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Abstract
Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in 
different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group 
method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal 
conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene 
glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) 
and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models 
have good agreement with the values obtained in experimental studies. The values of R2 in the optimum conditions of using 
GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods 
are approximately 0.000010, 0.000032 and 0.0000078, respectively.

Keywords Silica nanoparticles · Thermal conductivity · Artificial neural network · Nanofluid

Introduction

The need to improve the efficiency of engineering systems 
in various sectors such as chemical, mechanical, electronic 
and marine industries is rapidly increasing. There has been 
a great deal of research in these fields over the past years 
published as journal or conference papers [1–4]. These 
research spans from investigations studying heat trans-
fer rate in human body [5, 6] to those looking for ways of 
increasing heat transfer coefficient in heat exchangers and 

industrial heat recovery steam generators [7–10] and fuel 
cells [11]. The use of nanofluids which are mixtures of a 
basic fluid with metallic or non-metallic solid particles at 
nanoscale has attracted the attention of many scientists dur-
ing these years [12]. For instance, Choi [13] introduced the 
use of nanoparticles with base fluids to tackle the problem 
of low thermal conductivity of fluids. In this investigation, 
the need for more energy-efficient techniques was addressed 
by using copper nanoparticles. The results revealed con-
siderable reduction in pumping power in heat exchangers. 
Thereafter, much research has been done that emphasizes 
the importance of using nanofluids to improve thermal per-
formance of systems. Nanofluids are able to modify heat 
transfer of devices with various dimensions [14, 15]. Some 
studies focused on the use of nanofluids in conventional 
channels with macroscale dimensions [16–18] while others 
studied utilization of nanofluids in microchannels [19–22]. 
The effect of different nanoparticles types and various base 
fluids was studied as well [23–25].

It is important to know the thermophysical properties of 
nanofluids in order to model their heat transfer in different 
types of mediums such as porous or conventional [26–31]. 
Thus, a lot of research has focused on prediction of thermal 
conductivity of nanofluids. In a review article by Ahmadi 
et al. [32], it was shown that an increase in concentration 
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and temperature of nanoparticle results in higher thermal 
conductivity of nanofluids. Utilization of hybrid nanofluids 
was suggested to improve the thermophysical properties of 
the nanofluid as well. Yildiz et al. [33] studied experimental 
and theoretical thermal conductivity model on thermal per-
formance of a hybrid nanofluid.  Al2O3–SiO2/water hybrid 
nanofluid was used in their study. It was revealed that the 
use of hybrid nanoparticles can lead to the same heat transfer 
rate at lower particle volume fractions. In an experimental 
study by Shamaei et al. [34], it was shown that the increment 
in temperature and solid phase fraction of nanofluid can con-
siderably increase its thermal conductivity. Different volume 
fractions and temperatures of double-walled carbon nano-
tubes (DWCNTs) suspended in ethylene glycol (EG) were 
considered. Cacua et al. [35] studied thermal conductivity of 
 TiO2/water nanofluid experimentally. During measurements 
of thermal conductivity, agitation of nanofluid was inves-
tigated, and it was shown that this can have considerable 
impact on the results since a great amount of nanoparticles 
can adhere to experimental apparatus. In addition, it was 
shown that thermal conductivity of the nanofluid increases 
markedly as the temperature rises.

The use of intelligence methods in determining thermal 
conductivity of nanofluids has become prevalent in recent 
years [36–39]. Artificial neural network (ANN) and sup-
port vector machine (SVM) are two common methods for 
modeling engineering problems [40]. Thermal conductiv-
ity of a nanofluid is dependent to various parameters like 
concentration and dimensions of nanoparticles as well as its 
temperature [41]. Group method of data handling (GMDH) 
and multilayer perceptron ANNs are broadly applied for 
estimating and forecasting the properties of nanofluids [41, 
42]. In a study by Komeilibirjandi et al. [43], mathematical 
correlation and GMDH were investigated to predict nano-
fluids’ thermal conductivity which had CuO nanoparticles. 
It was shown that the R-squared and the average absolute 
relative deviation for the artificial neural network method 
are more appropriate for prediction of thermal conductiv-
ity of nanofluids with CuO nanoparticles. Vafaei et al. [44] 
conducted an investigation of thermal conductivity of MgO-
MWCNTs/EG hybrid nanofluid. Initially, thirty-six data set 
from experimental tests was considered. The temperature of 
the hybrid nanofluid was in the range of 25–50 °C, and six 
different nanoparticle volume fractions from 0.05 to 0.6% 
were considered. They studied four various artificial neural 
networks from 6 to 12 neurons in hidden layer. The results 
showed that the model of 12 neurons in hidden layer has the 
most favorable result with the maximum derivation of 0.8%. 
Different factors including the training algorithm of ANNs, 
their type and number of hidden neurons influence the reli-
ability of the proposed models. Depending on the nature of 
the problem, these parameters can be obtained.

One of the nanoparticles which is widely employed in 
heat transfer fluids is silica  (SiO2). Nanofluids with  SiO2 
are employed in different thermal devices such as solar col-
lectors, heat exchangers and heat pipes. Favorable stability 
of these particles in different base fluids is one of its main 
advantages. In this study, thermal conductivity of nano-
fluids with  SiO2 particles is modeled by employing differ-
ent ANN-based approaches. The selected methods for the 
modeling are GMDH and multilayer perceptron with two 
different training algorithms. The most important novelties 
of the present research are consideration of various base 
fluids and effect of size on the output of the model. Moreo-
ver, the performance of different ANN-based approaches is 
compared and investigated in terms of MSE and R-squared 
values. Finally, a correlation, based on GMDH, is proposed 
to determine the thermal conductivity of the considered 
nanofluids.

Methods

In this study, GMDH in addition to a conventional type of 
ANN with two training algorithms is applied for modeling 
the thermal conductivity of nanofluids with  SiO2 nanopar-
ticles. These algorithms are selected for modeling since 
they have shown reliable outputs in several researches in 
this field. Mathematically, GMDH algorithm is based on the 
Volterra functional series in the form of bivariate quadratic 
polynomial as represented in Eq. (1) [45, 46].

In this equation, the Volterra series is changed into a set 
of chain recursive equations; therefore, the Volterra series 
is regenerated by the algebraic repositioning of each of the 
recursive equations. Complex systems that include m input 
and an output variable can be decomposed to cm2 =

m(m−1)

2
 

simple partial system with two inputs and one output. How-
ever, all the outputs are considered the same and equal to 
that of the complex system. To combine two partial systems 
into a single system and to form a new system that has varia-
bles from both former systems, it is sufficient to remodel the 
output of models with n inputs. GMDH algorithm performs 
modeling by applying two rules. The first one is to obtain 
a model in which almost all the variables of the system are 
represented. The second requirement is to obtain a model 
whose output error is lower than that of the other models 
that are calculated in the previous steps.

GMDH neural network is a self-organizing and one-direc-
tional network that has different layers in which each layer 
has several neurons. The neurons’ structures are similar. 
Weights (w) are set in each neurons as specific and constant 
values on the basis of singular value decomposition (SVD) 

(1)yi = f
(

xi, xj
)

= a0 + a1xi + a2xj + a3xixj + a4x
2
i
+ a5x

2
j
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and solving normal equation (SNE) techniques. The promi-
nent feature seen in this type of network is that the neurons 
of the previous layer (m) are responsible for generation of 
cm

2 new neurons. Among the generated neurons, some of 
them must be eliminated to prevent divergence of the net-
work. These neurons are called dead neurons. This algorithm 
is described in more details in Refs. [47, 48].

In addition to GMDH multilayer perceptron (MLP), ANN 
is applied for modeling. The procedure of this algorithm has 
been explained in details in several articles [41, 42]. Various 
factors such as number of hidden layers and neurons in addi-
tion to the utilized training function affect the performance 
of these models. In the current study, two training algorithms 
including Levenberg–Marquardt and scaled conjugate gradi-
ent are used. Since the problem is not very complex, just one 
hidden layer is applied in the models. Different numbers of 
neurons from 3 to 10 are tested to determine the best one 
on the basis of mean square error (MSE) value. The appro-
priateness of the models and their accuracy are assessed on 
the basis of R-squared and MSE which are defined as [43]:

Results and discussion

As indicated in the previous section, GMDH is one of the 
methods employed for thermal conductivity modeling. The 
data for modeling are obtained from various experimental 
studies which have investigated the thermal conductivity of 
nanofluids with silica particles and different base fluids such 
as water, ethylene glycol, glycerol and mixture of water and 
ethylene glycol [49–51]. The ranges of variables are shown 
in Table 1. For this method, the data sets were divided into 
two groups known as test and training. Here, 30% of data 

R2 = 1 −

∑i=n

i=1

�

y
experimental

i
− y

predicted

i

�2

∑i=n

i=1

�

y
experimental

i
− yexperimental

�2

MSE =
1

n

i=n
∑

i=1

(

y
experimental

i
− y

predicted

i

)2

.

sets were randomly utilized for testing the trained networks. 
The obtained function for the thermal conductivity on the 
basis of the considered inputs is provided in Appendix, 
where x1 , x2 , x3 and x4 are base fluid thermal conductivity 
(W m−1 K−1) at 25 °C, mean size of particles (nm), volume 
fraction of silica nanoparticles in base fluid (%) and tem-
perature (°C), respectively. In Fig. 1, the values of thermal 
conductivity in actual condition (measured in experimental 
studies) are compared with outputs of the applied model. 
The value of R2 for the case of applying GMDH is 0.9997.

The value of R2 must be between 0 and 1. Closer values 
of R2 to the unity demonstrate higher model reliability and 
lower differences between the actual values and the quanti-
ties obtained by the regression. In addition to this param-
eter, using relative error can be useful to assess the precision 
of the model. The maximum absolute value of this factor 
for the model proposed by using GMDH is approximately 
1.75%, as shown in Fig. 2.

Similar to numerical and computational approaches 
[52–54], different parameters influence the output of model. 
Training algorithm is one the most important ones. Vari-
ous training algorithms have been employed in multilayer 
perceptron ANNs. In this study, scaled conjugate gradient 
(SCG) and Levenberg–Marquardt (LM) have been tested. 
In addition to the training algorithm, ANN structure such 
as number of neurons influences the model performance. In 
this study, according to the complexity degree of the prob-
lem, one hidden layer is considered. Furthermore, different 
numbers of neurons in range of 3 and 10 were tested to find 
the most accurate one. The criterion used for comparing the 
models is MSE value. In Table 2, MSE values for different 

Table 1  Variable ranges in the considered experimental studies

Variable Range

Temperature/°C 25–60
Volume fraction of particles/% 0.1–3
Size of particles/nm 21–45
Base fluids Water, ethylene glycol, glycerol 

and mixture of water and ethyl-
ene glycol
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Fig. 1  Comparison of the model outputs and measured values for 
GMDH-based model
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numbers of neurons for the case of using SCG algorithm 
are represented. The minimum value of MSE, indicating the 
highest reliability, is obtained for 8 neurons in the hidden 
layer.

Since using 8 neurons results in the most favorable fore-
cast, the outputs of the model are compared for this case. As 
illustrated in Fig. 3, R2 is equal to 0.9991. Similar to GMDH-
based model, the model is reliable based on its R2 value 
since it is very close to 1. The relative error of the forecasted 
values is represented in Fig. 4. In the case of using multi-
layer perceptron with SCG training algorithm, the highest 
absolute relative error is approximately 4%.

Similar to the case of using SCG training algorithm, 
various numbers of hidden neurons are checked for LM 
algorithm. In Table 3, MSE values for different numbers of 
neurons are represented. In the case of employing LM for 
network training, the minimum value of MSE is obtained 
by applying 9 neurons in the hidden layer which is equal to 
0.0000078. In comparison with the cases of utilizing SCG 

algorithm, MSE values of LM algorithms are lower which 
reveals more accurate performance of LM in training the 
network.

In Fig. 5, the determined data by LM method are com-
pared with the measured thermal conductivities in the pre-
vious experimental studies. As shown in this figure, R2 is 
0.9998, which is very close to 1. In Fig. 6, relative error of 
the model that used LM algorithm for training is shown. 
In this condition, the maximum absolute relative error is 
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Fig. 2  Relative error of the predicted data for GMDH-based model

Table 2  MSE values for 
different numbers of neurons for 
SCG-based model

Number of neurons 
in hidden layer

MSE

3 0.001862
4 0.000212
5 0.00059
6 0.000274
7 0.000576
8 0.000032
9 0.000295
10 0.000237
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Fig. 3  Comparison of the model outputs and measured values for 
SCG-based model
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approximately 3%, which is higher than the corresponding 
value of the GMDH-based model.

In Fig. 7, MSE values of the different models are repre-
sented. As represented in this figure, the highest value of 
MSE belongs to the multilayer perceptron ANN with SCG 
training algorithm. Moreover, it can be noticed that using 
LM algorithm for training leads to the lowest MSE quan-
tity. Despite the higher absolute relative error of the model 
in the case of using LM training algorithm compared with 
the GMDH approach, its MSE value is lower. This is due 
to lower deviation in the majority of predicted values in the 
case of applying LM.

Conclusions

Nanofluids containing silica particles are employable in 
thermal engineering since they have acceptable stability and 
favorable thermal properties. In the current article, MLP and 
GMDH neural networks are applied for thermal conductiv-
ity modeling. For the cases of applying MLP, two training 
algorithms including Levenberg–Marquardt and scaled con-
jugate gradient are evaluated. The main findings of the cur-
rent study are summarized as follows:

• All of the trained ANNs are able to properly model ther-
mal conductivity of the nanofluids.

• The accuracy of the proposed models is dependent on the 
training algorithm, utilized approach as well as network 
structure.

• The minimum value of MSE, which is approximately 
0.0000078, is observed in case of applying ANN with 
Levenberg–Marquardt training algorithm.

Table 3  MSE values for 
different numbers of neurons for 
LM-based model

Number of 
neurons in hidden 
layer

MSE

3 0.000044
4 0.000021
5 0.0000085
6 0.000015
7 0.0000087
8 0.000014
9 0.0000078
10 0.000011
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Fig. 5  Comparison of the model outputs and measured values for 
LM-based model
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• The values of R2 in the cases of applying LM, SCG and 
GMDH are 0.9998, 0.9991 and 0.9997, respectively.

• Using 8 and 9 neurons in the hidden layer of trained net-
works with SCG and LM, respectively, results in obtain-
ing the most accurate models.

• In all of the cases, the maximum relative deviations of the 
models does not exceed 4%, which reveals their accept-
able reliability.

Acknowledgement The authors would like to appreciate M. Afshrza-
deh for her support and help.

Appendix

where

Thermal conductivity =0.00126014 − N46 ∗ N2 ∗ 97.3843

+ N462 ∗ 48.6909 + N2 ∗ 0.993462

+ N22 ∗ 48.699

N2 = 9.37646 ∗ 10−5 − N363 ∗ 0.0335857 + N3 ∗ 1.03339

N3 = − 0.000874636 + N221 ∗ 0.122798 + N221 ∗ N4

∗ 11.3205 − N221
2 ∗ 5.74673 + N4

∗ 0.882377 − N4
2 ∗ 5.57863

N4 = − 0.00215872 − N23 ∗ 1.62829 − N23 ∗ N7

∗ 2.48184 + N23
2 ∗ 2.47217 + N7 ∗ 2.63815

N7 =0.000763705 + N230 ∗ 0.304117

+ N230 ∗ N13 ∗ 6.8786 − N230
2 ∗ 3.84272

+ N13 ∗ 0.693187 − N13
2 ∗ 3.03338

N13 = −2.22059 ∗ 10−5 + N19 ∗ 0.521767 + N23 ∗ 0.478278

N19 =0.00745006 − N406 ∗ 0.325665

− N406 ∗ N44 ∗ 2.88803 + N406
2 ∗ 1.75851

+ N44 ∗ 1.29031 + N44
2 ∗ 1.16405

N44 = − 0.00373522 + N90 ∗ 2.62726 + N90 ∗ N111 ∗ 81.2924

− N90
2 ∗ 42.2947 − N111 ∗ 1.61017 − N111

2 ∗ 39.0116

N90 =0.00439835 + N140 ∗ N152 ∗ 52.0459 − N140
2

∗ 25.4458 + N152 ∗ 0.985753 − N152
2 ∗ 26.586

N152 = 0.00164091 + N260 ∗ 4.11528

+ N260 ∗ N267 ∗ 135.676 − N260
2

∗ 69.9834 − N267 ∗ 3.11957 − N267
2 ∗ 65.6878

N267 = − 0.00647904 + N358 ∗ 1.04195 − N358 ∗ N568

∗ 6.13814 + N358
2 ∗ 3.00401 + N568

2 ∗ 3.0572

N568 = −3.84502 ∗ 10−11 + N576

N140 = 0.0808505 − x
2
∗ 0.00549205 − x

2
∗ N301 ∗ 0.0550408

+ x2
2
∗ 0.000522728 + N301 ∗ 0.968932 + N3012 ∗ 1.74424

N301 = − 0.0144666 − N389 ∗ 0.282082 + N389 ∗ N504

∗ 1.90272 + N504 ∗ 1.35027 − N504
2 ∗ 1.97036

N389 =0.14449 − x
4
∗ 0.00484756

+ x
4
∗ N505 ∗ 0.0108732 + x2

4
∗ 1.97213 ∗ 10

−5

+ N505 ∗ 0.654134 − N5052 ∗ 0.101332

N505 = − 0.0488979 + 3

√

x
1
∗ 3

√

x
3
∗ 0.599567 + 3

√

x
1

2

∗ 0.963904 − 3

√

x
3
∗ 0.580766 + 3

√

x
3

2

∗ 0.121747

N406 = − 0.0120488 − N483 ∗ 56.7433 − N483

∗ N485 ∗ 37520.8 + N483
2 ∗ 18822.1 + N485

∗ 57.7807 + N485
2 ∗ 18698.6

N485 =0.0771466 + N510 ∗ 0.61926 + N510 ∗ N522

∗ 6.46372 − N510
2 ∗ 3.19209 − N522

2 ∗ 2.84671

N522 = − 0.493982 − x
4
∗ 0.0135231 + x

4
∗

3

√

x
1
∗ 0.0212663 + 3

√

x
1
∗ 1.19902

N510 = −11.2593 + 3
√

x
2
∗ 7.12025 + 3

√

x
2

∗ 3
√

x
3
∗ 0.111236

− 3
√

x
2

2

∗ 1.06188 − 3
√

x
3
∗ 0.44152 + 3

√

x
3

2

∗ 0.106266

N483 = 0.07833 + N512 ∗ 0.612841 + N512 ∗ N520

∗ 6.5401 − N512
2 ∗ 3.22536 − N520

2 ∗ 2.88274

N230 = −0.0006912 + N271 ∗ 0.322697 + N271

∗ N340 ∗ 0.705158 + N340 ∗ 0.67916

− N340
2 ∗ 0.705715
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N340 = − 0.110704 + N456 ∗ 1.54893 − N456

∗ N571 ∗ 5.64152 + N456
2 ∗ 2.71745

+ N571
2 ∗ 2.33681

N456 =0.0665178 + N508 ∗ 0.546738 + N508

∗ N516 ∗ 6.96973 − N508
2 ∗ 3.38871

+ N516 ∗ 0.116385 − N516
2 ∗ 3.19363

N271 = − 0.00622633 + N353 ∗ 1.04014 − N353 ∗ N569

∗ 6.01031 + N353
2 ∗ 2.93825 + N569

2 ∗ 2.99795

N569 = −2.67753 ∗ 10−11 + N575

N353 = 0.192405 − 3

√

x
3
∗ 0.302692 + 3

√

x
3

∗ N516 ∗ 0.317988 + 3

√

x
3

2

∗ 0.123219 + N516 ∗ 0.5975 + N5162 ∗ 0.0640845

N516 = − 1.69737 + x
2
∗ 0.126947 + x

2

∗ x
4
∗ 0.000155269 − x2

2
∗ 0.00175107

− x2
4
∗ 2.86687 ∗ 10

−5

N23 =0.00447349 − N153 ∗ N50 ∗ 78.5724

+ N153
2 ∗ 38.8351 + N50 ∗ 0.977106

+ N50
2 ∗ 39.7578

N50 = − 0.00391508 + N84 ∗ 1.99388 + N84

∗ N111 ∗ 50.3034 − N84
2 ∗ 26.4171 − N111

∗ 0.97457 − N111
2 ∗ 23.9045

N111 = 0.00345229 + N384 ∗ 0.521188 + N384

∗ N147 ∗ 29.5477 − N384
2 ∗ 15.4699 + N147

∗ 0.481536 − N147
2 ∗ 14.0842

N384 =0.20894 − 3

√

x
3
∗ 0.323349 + 3

√

x
3
∗ N520

∗ 0.31765 + 3

√

x
3

2

∗ 0.13443 + N520 ∗ 0.562513

+ N5202 ∗ 0.0980371

N84 = 0.000661737 + N143 ∗ N153 ∗ 69.385

− N143
2 ∗ 34.1426 + N153 ∗ 1.00566 − N153

2 ∗ 35.2489

N153 =0.0016409 + N260 ∗ 4.11528 + N260 ∗ N266

∗ 135.675 − N260
2 ∗ 69.9831 − N266

∗ 3.11957 − N266
2 ∗ 65.6875

N266 = − 0.00647904 − N576 ∗ N358 ∗ 6.13814 + N576
2

∗ 3.0572 + N358 ∗ 1.04195 + N358
2 ∗ 3.00401

N576 = 6.28532 + x
1
∗ 9.35319 + x1

∗ 3

√

x
1
∗ 21.8155 − x2

1
∗ 18.2776

− 3

√

x
1
∗ 11.9925 − 3

√

x
1

2

∗ 7.78641

N221 = 3.45931 ∗ 10
−5 + N315 ∗ 1.98289 + N315

∗ N363 ∗ 9.78517 − N315
2 ∗ 5.79152 − N363

∗ 0.98315 − N363
2 ∗ 3.98824

N315 = − 0.0353646 − N417 ∗ 0.312089 − N417

∗ N504 ∗ 6.73671 + N417
2

∗ 4.34277 + N504 ∗ 1.47506 + N504
2 ∗ 2.21611

N417 =0.046616 − x
3
∗ 0.0227056 + x

3
∗ N523

∗ 0.0936959 + x2
3
∗ 0.00319128 + N523

∗ 0.773515 + N5232 ∗ 0.0944211

N523 =0.554784 − 3

√

x
1
∗ 0.446589 + 3

√

x
1

∗ 3

√

x
4
∗ 0.735148 − “x4, cubert” ∗ 0.468161

N363 = − 0.113544 + N480 ∗ 1.56256

− N480 ∗ N571 ∗ 4.71348 + N480
2

∗ 2.28464 + N571
2 ∗ 1.82954

N571 = −1.05339 ∗ 10−12 + N573

N573 = − 0.619777 + x
2
∗ 0.0558848 + x

2

∗ “x1, cubert” ∗ 0.0469653 − x2
2
∗ 0.00128743

− 3

√

x
1
∗ 0.799765 + 3

√

x
1

2

∗ 0.423977

N480 =0.0793283 + N507 ∗ 0.606649 + N507

∗ N520 ∗ 6.5024 − N507
2 ∗ 3.19284

− N520
2 ∗ 2.87022

N520 = −0.0731976 + x
1
∗ 1.57015 + x

1

∗ x
4
∗ 0.01282 − x2

1
∗ 0.98239

− x
4
∗ 0.00321404

N507 = −1.62014 + x
2
∗ 0.123157 + x

2

∗ x
3
∗ 0.00118382 − x2

2
∗ 0.00162357
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N46 = −0.00384249 + N87 ∗ 2.23248 + N87

∗ N112 ∗ 15.7771 − N87
2 ∗ 9.40143

− N112 ∗ 1.21432 − N112
2 ∗ 6.39333

N112 =0.00122818 + N402 ∗ 0.497913 + N402

∗ N147 ∗ 23.2124 − N402
2 ∗ 12.2215

+ N147 ∗ 0.510862 − N147
2 ∗ 11.0014

N147 =0.0151096 − N517 ∗ 0.733569

+ N517 ∗ N248 ∗ 1.09936 + N248 ∗ 1.66087

− N248
2 ∗ 1.01956

N248 = −0.0312296 + x
1
∗ 0.215028

− x
1
∗ N358 ∗ 7.49913 + x2

1
∗ 4.13888

+ N358 ∗ 0.946609 + N3582 ∗ 3.23154

N402 =0.0376697 − x
3
∗ 0.0223321

+ x
3
∗ N521 ∗ 0.0940964 + x2

3
∗ 0.00297722

+ N521 ∗ 0.814425 + N5212 ∗ 0.053195

N521 =0.180556 + x
1
∗ 0.565333

+ x
1
∗ 3

√

x
4
∗ 0.443784 − x2

1
∗ 0.970109

− 3

√

x
4
∗ 0.111981

N87 =0.000661738 + N143 ∗ N151 ∗ 69.385

− N143
2 ∗ 34.1426

+ N151 ∗ 1.00566 − N151
2 ∗ 35.2488

N151 =0.00164091 + N260 ∗ 4.11528

+ N260 ∗ N269 ∗ 135.676 − N260
2 ∗ 69.9834

− N269 ∗ 3.11957 − N269
2 ∗ 65.6878

N269 = −0.00647904 − N575 ∗ N358 ∗ 6.13814

+ N575
2 ∗ 3.0572 + N358 ∗ 1.04195

+ N358
2 ∗ 3.00401

N358 =0.188766 − 3

√

x
3
∗ 0.299711

+ 3

√

x
3
∗ N519 ∗ 0.317394 + 3

√

x
3

2

∗ 0.121656

+ N519 ∗ 0.608858 + N5192 ∗ 0.0534157

N519 = −11.1969 + 3

√

x
2
∗ 7.37547

+ 3

√

x
2
∗ 3

√

x
4
∗ 0.172616 − 3

√

x
2

2

∗ 1.17692

− 3

√

x
4
∗ 0.451075
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