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Abstract
Lorentz force impact on heat transfer was scrutinized in current paper, and nanomaterial behavior was analyzed within a 
domain which has been scrutinized via non-equilibrium theory. Moreover, radiation term has been added and shape factor 
impact was investigated. Outputs reveal that suppression of convective flow in appearance of Lorentz forces makes Nuave to 
decline. More complex isotherms generate with rise of Ra; thus, Nuave augments with enhancement of Ra. Nuave is a reduc-
tion function of Nhs, while Rd has opposite relation.

Keywords  Non-equilibrium · Nanofluid · Lorentz force · Porous · CFD

Introduction

In energy-saving systems and industry, increasing the heat 
transfer rate in convective streams is imperative. Heat transfer 
is very practical in different applications such as renewable 
energy units, cooling systems, electronic cooling devices, etc., 
and those systems typically apply forced or natural convection 
by using typical fluids such as oil, air or water. Recently, nano-
fluid technology has been presented as a promising method for 
increasing thermophysical features of testing fluids by sus-
pending nanopowders in the typical fluids [1–16]. Guestala 
et al. [17] scrutinized the free convection of NFs within a 
cylindrical tank. They found that the heat transfer grew when 
Re, particles volume fraction or the heated length increases. 
Simulation of nanomaterial treatment becomes popular in 
recent decade [18–35]. Selimifendigil et al. [36] numerically 
analyzed the mixed convection including an internal rotating 

cylindrical a permeable layer accumulated with covered NFs. 
Based on their results, heat transfer grew when the cylinder’s 
angular velocity rose. The evacuated tube including mini-CPC 
reflectors has been studied by Korrees et al. [37] who used 
Solidworks flow simulation software for simulating. They 
estimated the temperature of receiver and the thermal out-
put of each module. Numerical approaches are extended by 
reviewers to find the performance of systems [38–56]. Sev-
eral researchers studied the effect of nanofluid on renewable 
energy systems. The impact of Al2O3–H2O nanofluids on the 
performance of flat sheet photovoltaic thermal collectors was 
investigated by Bianco et al. [57]. Both microscopic [58, 59] 
and macroscopic [60–75] approaches can predict behavior of 
nanofluid. Hossain and Rees [76] scrutinized the free convec-
tive stream of a viscous liquid in an oblong cavity heated from 
bottom. They applied upwind differential process. In addition, 
they surveyed zero Darcy inversion terms in this study. Based 
on their results, cell shape in the tank is a feature of Grashof 
number and tank aspect ratio. Impact of thermophoresis and 
nanoflid features on thermal efficiency has been analyzed by 
Astanina et al. [77] who found that the intensification of stream 
in the cavity had inverse relationship with the heater place 
while it had direct relationship with Re; based on their results, 
the finest place of the heater was the left surface of consid-
ered tank. Also, Aham et al. [78] surveyed optimal features 
such as transmittance, extinction coefficient and scattering 
based on metal oxide, metal, graphite and grapheme for using 
nanofluids in solar thermal systems. Heat transfers along free 
convection in different fluid stream in a tank as illustrated by 
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Drummond and Korpela [79] who found that Gr does not rely 
on boundary conditions because wall stability relies on the 
shear forces rather than gravity. Additionally, they reported 
that heat transfer within an adiabatic cavity was higher com-
pared to that of in tank within convective walls.

This article discusses how magnetic force can affect the 
nanomaterial behavior through a permeable region, and to 
reduce computational cost, single-phase model has been 
utilized. Moreover, influence of radiation term was added 
in equations and several outputs were summarized in result 
section.

Formula explanation and simulation

In current article, 2D free convection in laminar condition was 
investigated. As depicted in Fig. 1, wavy wall received uniform 
heat flux. Geometry has 2 adiabatic walls and outer surface is 
cold. To evaluate temperature distribution inside the porous 
solid zones, new scalar was introduced. Overlooking joule 
heating impact and considering homogeneous carrier fluid 
leads to below equations [80]:

In order to simplify the above equations, Eq. (6) has been 
used:
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By including stream function definition, equations convert 
to below forms:

In final equations, there exist some new parameters which 
should be defined as:

The boundary conditions are summarized in Fig. 1, and 
we ignored to write them again, and for estimating rate of 
heat transfer the below factor has been defined

CuO nanopowders were dispersed into H2O, and for 
evaluating the properties same formulation of [80] was 
employed. In addition, to predict thermal conductivity, 
shape effect was employed [81]. To simplify the governing 
equations, vorticity formulations were used and CVFEM 
was utilized for simulation purpose. This approach was 
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introduced first by Sheikholeslami [82] for thermal prob-
lems, and he wrote more details in his reference book. In 
current approach, CVFEM was employed which was utilized 
for various problems [83–89].

Results and discussion

Non-equilibrium modeling for permeable zone was involved 
in governing equations and simplified with using vorticity 
formulation and finally solved via CVFEM in this article. 
Validation step makes us ensure about the accuracy of used 
model, and Fig. 2 proves the nice agreement of our written 
code [90]. To reach the minimum computational costs, grid 
independency analysis has been analyzed and Table 1 illus-
trates different values of Nu for different meshes. Impact of 
dispersing nanopowders and imposing radiation terms are 
illustrated in Figs. 3 and 4. Inclusion of nanoparticles makes 
the flow velocity to augment and increases the temperature 
gradient. The position of therma plume changes with adding 
nanoparticles, and it shifts to right. The structure of flow 
is slightly affected by Rd, while according to definition of 
Nuave, it has direct relation with Rd.

To evaluate impact of Nhs, Ha and Ra on thermal treat-
ment of working fluid, Figs. 5, 6, 7 and 8 were presented. 
Steeping of isotherms over wavy wall decreases as mag-
netic field is imposed and impact of Ha becomes weaker in 
greater Nhs. With impose of Ha, isotherms become uniform 

Nanofluid

Porous media

g

θs = 1

∂θnf 

∂n
= 1

θrf  = θs = 0

Fig. 1   Geometry of permeable domain with uniform heat flux
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Table 1   Different mesh and calculated Nuave when 
Ra = 10, 000, Ha = 20, � = 0.3, Nhs = 10, Rd = 0.8 and � = 0.04

61 × 181 81 × 241

2.99183 3.00129
71 × 211 91 × 271

3.01364 3.01554
101 × 301

3.01705
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and convection weakens. This is the reason of disappearing 
thermal plume from with increasing Ha. In the absence of 
magnetic force and greatest Ra, three cells were established 

in domain and two smaller ones create thermal plume due to 
reverse direction circulation. When Ha is not zero, all cells 
merged and one weaker cell appears. Nhs has slight impact 
on nanomaterial behavior in comparison with Hartmann 
number. As Ha increases, the center of eddy shifted down-
wards. As Nhs augments, the power of eddies augments and 
stronger thermal plume appear when Ra = 104.

Impacts of changing scrutinized parameters on Nuave are 
illustrated in Fig. 9. As Nhs augments, temperature gradi-
ent deteriorates which indicates lower Nuave. Magnetic force 
reduces the nanoparticle velocity and generates thicker 
boundary layer which results in lower Nuave. Direct relation 
exists between Ra and Nuave which is attributed to thinner 
boundary layer with augment of Ra. With impose of radia-
tion impact, Nusselt number enhances, but it is no sensible 
in greatest Nhs. The below equation can present influences 
of parameters as good mathematic formula.

As demonstrated in Table 2, shape of powder can influ-
ence the thermal behavior due to its impact on thermal con-
ductivity. As shape factor augments, Nuave enhances and 

(12)
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its effect reduces with rise of Hartmann number. Spherical 
shape has minimum heat transfer rate.

Conclusions

In this article, not only the Lorenz force impact but also 
the radiation impact were analyzed and to simplify the 
governing equations, Joule heating effect was overlooked 
and homogeneous model has been employed. As the Nhs 
is increased, sinusoidal wall temperature augments while 
increasing Ra has reverse effect. So, Nuave reduces with 
augment of Nhs while it rises with rise of Ra. Influence 
of Ha on temperature profile is converting convection to 
conduction which provide lower Nuave. According to for-
mula of calculating Nuave, this function has direct relation 
with Rd. Three eddies are formed inside the domain in 
absence of magnetic force which intensify the convective 
flow.
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