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Abstract
Ferrofluids are type of colloidal systems which are known as an important group of smart materials. Their physical properties 
adaptively change with magnetic strength. These characteristics of ferrofluid must be applied for improving the efficiency. 
In this work, thermal performance of a type of ferrofluid with a viscosity correlation dependence on temperature, magnetic 
field and volume fraction was scrutinized. FVM is applied for solving momentum, conservation and heat transfer equation. 
To consider the effect of solid part in thermal behavior of system, the conjugate heat transfer was considered. The wire is 
placed in the bottom of channel, and the equation of non-uniform external magnetic field is defined as user function. The 
results indicated in a comparison of studied parameters as non-dimensional variables, it is demonstrated magnetic number 
and wave amplitude result in the maximum impact on improving Nu and the worst impact on friction coefficient and pressure 
loss correspondence to volume fraction and Reynolds number. The results also predicted significant changes in viscosity 
under influence of effective parameters, especially Kelvin force.
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Introduction

Nanotechnology is one of the most brilliant areas in 
fluid mechanics that attract the researchers due to its 
greater capability. Nanomaterial is the new invent which 
is achieved by applying nano powders [1–11]. The spe-
cial features of nanofluid can be used in thermal and heat 
enhancement applications due to the flow field changes 
under the influence of magnetic fields [12–26]. Variety 
of researches were done in this field [27–38]. In one of 
the new investigations, Taslimifar et al. [39] reported in 
their study the using of nanomaterial in steady with using 

Kelvin forces. Gandomkar et al. [40] investigated pulsating 
ferrofluid heat pipe, to discover the best design between 
three different studied cases of magnetic field. Khosh-
mehr et al. [41] scrutinized the influences of combined 
ferrofluid and magnetic field in the boiling phenomena. 
Their experiment revealed that applying magnetic force 
led to enhancement in the boiling heat flux. Ahmad and 
Iqbal [42] presented a study on ferrofluid with temperature 
dependence viscosity affected by no-slip condition. Their 
results showed the concentration enhanced by enhancing 
viscous dissipation and Schmidt number. Strek and Jopek 
[43] investigated ferrofluid heat transfer under the impact 
of Kelvin forces. Shima and Philip [44] illustrated from 
their study on magnetic field effect on thermophysical 
properties that these properties could be changed signifi-
cantly by changing magnetic field parameters. Simulation-
based demonstrations help the researchers to find best 
configuration [45–64]. Gavili et al. [65] investigation on 
thermal conductivity of ferrofluid revealed that applying 
a magnetic source significantly increased thermal conduc-
tivity. Mehrali et al.’s [66] study on entropy generation of 
hybrid graphene–magnetite nanomaterial illustrated the 
irreversibility reduced significantly compared to raw H2O. 
Abdel-wahed [67] investigation on ferrofluid predicted 
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that nano size particles improved the Nu and decreased the 
surface shear stress, whereas curvature of the tube caused 
negative impact on Nu. Various numerical methods exist 
to evaluate performance of system [68–88]. Krishna Shah 
and Khandekar [89] also conducted a study on potential 
of ferrofluids for heat transfer augmentation, via numeri-
cal simulations. They found that higher volume fraction 
loading and magnetic fields applying resulted in better effi-
ciency and local Nusselt number observed to reach a sig-
nificant increase higher than no magnetic field case. Heat 
transfer efficiency of heat pipe with three different work-
ing fluids was studied by Hao et al. [90]. They found that 
startup efficiency of acetone-filled heat pipe is the best and 

friction of acetone-filled heat pipes showed the lowest effi-
ciency. Sheikholeslami et al. [91] scrutinized the impact 
of external force on ferrofluid heat transfer argumentation 
in ribbed channel. They studied different parameters such 
as magnetic sources arrangement and their magnitude on 
improving heat transfer from the channel.

In this study, changes in thermophysical parameters of 
a ferrofluid with a multivariable dependence viscosity in a 
wavy microchannel are presented. The impacts of param-
eters such as Re, wave amplitude, magnetic number and 
concentration on heat transfer coefficient, Nu, f on the 
domain have been investigated, and their influences are 
compared together.

Governing equation

The schematic of the considered geometry for the prob-
lem, a wavy microchannel with current-carrying wire as 
external source of magnetic field, and some of the bound-
ary conditions in two horizontal and vertical cross sections 
are shown in Fig. 1. Equations of steady-state conditions 
are as follows [91]:

The term 𝜇0

𝜌
M∇H⃗ is representative of magnetic force, 

and FL is Lorentz force consequent of the MHD.
Equations with considering FHD can be presented as 

follows [91–93]:

(1)∇ ⋅ 𝜌nfU⃗ = 0
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The terms 𝜇0M
𝜕H⃗

𝜕x
 and 𝜇0M

𝜕H⃗

𝜕y
 show the magnetic force 

effect. The terms �nfB2
y
u + �nfBxBy� and �nfB2

x
u + �nfBxByu 

in (4) and (5) are representatives of Lorentz force. For the 
different magnetization M, the following equation is derived 
[91]:

Hx and Hy are defined as [91]:

Here (a, b) is the coordinate of wire. H as the magnetic field 
intensity was defined as follows [91]:
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Magnetic numbers (Mnf) and Hartmann as two important 
parameters appearing in magnetic problems are defined as 
follows:

where h is the microchannel height.

where B0 is the highest value of magnetic field and χ is mag-
netic susceptibility.
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Fig. 2   Validation of Nusselt number and magnetic fields effect in a channel
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Also �nf is defined (see for details [91]) as:

The viscosity of nanofluid considered from correlations 
is extracted from experimental data proposed by nonlinear 
fitting by Wang et al. [92]. The ranges of volume fraction 
and temperature were considered 0.5–5% and 293–333 K, 
respectively, and the final equation for viscosity that is con-
sidered in this study is given as follows:

(16)
Knf
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Ks + 2Kf − 2�(Kf − Ks)

Ks + 2Kf − �(Kf − Ks)
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�nf = (316.0629 − 27886.4807�2

+ 0.035H2 + 4263.02� + 3.1H)e−0.02T

Table 1   Quantities of parameters in simulation

Kf /W m K−1 Thermal conductivity of fluid (pure 
water)

0.6

ρf/kg m−3 Fluid density 1050
ρp/kg m−3 Particle density 4600
μ0/N A−2 Magnetic permeability of vacuum 4π × 10−7

χ/m3/kg−1 Magnetic susceptibility 3 × 10−6

Ks/W m K−1 thermal conductivity of nano particles 
(Fe3O4)

6

σf/Ω m−1 Fluid electrical conductivity 0.05
σs/Ω m−1 Nano-particles electrical conductivity 25,000
b. Geometry features
 L/m Length of channel 0.01
 B/µm Depth of channel 250
 H/mm Height of channel 0.5
 h/µm Wave amplitude 25, 50, 75

c. Boundary conditions
 Internal-

walls
Conjugate

 Down-wall Heat flux (100 w cm−2)
 Upper wall 

and right 
and left 
Out-walls

Adiabatic

Present simulation results(a) (b) Tzirtzilakis and Xenos study [95]
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Fig. 3   Comparison of streamlines in a cavity due to FHD with [95]
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Geometry definition and boundary 
conditions

In the current article, a wavy duct as shown in Fig. 1 is 
studied. The direction of the fluid flow is in wave form with 
a sine curve expressed by the trigonometric function, as 
below.

where A and k are defined as amplitude and wavelength, 
respectively. The SIMPLE velocity–pressure coupling 
method is used for simulation. To discretize the convection 
terms, second-order upwind scheme is employed. The results 
of mesh independency examination are shown in Fig. 1c. 
Two maximum grids are in good agreement with each other 
in value of average Nusselt, and their tolerance is lower than 
1%; therefore, a grid with 1,700,000 elements is selected and 
used for this simulation (Fig. 2).

Simulation, geometry and boundary conditions data are 
presented in Table 1.

(19)y = A sin
(

2� ⋅

z

�

)

For validation a comparison between the theoretical 
investigation and present simulation is shown in Fig. 3. 
It can be observed that the current outputs are in excel-
lent agreement with theoretical one. For the magnetic field 
validation, the velocity profile of fluid flow imposed by 
an external magnetic field in a channel which is done by 
Aminifar et al. [94] is considered. The results predicted a 
good agreement between results in this study and Aminifar 
et al. study.
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Table 2   Simulation condition for magnetic field effect

Re h /µm Mn %V.F Tin/K

200 25 0 4 298.15
200 25 1,300,000 4 298.15
200 25 2,000,000 4 298.15
200 25 3,000,000 4 298.15
200 25 4,000,000 4 298.15
200 25 5,000,000 4 298.15
200 25 8,000,000 4 298.15
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Furthermore, the streamlines due to the external mag-
netic field under a channel in our simulation are compared 
with Tzirtzilakis and Xenosstudy [95] at Re = 400 and 
Mn = 256 (Fig. 4). There is a proper and very good treaty 
between results of current code and [95].

Results

In this section the effect of different influential param-
eters is studied. To better consideration and assessment 
of parameters effect, in every section one parameter is 

considered as variable and the rest of them are considered 
fixed. Figure 4 illustrates the impact of B on thermophysi-
cal parameters (see Table 2).

As it is obvious by augmenting Mn due to the increas-
ing recirculation and fluid–solid interaction, the thermal 
boundary layer has been affected and consequently the 
Nusselt number and heat transfer are increased. Further-
more, it is clear that due to the increase in fluid–solid 
interaction, the pressure loss and friction coefficient are 
enhanced.

Figure 5 shows a comparison of the wall temperature in 
various magnetic numbers. As it can be seen, by increasing 
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(a) Mn = 8 × 106 (I01 – I03) (b)
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Table 3   Simulation condition for volume fraction effect

Re h/µm Mn %V.F Tin/K

200 25 2,000,000 0.5 298.15
200 25 2,000,000 1 298.15
200 25 2,000,000 2 298.15
200 25 2,000,000 4 298.15

the magnetic number because of increasing the wall–fluid 
interaction and collision, and as a result increasing the heat 
transfer rate, the temperature of the bottom wall is signifi-
cantly decreased and it shows the significant impact of Mn 
on cooling application in microchannels.

Figure 6 presents a comparison between nanofluid tem-
peratures in different cross sections in the microchannel 
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(a) Nusselt number and heat transfer coefficient (b) Friction coefficient and pressure drop
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under influence of different magnitudes of magnetic field. It 
is clear that, from the inlet toward the outlet, the temperature 
of the ferrofluid due to the heat transfer between hot wall 
and nanofluid is increased; however, it is demonstrated that 
by increasing the magnetic number, because of increasing 
recirculation in fluid and increasing collision, the diffusivity 
of heat transfer in the fluid is increased and the maximum 
temperature in the outlet flow for the higher magnetic num-
ber is lower and also the temperature distribution is more 
uniform in the fluid field.

The impact of volume fraction of magnetic nanoparticles 
is investigated in Fig. 5 and Table 3.

It is shown that by increasing the volume fraction, the 
heat transfer coefficient and Nusselt number that are repre-
sentative of heat transfer augmentation are enhanced. The 

results indicate that by augmenting the � from 0.5 to 4.5%, 
the Nusselt number is increased by 33.3%. It is due to the 
increase in the wall–fluid interaction because of increas-
ing the magnetic field effect on flow field by increasing the 
volume fraction. Friction coefficient and pressure loss are 
also increased by augmenting � , about 0.63% and 0.66%, 
respectively (Fig. 7).

Effect of volume fraction on temperature distribution on 
the nanofluid field and microchannel wall is presented in 
Fig. 8. It is conducted that by augmenting � , as it is men-
tioned, due to the increasing magnetic field effect and con-
sequently fluid–solid interaction, the temperature on the 
wall along the channel is decreased. The diffusivity of heat 
transfer on the fluid by increasing volume fraction is also 
increased, and the temperature distribution is changed in 
the flow field (Fig. 9).

Reynolds number is another physical parameter that has 
been investigated in this study (see Table 4).

The results illustrated that in a constant magnetic field, 
increasing the Reynolds number has an opposite effect on 
Nusselt and also heat transfer coefficient. By increasing 
the Reynolds from 50 to 250, the Nusselt and heat trans-
fer decreased by about 8.6%. Increasing Reynolds number 
reduces the hydrodynamics and thermal boundary layer 
and consequently the heat transfer coefficient. However, in 
this investigation, the results demonstrated that magnetic 
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Fig. 9   Effect of Reynolds number on thermophysical parameters

Table 4   Simulation condition for Reynolds number effect

h/µm Mn %V.F Tin/K

25 1,300,000 4 298.15
25 1,300,000 4 298.15
25 1,300,000 4 298.15
25 1,300,000 4 298.15
25 1,300,000 4 298.15
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(a) Re = 50 (b) Re = 100
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number has a more dominant effect and compares the 
Reynolds number effect. Consequently, when the Reyn-
olds number increases, the impact of Mn will reduce and 
also the total effect leads to a decrease in heat transfer. 
Additionally, it is revealed that augmenting the Reynolds 

number will rise the friction coefficient and pressure drop 
significantly by about 6 and 8 times, respectively.

Figure 10 shows a comparison of temperature contour 
and streamlines for various Reynolds numbers. As it is 
clear from the figure, in the lowest Reynolds number 
due to the higher amount of magnetic field effect on 
nanofluid compared to the inertia force, the flow field 
experienced higher intensity of recirculation and conse-
quently interaction with walls. Therefore, heat transfer 
between hot wall and cold nanofluid is increased, and 
as it is obvious, the fluid temperature is much higher 
than other cases in the domain. However, by increasing 
Reynolds number, because of increasing the momentum 
of the fluid and consequently inertia force, the influence 
of magnetic field is faded. By decreasing the effect of 
magnetic field, the intensity of recirculation and inter-
action between fluid and wall are decreased, and as a 
result, the diffusivity of heat on the fluid is reduced and 
the fluid temperature is decreased.

Figure 11 illustrates the impact of inlet temperature on 
thermophysical properties.

It is cleared that by increasing inlet temperature, due 
to reducing the viscosity the pressure drop and friction 

Table 5   Simulation condition for inlet temperature effect

Re h/µm Mn %V.F Tin/K

200 25 2,000,000 4 293.15
200 25 2,000,000 4 298.15
200 25 2,000,000 4 303.15
200 25 2,000,000 4 308.15

Table 6   Simulation condition for wave’s amplitude effect

Re h/µm Mn %V.F Tin/K

200 0 1,300,000 4 298.15
200 25 1,300,000 4 298.15
200 50 1,300,000 4 298.15
200 100 1,300,000 4 298.15
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coefficient are reduced (see Table 5). However, inlet tem-
perature compared to other considered parameters did not 
have a significant effect on thermal performance and there 
is a just slight increase in both Nusselt and heat trans-
fer coefficient. Another parameter that is investigated in 
wavy microchannel in presence of external magnetic field 
is wave’s amplitude (see Table 6).

It is revealed that by increasing wave amplitude, due 
to the increase in the recirculation size and intensity, the 
interaction of fluid and structure is increased and conse-
quently a noteworthy augmentation in the Nu by about 
40%, respectively, has been observed. On the other hand, 
increasing fluid–solid collision increased the friction 

coefficient and pressure drop significantly that is a nega-
tive effect in channels (Fig. 12).

Temperature distribution in various amplitudes of 
wavy wall is shown in Fig. 13. It is illustrated that by 
increasing the amplitude, due to the increase in the inter-
action momentum and recirculation, the heat diffusiv-
ity on the ferrofluid is increased, and consequently, the 
temperature on the surface decreased along the channel 
and the fluid experienced more uniform temperature and 
more average temperature in higher amplitudes.

As it is mentioned in the paper, for this study the vis-
cosity of fluid is considered as a multivariable depend-
ence variables consisted of temperature, volume fraction 
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and magnetic field magnitude; therefore, in this section 
the changes on viscosity distribution in the ferrofluid are 
investigated. For this purpose, the temperature contour of 
four cross sections along the microchannel is considered. 
The results show that by increasing magnetic number the 
viscosity of fluid is increased and also a more uniform 

distribution of viscosity can be observed in the case with 
the highest magnetic number. The changes of the viscos-
ity by Reynolds number show that in the higher Reyn-
olds number due to the lower temperature, the viscosity is 
reduced in the ferrofluid. Comparison of the effect of inlet 
temperature on viscosity indicates that in the minimum 

Fig. 14   Influence of various 
parameters on viscosity distri-
bution
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studied inlet temperature, due to the minimum temperature 
of ferrofluid in the domain, the viscosity is lower than 
higher inlet temperature and maximum one. Additionally, 
it is illustrated by augmenting the � of ferrofluid, and the 
viscosity in the domain is increased. In all the figures, 
it can be observed that the overall viscosity range in the 
domain alongside the microchannel from inlet to outlet is 
increased and it is because of enhancing temperature of 
the fluid field from inlet to outlet (Fig. 14).

Comparison for different investigated parameters 
on friction coefficient and Nu is illustrated in Fig. 15. 
As it is clear from the figure, excepted of Reynolds 

number in constant magnetic field, the rest of consid-
ered variables showed a positive effect on Nusselt num-
ber; meanwhile, the magnetic field and wave amplitude 
have the most influence, respectively. Also it is con-
ducted although the amount of the friction coefficient 
for the wave amplitude and magnetic number is more 
than other variables and points because of the Reynolds 
number in which their effect studied on in (maximum 
Re = 250), however, depends on the trend of the graphs, 
and increase in Reynolds number is shown the worst 
effect on friction coefficient and consequently pres-
sure loss.
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Conclusions

Treatment of a ferrofluid with a multivariable dependence 
viscosity in a microchannel under impact of an external 
non-uniform magnetic field due to a current-carrying wire 
is studied. The effect of various variables such as inlet tem-
perature, Re, magnetic field magnitude and volume fraction 
on Nu, heat transfer coefficient, friction coefficient and 
pressure loss. The simulation conditions of all investigated 
cases are explained in results section. The results predicted 
that the magnetic field intensity growing has a important 
role on heat transfer augmentation and improving heat 
transfer and cooling in the microchannel; however, due to 
the increasing collision and interaction between ferrofluid 
and structure, the friction coefficient and pressure loss are 
also increased. Reynolds number showed a significant 
influence on increasing friction effect and pressure loss; 
however, in the lower Reynolds number, magnetic effect 
showed a more dominant effect compared to Reynolds and 
augmenting Nu. In the higher volume fraction the influ-
ence of Kelvin force is higher than lower magnetic num-
ber, and therefore due to the increasing recirculation and 
fluid–solid interaction, the Nu increased. Investigation of 
viscosity distribution in the fluid domain showed a signifi-
cant change due to the magnetic field and volume fraction. 
A comparison among variables effect as non-dimensional 
parameters showed that Reynolds number and volume 
fraction had a worst effect on friction coefficient, whereas 
magnetic number and wave’s amplitude increasing had a 
best impact on heat transfer augmentation.
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