nu has no changes after 
using smaller size.

Results and discussion

In the present simulation, variations in isotherm style and 
nanomaterial flow structure were analyzed within a preamble 
media. Imposing of Lorentz force as well as radiation terms 
was involved in governing equations. We employed in-house 
Fortran code to simulate the problem based on CVFEM, and 
this code was verified with comparing with [77]. Figure 2 
depicts the low values of deviation and guarantees the cor-
rectness of outputs.

The dependence of flow structure on permeability and 
strength of magnetic force is exhibited in Fig. 3. As it is obvi-
ous from this graph, permeability is more effective when 
Ha = 0. Nanomaterial can move though the chamber easier if 
Da augments while Lorentz forces prevent the fluid to migrate. 
Therefore, augmenting Ha results in lower Ψ which means 
lower convective intensification.

Change in intensity of convection is examined in Figs. 4 
and 5 for various values of Da and Ha. Maximum values 
of Ψ within the domain are in dependence on Da, Ra, Ha 
and Rd. The left wall is cold, while the right straight sur-
face is hot, so one counterclockwise cell generates which 
makes separation of thermal boundary from the surface. 
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Table 1  Values of Nu with use of various grids at Ra = 105 , 
Rd = 0.8, Da = 100, Ha = 60 and � = 0.003

51 × 151 61 × 181 71 × 211 81 × 241 91 × 271

0.3977 0.4033 0.4064 0.4071 0.4087
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More intensive circulation can be obtained with rise in 
Da, which means positive effect of permeability on flow 
of hybrid nanomaterial. Augmenting Ha reflects an incre-
ment in thermal boundary layer thickness. Single cell 
exists in streamline, and with imposing of Ha, the center 
of cell shifts downward. And its power reduces. However, 

augmenting permeability of the zone will be helpful in 
view of thermal penetration. More smooth separation 
from the hot wall can be obtained for greater Da, which 
reveals greater convective mode. Larger density of iso-
therm near hot wall appears with rise in Da, which reflects 
more interaction of nanomaterial with hot surface. More 

Fig. 2  Verification of CFEM 
with [77] when Gr = 1e5
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Fig. 3  Streamline changes with rise in permeability [ Da = 100 (dashed lines) and Da = 0.01 (straight lines)] at Ra = 103, Rd = 0.8
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uniform scattering of isotherm will appear in existence of 
Ha, which proves the unfavorable impact of Ha on ∇T. It 
is possible to conclude that such force has controlling role 
of thermal performance. To clarify the impact of various 
variables on Nu, new formulation is extracted as: (13)

Nuave = 0.83 + 0.81Rd + 0.098Da∗ + 1.51 log(Ra)

− 0.67Ha∗ − 1.37Ha∗ log(Ra) − 0.19Da∗ Ha∗

+ 0.19 log(Ra) Da∗ + 0.01Da∗Rd − 0.71RdHa∗
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Additionally, for graphical demonstration of distribu-
tion of Nu with respect to parameters, Fig. 6 is drawn. With 
growth of Ha, ∇T decreases and lower Nu can be achieved. 
This negative effect augments with increase in Da, which 
indicates that more intense convection can be affected more 
by Lorentz forces. When no resistance force exists against 
the nanomaterial flow, the positive effect of permeability can 
be more observable. Dependency of Nu on Rd reduces with 

imposing of Ha. In greater values of Ha, Rd has no effect 
on Nu. Growth of buoyancy force leads to more convective 
intensity, and Nu augments with rise in Rd, which means 
that permeability and Da have similar impact on thermal 
performance and augmenting such parameters results in 
greater convection. In spite of positive effect of Rd on Nu, 
this factor has no effective role on isotherms.
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Conclusions

Laminar nanomaterial convection modeling by means of 
CVFEM was scrutinized in current article. The geometry 
has one curved adiabatic wall and one left straight hot wall. 
To extend the governing equations, radiation and Lorentz 
forces were included and permeable medium was imposed. 
Distributions of Nu, isotherm and Ψ were reported in out-
puts. Separation from right surface becomes smoother if 
convection intensifies which occurs for greater Da and Ra. 
Selecting media with grater permeability can intensify the 
Nu, and it is more effective in the absence of Ha term in 
equations. Growth of Rd leads to increase in Nu. Higher 
values of Ra reflect smoother separation of boundary layer.
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