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Abstract
The paper focused on an analytical analysis of the main features of heat transfer in incompressible steady-state flow in a 
microconfusor with account for the second-order slip boundary conditions. The second-order boundary conditions serve 
as a closure of a system of the continuity, transport, and energy differential equations. As a result, novel solutions were 
obtained for the velocity and temperature profiles, as well as for the friction coefficient and the Nusselt number. These solu-
tions demonstrated that an increase in the Knudsen number leads to a decrease in the Nusselt number. It was shown that the 
account for the second-order terms in the boundary conditions noticeably affects the fluid flow characteristics and does not 
influence on the heat transfer characteristics. It was also revealed that flow slippage effects on heat transfer weaken with an 
increase in the Prandtl number.
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List of symbols
cf	� Friction coefficient
cp	� Specific heat at constant pressure (kJ kg−1 K−1)
h	� Heat transfer coefficient (W m−2 K−1)
k	� Thermal conductivity (Wm−1 K−1)
L	� Free path of a gas molecule (m)
T	� Temperature (K)
u, v	� Velocity components (m s−1)
x, y	� Cartesian coordinates (m)

Greek symbols
Θ	� Dimensionless temperature
ρ	� Density (kg m−3)
τ	� Shear stress (Pa)
η	� Dimensionless coordinate
μ	� Dynamic viscosity (Pa s)
ν	� Kinematic viscosity (m2 s−1)

Dimensionless values
Nu	� Nusselt number
Kn	� Knudsen number
Pr	� Prandtl number
U	� Dimensionless axial (streamwise) velocity

Subscripts/superscripts
w	� Wall
f	� Flow

Introduction

Investigations of fluid mechanics, and heat and mass trans-
fer in microchannel flows have drawn much attention of 
researchers due to the wide use of such flows in microe-
lectromechanical and microenergy systems. The trends for 
future development demonstrate a demand for an increase 
in the capacities of these systems with their simultaneous 
downsizing. Mathematical modeling of microchannel flows 
encounters with a necessity to deal with microscales in the 
range of micrometers. Liquid and gaseous microflows are 
different from each other in that the rate of proximity and 
intensity of movement of the molecules in them are notice-
ably different. The average distance between the molecules 
in gases is typically larger than the molecule diameter, 
whereas in liquids, it lies in the range of maximum one 
molecule diameter. Therefore, the mechanism driving mass, 
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momentum, and energy transfer in liquids is different from 
that in gases [1].

To quantify the rarefaction effects in microflows, the so-
called Knudsen number (Kn) is used. The dimensionless 
Knudsen number is equal to the ratio between the mean free 
path of gas molecules (L) and the distance between the chan-
nel walls.

The authors of the works [2, 3] modeled effects of differ-
ent Knudsen numbers in microflows. For the Knudsen num-
bers 10−3 ≤ Kn ≤ 10−1 , effects of the slippage on the walls, 
fluid flow can be modeled using the Navier–Stokes equations 
closed by the slip boundary conditions [2]. For the Knudsen 
numbers 10−1 ≤ Kn ≤ 10 , the continuum assumption did not 
hold, whereas the modeling could be performed using the 
Monte Carlo method or Burnett equations [3].

The slippage effects are controlled by the angle of contact 
between the surface and the liquid, shear stress, pressure, 
viscous heating, the amount and nature of the gas dissolved 
in the liquid, electrical characteristics, and surface rough-
ness [4]

Fluid flow in a microchannel between parallel flat plates 
was modeled in the work [5]. Physically, fluid slippage is 
attributed to the presence of a region with reduced viscos-
ity between the fluid and the solid surface. The authors [5] 
demonstrated that in the channels, whose height was more 
than 7.5 microns, air flow was modeled using the assump-
tion of a continuous medium. For air flows in the channels, 
whose height was less than 7.5 microns, one must employ 
the methodology based on the molecular approach.

The authors of the work [6] performed experimental and 
numerical studies of heat transfer in five rectangular micro-
channel geometries with the hydraulic diameter of 222 μm, 
267 μm, 323 μm, 330 μm, and 343 μm. The Reynolds num-
bers varied in the range of 2.1 ≤ Re ≤ 48 , the heat flux den-
sity lied in the range from 10 W to 100 W, the inlet fluid 
temperature was 29 °C, whereas the mass flow rate varied 
from 0.0167 kg s−1 to 0.116 kg s−1. The authors found that 
for a hydraulic diameter of 222 μm, the heat transfer coeffi-
cient was higher as compared to the other channels involved 
in the study. The agreement between the numerical modeling 
and experimental measurements in the work [6] was good 
(discrepancies of up to 5%).

An analytical solution for heat transfer and entropy gen-
eration in a microchannel flow was obtained in [7]. Three 
different laws for slippage on the walls were used, namely 
the non-linear Navier slip law, the Hatzikiriakos slip law, and 
the asymptotic slip law. As a result, it was demonstrated that 
the Nusselt number obtained by the Hatzikiriakos slip law is 
higher, and the average entropy generation rate is lower than 
that predicted by the asymptotic slip law. This difference 
increases together with the slip coefficient.

Peculiarities of heat transfer in flow in a wavy micro-
channel were simulated numerically by the finite-volume 

method in the work [8]. In particular, effects of slippage 
(Knudsen number) on the friction coefficient and on 
the Nusselt number were elucidated. At large Knudsen 
numbers, significant effects of viscous dissipation were 
observed. It was also pointed out that viscous dissipation 
causes a singular point in the Nusselt number curve.

Three-dimensional numerical modeling of the effects 
of the microchannel geometry on the temperature profiles, 
heat transfer coefficient, pressure drop, friction coefficient, 
and wall shear stress for the range of Reynolds numbers 
from 100 to 1000 was performed in [9]. The authors stud-
ied radiators, where microchannels with rectangular, trap-
ezoidal, and triangular cross sections were used for heat 
removal. Each particular cross section had three different 
geometric dimensions. The highest coefficients of skin 
friction and heat transfer were obtained in microchannels 
with the smallest hydraulic diameter.

A numerical study of heat transfer in a microchannel 
of a novel design was performed in [10]. A cavity was 
located at the entrance to a rectangular microchannel. It 
was shown during the study that this cavity promotes the 
mixing processes in the flow, which also enhances heat 
transfer in the entire system.

An analytical study of forced convection in a mini/
microchannel filled with microfoam was performed sub-
ject to a uniform but asymmetric wall heat flux in [11]. 
In particular, velocity slip, thermal slip, effects of local 
thermal non-equilibrium, and asymmetric heat flux were 
considered. As one of the results, the authors obtained 
relations for the velocity and temperature profiles in the 
solid and the liquid.

Nanofluid flow in a microchannel with a porous matrix 
was modeled in [12]. During the simulation, the parameters 
of the porous insert were varied. In addition, combined con-
vective–radiative boundary conditions were considered. The 
solution of this problem made it possible to optimize the 
values of the slip length of the flow and the concentration 
of nanoparticles to minimize global entropy production, as 
well as an increase or a decrease in heat transfer depending 
on the permeability of the porous medium.

Rarefied gas flows in microelectromechanical systems 
(MEMS) were numerically simulated in [13] using the 
hybrid finite-element/finite-volume (FE/FV) method. Cir-
cular and rectangular microchannels were considered. 
Extended inlet boundary conditions were used for rectan-
gular microchannels, whereas inlet boundary conditions 
were used for circular microchannels. It was found that the 
friction coefficients decreased with the increasing Knudsen 
number for both types of the microchannels, whereas in a 
rectangular microchannel, the decreasing trend was more 
pronounced. It was also shown that for very large Prandtl 
numbers and high heat transfer rates, velocity slippage pre-
vails over the temperature jump.
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The second-order velocity slip conditions considering the 
temperature jump for the Mach numbers 1 ≤ M ≤ 5 were 
applied to Couette stationary microflow of the Maxwell 
monatomic gas in the work [14]. Here, the Knudsen numbers 
were in the range of Kn ≤ 1 . It was revealed that the results 
using Burnett equations with the second-order slip boundary 
conditions show much better agreement with direct simula-
tion Monte Carlo (DSMC) data at high Kn values.

The given above analysis of the research activities on 
fluid flow and heat transfer in microchannels performed 
over the past few years indicates that studies incorporated 
different geometries of microchannels, namely circular, flat, 
rectangular, and triangular, and straight and curved, subject 
to different boundary and initial conditions. In the works 
[15–18], the lattice Boltzmann method (LBM) was success-
fully applied to simulate stationary and accelerated micro-
flows in straight and curved microchannels. The simulations 
enabled quantifying the effects of the Rayleigh, Prandtl, and 
Nusselt numbers, as well as slippage on the flow develop-
ment in circular, flat, and curved microchannels. A com-
parative analysis of the results of analytical and numerical 
(LBM) modeling of microflows demonstrated their good 
agreement (discrepancy of less than 1%) under the same 
boundary conditions.

An example of a numerical study of two-phase flow in 
a microchannel with a variable cross section using LBM 
is described in [19]. Also, LBM technology was success-
fully applied in [20] to study heat transfer characteristics of 
a nanofluid flow with various concentrations in a microchan-
nel with hydrophilic and superhydrophobic walls under the 
influence of a transverse magnetic field.

As a rule, in analytical studies of heat transfer in micro-
channels, first-order boundary conditions were used. How-
ever, the use of the second-order boundary conditions [21] 
enables expanding the boundaries of the continuous flow 
regime and increasing the range of the Knudsen numbers 
involved in modeling.

The second-order slip boundary conditions for the veloc-
ity u and the temperature T  were proposed by different 
researchers. In general, these conditions can be presented 
as [21]

where n is the dimensionless coordinate normal to the solid 
surface. The coefficient A1 is close to unity, whereas the 
coefficient A2 can take either positive or negative values. 
The positive value is A2 = 0.5, and the negative value is 
A2 = − 1.6875. Hence, one of the objectives of this work 
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was to study how these boundary conditions with the posi-
tive and negative values of the coefficient A2 affect the flow 
pattern in the microconfusor.

Studies of fluid flow and heat transfer in microconfusors 
have not received enough attention yet. However, heat trans-
fer in microconfusors represents an interesting and important 
phenomenon important in understanding the dynamics of 
flows of different nature in modern electronic equipment. 
In connection with the aforementioned, the main objective 
of this work is an analytical study of fluid flow and heat 
transfer in a microconfusor with the second-order boundary 
conditions. This analytical solution, its analysis, and inter-
pretation represent novelty of the present work, because to 
the knowledge of the authors, such solution has never been 
published in the literature yet.

Fluid flow

Let us consider confusor flow in a boundary layer (Fig. 1), 
whereas potential flow outside of the boundary layer is sub-
ject to a hyperbolic law [22]

where U∞ is the velocity of the main flow and u1 is a con-
stant. In accordance with the work [18], self-similar vari-
ables for this case are 

The problem is considered in the parabolic approxima-
tion. This means that the complete elliptic (with respect to 
the coordinates) Navier–Stokes equations are replaced by 
the Prandtl equation of the boundary layer, as soon as one 
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Fig. 1   Schematic of the flow geometry
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neglects the second derivatives with respect to the marching 
variable x.

Substituting Eqs. (4) and (5) into the equations of the 
boundary layer with the pressure gradient

yields [22]

This equation is to be solved under the following bound-
ary conditions (A1 = 1, A2 = s)

where Eq. (9) follows from condition (1).
Here

is the modified Knudsen number.
To solve Eq. (8), let us follow the approach [22] and mul-

tiply this equation with f ′′ and afterward integrate, which 
yields as a result

Here c1 is the integration constant. With account for the 
boundary condition (10), one can transform Eq. (12) to

One can further rewrite this equation as

To perform the integration, let us make the following 
substitution

Thus, one can obtain from Eq. (14)
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The inverse transformation yields an equation for the 
velocity profile

Using boundary condition (9), one can obtain the follow-
ing transcendental equation for the integration constant c2

For no-slip flow, one can obtain an expression for the 
constant c2 from Eq. (18)

which coincides with the respective solution obtained in 
[22].

Figure 2 depicts velocity profiles by Eq. (17) for differ-
ent values of the Knudsen number for s = 0. As expected, an 
increase in the Knudsen number causes an increase in the 
velocity jump at the wall.

At the same time, variation of the parameter s also affects 
the velocity jump on the wall (Fig. 3). For positive values 
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Fig. 2   Velocity profiles as a function of the coordinate � at different 
values of the Knudsen number Kn
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of the parameter s, the velocity jump decreases, whereas for 
negative values of s, the velocity jump increases.

One can further determine the surface friction with the 
help of Eq. (17)

This yields a relation for the friction coefficient

Table 1 elucidates the influence of the boundary condi-
tions of the first and second order and the Knudsen number 
on the friction coefficient. With an increase in the Knudsen 
number, the friction coefficient decreases for all values of the 
parameter s, whereas for the negative value of s = − 1.6875, 
the trend of the decrease in the friction coefficient is more 
pronounced.
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Heat transfer

At the first stage, a solution of the energy equation was 
obtained in the parabolic approximation, like it was done 
above during the solution of the velocity boundary layer 
equation. That is, the second derivative of the tempera-
ture with respect to the marching coordinate x was not 
considered.

The energy equation has the following form

For this case, the dimensionless temperature profile can 
be expressed as

Substitution of Eqs.  (4), (5), and (23) into Eq.  (22) 
yields

Equation (24) enables concluding that in accelerating 
flow in a confusor, where the potential flow follows the law 
(3), heat is transported by the heat conduction mechanism.

This equation is to be solved under the following 
boundary conditions

As one can see from here, Eq. (24) has a solution in the 
form of a linear function. This means that it is not possible 
to satisfy boundary conditions (25) and (26). However, the 
self-similar variable (4) is a property of scaling symme-
try of full Navier–Stokes and Fourier–Kirchhoff equations 
[23]. Therefore, the self-similar variable (4) is also valid 
for the elliptic energy equation

Then, applying variable (4) to Eq. (27), one can obtain
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Fig. 3   Velocity profiles as a function of the coordinate � at different 
values of the parameter s 

Table 1   Effects of the boundary conditions of the first and second 
order and the Knudsen number on the friction coefficient
c
f

c
f0

Kn

0 0.05 0.1

s = 0 1 0.957678 0.917437
s = 0.5 1 0.958609 0.92109
s = − 1.6875 1 0.954533 0.905087
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The second integration yields

With the help of the boundary conditions (25) and (26), 
one can find the integration constants. Then, the final form 
of the temperature profile is

The same result is also valid for the case s = 0, because 
���(0) = 0 . Thus, the use of the second-order slip bound-
ary conditions for accelerating flow subject to the poten-
tial flow boundary condition (3) does not affect heat 
transfer.

Using the Fourier law, one can derive an equation for 
the heat transfer coefficient

This equation can be rewritten in the dimensionless 
form as

where

One can also rewrite Eq. (34) as follows

where Nu0 is the Nusselt number for no-slip flow.
Equation (36) shows that for accelerating flow subject 

to the potential flow boundary condition (3), heat transfer 
rate does not depend on the Reynolds number. Moreover, 
for no-slip flow, heat transfer is also independent from the 
Prandtl number. This stands in the analogy to the circular 
laminar flow studied in the work [18].

Figure  4 demonstrates the effect of the Knudsen 
number and Prandtl number on the normalized Nusselt 
number.
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Figure 4 demonstrates that with an increase in the 
Knudsen number, the heat transfer rate decreases. This 
can be attributed to the weakening of the interaction of 
fluid flow with the channel wall due to slippage effects. 
In this case, the effect of slippage on heat transfer weak-
ens with the increasing Prandtl number, which can be 
explained by a decrease in the temperature jump on the 
wall at large Prandtl numbers. The same trend was also 
observed at mixed convection in pure fluids in microchan-
nels [17, 18], as well as in porous microchannels [24].

Conclusions

The paper presents the results of studies of fluid flow and 
heat transfer in a microconfusor with slip boundary con-
ditions of the second order. The studies were performed 
based on symmetry transformations, which enabled deriv-
ing a system of equations in a self-similar form. Based 
on it, novel analytical solutions were obtained for the 
velocity and temperature profiles as well as for the fric-
tion coefficient and the Nusselt number. These solutions 
demonstrated a trend of the decreasing Nusselt number 
with an increasing Knudsen number, which is attributed 
to weakening of the interaction between the fluid flow and 
the surface. The novel analytical solutions indicate also 
that the account for second-order terms in the boundary 
conditions does not affect the heat transfer characteristics 
(the temperature profile and Nusselt number). At the same 
time, the second-order effects manifested themselves in 
the variation of the fluid flow characteristics (the veloc-
ity profile and the friction coefficient). It was also shown 
that in an accelerating flow in a confusor subject to the 
potential flow (3), heat is transported only by the heat 
conduction mechanism. Computations indicated also that 
with an increase in the Prandtl number, flow slippage 
effects on heat transfer weaken. This can be explained by 
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a decrease in the temperature jump on the wall for large 
Prandtl numbers.
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