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Abstract
In the current work, after generating experimental data points for different volume fraction of nanoparticles ( � ) and different 
temperatures, an algorithm to find the best neuron number in the hidden layer of artificial neural network (ANN) method 
is proposed to find the best architecture and then to predict the thermal conductivity ( knf ) of  SiO2/water–ethylene glycol 
(50:50) nanofluid. This ANN is a feed-forward network with Levenberg–Marquardt for the learning algorithm. Regarding the 
experimental data points, a third-order function is obtained. In the fitting method, the mean square error is 2.7547e−05, and 
the maximum value of error is 0.0125. The correlation coefficient of the fitting method is 0.9919. This surface also shows 
the behavior of nanofluid based on the � and temperatures, and finally, the results of these methods have been compared. It 
can be seen that for 8 neuron numbers, the correlation coefficient for all outputs of ANN is 0.993861.
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Introduction

Fluid cooling or heating is very important for many indus-
trial applications. Improving the thermal properties of heat 
transfer fluids can be a method for heat transfer. Nanofluids 
have attracted the attention of many scientists in recent years 
[1–8]. For example, small amounts of nanoparticles in work-
ing fluids increase the thermal conductivity of these fluids. 
To improve the thermal conductivity of liquids, researchers 
have investigated the thermo-physical properties of nano-
fluids. Recently, ANNs are used in many scientific projects. 
ANNs are systems that are inspired by the human brain and 

the process of data is similar to biological neurons. The 
process of learning in such systems happens by examples. 
ANNs are often including connected units which are called 
neurons. The birth of ANNs returns to the 1940s by War-
ren McCulloch and Walter Pitts. In the 1940’s, the Hebbian 
learning algorithm was proposed by Hebb was an unsuper-
vised learning method. In 1954, Hebbian networks were 
simulated by Farley and Clark AND Holland, Rochester, 
Holland, Habit and Duda worked on computational methods 
[9–15]. In many cases, these ANNs can predict the behavior 
of the systems. One of the most critical aspects of these 
ANNs is in predicting the behavior of nonlinear systems or 
complex systems.

Jamal-Abadi et al. [16] optimized the knf of  Al2O3/water 
nanofluid using ANN. Their results show the maximum 
enhancement of 42% for knf . Tahani et al. [17] modeled the 
knf of GO/water nanofluid using ANN method. Their results 
indicate that the ANN can predict the knf . Khosrojerdi et al. 
[18] modeled the knf of GO/water nanofluid by MLP-ANN. 
Their results show high accuracy of ANN modeling for pre-
dicting the knf . Esfe et al. [19] used an ANN model to pre-
dict the knf of MWCNT–water nanofluid. They concluded 
that ANN could predict the knf more accurately. Aghayari 
et al. [20] compared the experimental and predicted data 
for the knf of  Fe3O4/water nanofluid using ANNs. Afrand 
et al. [21] predicted the effects of MgO concentration and 
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temperature on the thermal conductivity of water by using 
of ANN approach. Comparisons revealed that the ANN 
approach was accurate. Zhao and Li [22] predicted the knf 
of  Al2O3–water nanofluids using ANNs. They found that the 
ANN provides an effective way to predict the properties of 
this type of nanofluids. Esfe et al. [23] evaluated the prop-
erties of EG-ZnO-DWCNT with ANN. Their results show 
the accuracy of ANN in modeling the knf . Aghayari et al. 
[24] modeled the electrical conductivity of CuO/glycerol 
nanofluids. Kannaiyan et al. [25] modeled the knf of  Al2O3/
SiO2–water nanofluid using ANNs. They found that the 
predicted knf is satisfactory. Zendehboudi and Saidur [26] 
obtained a model to estimate the knf of 26 nanofluids under 
different situations.

In this study, after generating experimental data 
points for different volume fraction of nanoparticles 
(� = 0, 0.1, 0.5, 1, 1.5, 2, 3 and 5%) and different tempera-
tures (25, 30, 35, 40, 45 and 50 °C), an algorithm to find the 
best neuron number in the hidden layer of ANN method is 
proposed to find the best architecture and then to predict the 
knf of  SiO2/water–ethylene glycol (50:50) hybrid Newtonian 
nanofluid. Then, using the fitting method, a surface is fitted 
on the experimental data points. According to the authors’ 
research, there is no investigation with ANN into the knf of 
this type of nanofluids.

Experimental

In this study, a mixture of 60 to 40 volumes of water and 
ethylene glycol was used. The silica nanoparticles were 
suspended in water and ethylene glycol mixture (made by 
Germany’s Merk Corporation). The nanofluid is stabilized 
by combining the chemical and mechanical methods in the 
different � . A minimum of 5 h of ultra-sonication is used 
to stabilize the nanofluid. This nanofluid is made of 7 dif-
ferent volume fraction of nanoparticles (0, 0.1, 0.5, 1, 1.5, 
2, 3 and 5%) and different temperatures (25, 30, 35, 40, 45 
and 50 °C). After suspending the nanoparticles, the knf is 

measured with a KD2 probe. The physical and chemical 
properties of materials are presented in Tables 1, 2, and 3.

After making nanofluids, each sample was monitored for 
three days with no deposition and settling. Figure 1 shows 
the variation of knf versus � at all experimental temperatures. 
As can be seen, the changes of knf at all temperatures have 
a similar general shape. It is observed that in a lower � , the 
slope of knf is greater. This behavior is due to the fact that 
increasing the � increases the probability of localization and 
consequently decreasing the specific surface area. At 25 °C, 
by increasing the � from � = 0.1 to � = 5% , the knf increases 
from 3.7 to 38.4% and the highest knf occurs at the highest 
volume fraction. At 30 °C, by increasing � from 0.1 to 5%, 
the knf increases from 3.9 to 31% and the highest knf occurs 

Table 1  Ethylene glycol properties

Properties Value

Combustion temperature/°C 410
Saturation concentration/g m−3 15
Melting point/°C − 13
Molar mass/g mol−1 62.07
Density/g cm−3 1.11
pH value 6.5-7
Boiling point/°C 197.6
Steam pressure/°C 410

Table 2  Water properties

Properties Value

Molar mass/g mol−1 18.1053
Density/g cm−3 0.998
Specific heat/J kg−1 K−1 4180
Boiling point/°C 99.9

Table 3  Properties of Silica 
nanoparticles

Properties

SiO2 Molecular formula
Spherical Nanoparticle shape
20–30 nm Size
99%< Purity
White Appearance
2.4 g cm−3 Density
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Fig. 1  knf versus �
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at the highest � . At 35 °C, by increasing the � from 0.1 to 
5%, the knf increases from 4.1 to 41.9% and the highest knf 
occurs at the highest � . At 40 °C, by increasing the � from 
0.1 to 5%, the knf increases from 4.3 to 43.1% and the high-
est knf occurs at the highest � . At 50 °C, by increasing the � 
from 0.1 to 5%, the knf increases from 5.1 to 50.9% and the 
highest knf occurs at the highest �.

Figure 2 shows the changes in the knf versus temperature 
at the different � . At � = 0.1% , the knf increases 6.6% with 
increasing temperature from 25 to 50 °C. The highest knf 
is related to T = 50 °C. At � = 0.5% , with increasing tem-
perature from T = 25–50 °C the knf increases 9.9%. The knf 
increases by 9.9% compared to the kbf  at T = 25 °C.

At � = 1% , with increasing temperature from 
T = 25–50 °C, the knf increases 14.9%. At � = 1.5% at 50 °C, 
the knf increased by 13.7%. At � = 2% , the knf increases 
27.8% with increasing temperature from 25 to 50 °C. In 
� = 3% , with increasing temperature from T = 25–50 °C, the 
knf increases 8.9%. At � = 5% , with increasing temperature 
from T = 25–50 °C, the knf increases 45.5%.

As the temperature increases, the movement of the nano-
particles increases, resulting in a higher knf . The increase in 
knf with increasing temperature and � can be attributed to the 
weakening of the molecular bonds in the fluid layers as well 
as the increase in the collision between the nanoparticles.

ANN method

ANNs are used for modeling the behavior of nanofluid. 
ANN is widely used in predicting the behavior of system 
especially nonlinear systems. But in this paper, an optimized 
ANN for predicting the knf is reached by changing different 

neuron numbers in the hidden layer and then comparing 
the performances and selecting the best neuron number. In 
fact, the architecture of ANN is modified to obtain the best 
neuron number for predicting the knf . But some terms and 
descriptions about the basics of ANN has been presented 
as follows.

Mean square error (MSE) is presented as follows,

In Eq. 1, N is the number of data points, YANN
k

 is the out-
put and Yexp

k
 is the experimental value. In ANNs, the data are 

predicted by Eq. 2,

In Eq. 2, yi is the output, � is activation function, wij is 
the weighting matrix, xj is input and bi is the bias. In this 
designed ANN, the activation function of input and hidden 
layer is tansig which is introduced in Eq. 3. Also, the activa-
tion function of output layer is purelin.

This ANN is a feed-forward network with Leven-
berg–Marquardt or damped least square for the learning 
algorithm. This algorithm was firstly introduced in 1944. 
The experimental data points are randomly divided into 
train, validation, and test parts. In the current work, there are 
48 data points. 70% of data set is categorized as train, 15% 
for validation, and 15% for test data. Train data points are 
used to train the network; meanwhile, validation data points 
are used to modify the training process, and at the final step, 
the test data points are used to calculate the performance of 
the network. This ANN predicts the knf of aforementioned 
nanofluid. Therefore, only one neuron is used in the output 
layer. Obviously, the results of ANN depend on the neuron 
numbers of the hidden layer. This algorithm tries different 
neuron number and calculates the performance, and finally, 
the best ANN is selected as the best answer. In addition, in 
this algorithm, an inner iteration is defined to increase the 
reliability of the ANN. In fact, this inner iteration calculates 
the performance of each neuron number, and then, the algo-
rithm generated another ANN and then calculates the per-
formance, and at the final step on inner iteration, the mean 
value of performance for that neuron number is considered 
as the performance. This algorithm is shown in Fig. 3.

In this work, the number of inner iterations is considered 
10. Different neuron numbers have been tested (from 6 to 
35). The sorted neuron numbers based on the performances 
are presented in Table 4.

(1)MSE =
1

N

N
∑

k=1

(YANN
k

− Y
exp

k
)2

(2)yi = �
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Fig. 2  knf versus temperature
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Considering Table 4, it can be seen that the ANN with 8 
neurons has the best performance. The correlation is defined 
as:

In Eq. 4, E is the expected value, cov is covariance, �X 
is the mean value of X and �Y is the mean value of Y  and 
�X, �Y are standard deviations of X, Y  . The correlation coef-
ficients for train, validation, test and all dataset are presented 
in Table 5. The correlation coefficient indicates that how 
closely data are along a straight line. The closer that the cor-
relation coefficient to one, the better data points are aligned. 
Data sets with correlation coefficient close to zero show no 
first-order line relationship. The results of Eq. 4 for different 
neuron numbers are presented in Table 5. It can be seen that 
the ANN with 8 neurons in the hidden layer has the best cor-
relation for overall data and its value is close to one.

The correlation coefficient indicates that how closely 
data are along a straight line. The closer that the correla-
tion coefficient to one, the better data points are aligned. 
Data sets with correlation coefficient close to zero show no 
first-order line relationship. The results of Eq. 5 for different 
neuron numbers are presented in Table 5. It can be seen that 
the ANN with 8 neurons has the best correlation for overall 
data and its value is close to one. In many ANNs, the data 
points are divided into three main categories including train 
validation and test randomly. Then these data points are used 
for the network. Train data trains the network and gener-
ates masses and biases of the network. The validation data 
points modify the masses and biases and finally the test data 
points are used to evaluate the performance of the network. 
In Table 2 different neuron numbers have been tested and 
these neuron numbers are sorted based on their test perfor-
mance. On the top of Table 2 it can be seen that the best 
neuron number is 8 because it has the best performance.

The train, validation, and test figures of ANN are pre-
sented in Figs. 4 to 7. Figure 4 shows ANN train outputs. In 
ANN train data outputs, MSE is 1.3040e−06, and maximum 
absolute value of error is 0.0027.

Figure 5 shows ANN validation outputs. In ANN valida-
tion outputs, MSE is 2.5222e−05 and maximum absolute 
value of error is 0.0073.

Figure 6 shows ANN test outputs. In ANN test outputs, 
MSE is 1.9024e−05 and maximum absolute value of error 
is 0.0084.

Figure 7 shows ANN all data outputs. In ANN all outputs, 
MSE is 7.3763e−06 and maximum absolute value of error 
is 0.0084. It can be seen that train, validation and test data 
points are accurately predicted by the ANN. In fact, this 
network can predict the knf for different temperatures and 

(4)�X, Y =
cov(X, Y)

�x�y
=

E
[

(X − �X)(Y − �Y)
]

�X�Y
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different � . In the next part, another method for predicting 
the knf has been explained.

Surface fitting

In this part, since there are two inputs ( � and temperature), 
we can fit a surface on experimental data points to predict 
the knf . The fitted surface is shown in Fig. 8.

Different orders for functions have been tested. But, the 
third order had significantly better results compared to the 
second order. Although, the fourth order showed better 
results but there were no considerable differences between 
the third-order and the fourth-order results. In addition, the 
fourth-order function had more coefficients. Therefore, to 
avoid complexity in the formula, the third-order function is 
selected. Regarding the experimental data points, a third-
order function is obtained. The fitted surface is presented 
in Eq. 5,

In Eq. 5, x is purity and y is temperature and Fitresult(x, y) 
is the fitted surface. The coefficients of the fitted surface 
are presented in Table 6. In the fitting method, the MSE is 
2.7547e−05, and the maximum value of error is 0.0125. The 
correlation coefficient of the fitting method is 0.9919. In 
Fig. 9 the experimental data points, ANN outputs and fitting 
results have been shown.

In Fig. 10, the absolute values of errors of ANN and fit-
ting method have been compared. It can be seen that the 
ANN method has smaller absolute values of errors com-
pared to the fitting method. In addition, the maximum error 
value of the ANN method is smaller than half of the fitting 
method. In Fig. 10 it can be seen that the ANN had smaller 
errors compared to the fitting method.

(5)

Fitresult (x, y) = p00 + p10 ∗ x + p01 ∗ y + p20 ∗ x
2

+ p11 ∗ x ∗ y + p30 ∗ x
3 + p21 ∗ x

2 ∗ y

Table 4  the sorted performance 
of ANN’s

Neuron 
number

All performance Train performance Validation performance Test performance

8 7.37649E−06 1.30469E−06 2.52197E−05 1.90217E−05
6 8.47684E−06 1.90473E−06 1.37804E−05 2.05819E−05
10 1.02916E−05 1.48273E−06 3.95266E−05 3.19353E−05
7 1.24023E−05 2.31286E−06 2.23756E−05 3.97099E−05
15 1.26828E−05 1.30566E−06 6.07263E−05 4.49271E−05
14 1.44023E−05 2.09325E−06 4.72589E−05 4.84729E−05
13 1.69112E−05 1.15953E−06 8.84119E−05 6.92192E−05
12 2.08732E−05 2.56651E−06 7.5961E−05 7.69594E−05
16 2.14792E−05 1.353E−06 0.000127409 8.27574E−05
11 2.21606E−05 3.65675E−06 6.19562E−05 7.03021E−05
9 2.25523E−05 4.84303E−06 3.47417E−05 6.08489E−05
20 2.53292E−05 1.86892E−06 0.000159285 8.66802E−05
18 2.57467E−05 2.81727E−06 0.000165672 6.53349E−05
21 2.61382E−05 1.99731E−06 0.000178242 8.06644E−05
17 2.63482E−05 1.71967E−06 0.000118298 0.00011995
19 3.36077E−05 2.32849E−06 0.000104338 0.000174189
26 4.0276E−05 3.37106E−06 0.000170948 0.000171665
24 4.40875E−05 1.20462E−06 0.000324637 0.000172652
27 4.88943E−05 9.85487E−07 0.000317248 0.000221715
22 4.91643E−05 1.71756E−06 0.000378495 0.00017546
30 6.19649E−05 3.06295E−06 0.000340598 0.000271853
25 6.22232E−05 1.36033E−06 0.000469096 0.000245695
23 7.54002E−05 5.53803E−06 0.000545423 0.00022148
31 7.65514E−05 1.71577E−06 0.000451049 0.000366992
33 8.08221E−05 4.24512E−06 0.000380854 0.000381939
29 8.2177E−05 1.50543E−06 0.000482644 0.0004024
28 8.85382E−05 3.43289E−06 0.000599153 0.000351235
32 9.84388E−05 9.57302E−06 0.000348312 0.000425521
34 0.000100409 6.15387E−07 0.000714411 0.000454483
35 0.000170977 2.99514E−06 0.001750203 0.000451687
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Table 5  The correlation 
coefficients of ANN outputs for 
different neuron numbers

Neuron number Train correlation Validation correlation Test correlation All correlation

8 0.99581 0.99159 0.98484 0.99386
6 0.99455 0.99605 0.98754 0.99345
10 0.99486 0.98975 0.98464 0.99186
7 0.99263 0.99326 0.97593 0.98953
15 0.99579 0.98652 0.97238 0.98976
14 0.99373 0.983135 0.97094 0.98832
13 0.99635 0.953821 0.96183 0.98598
12 0.99121 0.983651 0.94144 0.98246
16 0.99574 0.95947 0.95071 0.98291
11 0.98797 0.98129 0.97067 0.98184
9 0.98456 0.98645 0.96595 0.98104
20 0.99430 0.96124 0.93461 0.97902
18 0.99075 0.94952 0.94795 0.97945
21 0.99371 0.95402 0.94481 0.97891
17 0.99441 0.96535 0.90087 0.97916
19 0.99228 0.96876 0.90877 0.97221
26 0.99119 0.95088 0.91832 0.96961
24 0.99633 0.92621 0.90852 0.96740
27 0.99659 0.92519 0.90375 0.96463
22 0.99462 0.90016 0.90855 0.96049
30 0.99022 0.90530 0.86511 0.95458
25 0.99541 0.925627 0.89415 0.96354
23 0.98200 0.88231 0.88958 0.94239
31 0.99445 0.89345 0.88078 0.94671
33 0.98743 0.89726 0.79087 0.93709
29 0.99516 0.89638 0.88142 0.94864
28 0.98876 0.80943 0.75820 0.92683
32 0.97033 0.89714 0.83916 0.93412
34 0.99811 0.85140 0.83651 0.93254
35 0.99023 0.70508 0.78557 0.88432

Fig. 4  ANN train outputs
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Fig. 5  ANN validation outputs
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Fig. 8  The fitted surface

0.65

0.6

0.55

0.5

0.45

0.4
50

45
40

35
30

25 0
1

Purity
2

3
4

5

Fitted surface
Experimental points

Temperature/°C
T

he
rm

al
 c

on
du

ct
iv

ity
/W

 m
–1

 k
–1

Table 6  the coefficients of the 
fitted surface

Coefficients p00 p10 p01 p20 p11 p30 p21

0.3948 0.009 0.0008 0.0114 0.0007 − 0.0017 − 0.0001

Fig. 9  Experimental, ANN and 
fitting results
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ting method
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Conclusions

Based on the presented results, it can be concluded 
that the ANN had better ability in predicting the knf for 
� = 0, 0.1, 0.5, 1.5, 2, 3, 5% and T = 25, 30, 35, 40, 45, 50 °C. 
Also, ANN showed better performance and better correla-
tion and also smaller error in most of the predicted data 
points. Based on the presented results, it can be seen that:

• The best neuron number is 8.
• The correlation coefficient of the fitting method is 

0.9919.
• In the fitting method, the MSE is 2.7547e-05, and the 

maximum value of error is 0.0125.
• The ANN had ability in predicting thermal conductivity 

for volume fraction of particles range (0, 0.1, 0.5, 1.5, 2, 
3, 5%) and temperature range (25, 30, 35, 40, 45, 50 °C).

• ANN method has smaller absolute values of errors com-
pared to the fitting method.

• The maximum error value of the ANN method is smaller 
than half of the fitting method.

Therefore, it can be said that the designed ANN had 
showed better results compared to the surface fitting method 
and the results were reliable and accurate. Lab costs for gen-
erating experimental data are high. By using such a network, 
the thermal conductivity of this nanofluid can be obtained 
and decreases the experimental costs.
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