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Abstract
Nonlinear mixed convection of heat and mass in a stagnation-point flow of an impinging jet over a solid cylinder embedded in 
a porous medium is investigated by applying a similarity technique. The problem involves a heterogenous chemical reaction 
on the surface of the cylinder and nonlinear heat generation in the porous solid. The conducted analysis considers combined 
heat and mass transfer through inclusions of Soret and Dufour effects and predicts the velocity, temperature and concentra-
tion fields as well as the average Nusselt and Sherwood number. It is found that intensification of the nonlinear convection 
results in development of higher axial velocities over the cylinder and reduces the thickness of thermal and concentration 
boundary layers. Hence, consideration of nonlinear convection can lead to prediction of higher Nusselt and Sherwood num-
bers. Further, the investigation reveals that the porous system deviates from local thermal equilibrium at higher Reynolds 
numbers and mixed convection parameter.

Keywords Nonlinear mixed convection · Stagnation-point flow · Local thermal non-equilibrium · Nonlinear heat 
generation · Soret effect · Dufour effect

List of symbols
a  Cylinder radius (m)
asf  Interfacial surface area per unit volume of the 

porous medium  (m−1)

Bi  Biot number Bi = hsfasf⋅a

4kf

C  Fluid concentration (kg m−3)
Cp  Specific heat at constant pressure (J K−1 kg−1)
Cs  Concentration (kg m−3)
D  Molecular diffusion coefficient  (m2 s−1)
Df  Dufour number Df = D⋅kf

Cs⋅Cp

C∞

(Tw−T∞)�

f (�)  Function related to u-component of velocity
f �(�)  Normalised velocity related to w component
h  Heat transfer coefficient (W K−1 m−2)
hsf  Interstitial heat transfer coefficient (W K−1 m−2)
k  Thermal conductivity (W K−1 m−2)
k̄  Freestream strain rate  (s−1)
k1  Permeability of the porous medium  (m2)
km  Mass transfer coefficient (m s−1)
kR  Kinetic constant (kg m−2 s−1)
kT  Thermal diffusion ratio
N∗  Ratio of concentration to thermal buoyancy forces 

N∗ =
�3⋅C∞

�1(Tw−T∞)

Nu  Nusselt number
Num  Nusselt number averaged over the surface of the 

cylinder
p  Pressure (Pa)
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P  Dimensionless fluid pressure
P0  The initial pressure (Pa)
Pr  Prandtl number
Qh  Heat source parameter Qh =

Q1a
2

4kf

qm  Mass flow at the wall (kg m−2 s−1)
qw  Heat flow at the wall (W m−2)
r  Radial coordinate
Re  Freestream Reynolds number Re = k̄⋅a2

2𝜐
Sc  Schmidt number Sc = �

D

Sr  Soret number Sr = D⋅kf

T∞

(Tw−T∞)
C∞⋅�

Sh  Sherwood number
Shm  Average Sherwood number
Tm  Mean fluid temperature (K)
u,w  Velocity components along ( r − � − z)-axis (m s−1)
z  Axial coordinate

Greek symbols
�  Thermal diffusivity  (m2 s−1)
�C  Nonlinear mixed convection parameter for concen-

tration �C =
�4⋅C∞

�3

�t  Nonlinear mixed convection parameter for tem-
perature �t =

�2(Tw−T∞)
�1

�  Modified conductivity ratio � =
kf

ks

�∗  Damköhler number �∗ = kR⋅a

2D

1

C∞

�  Similarity variable, � =

(

r

a

)2

�(�)  Non-dimensional temperature
�  Permeability parameter, � =

a2

4k1

�  Porosity
�  Dimensionless temperature difference � =

(Tw−T∞)
T∞

�  Dynamic viscosity of fluid (N s m−2)
�  Kinematic viscosity of the fluid  (m2 s−1)
�  Density of fluid (kg m−3)
�  Dimensionless concentration
�  Angular (circumferential) coordinate

Subscripts
w  Condition on the surface of the cylinder
∞  Far field
f   Fluid
s  Solid

Introduction

The problem of impinging flow over a porous foam has 
received a sustained attention in engineering literature [1–4]. 
This is due to the wide application of this flow configuration 
in heat sinks [5] and chemical reactors [6]. In particular, 
the use of stagnation-point flows over surfaces covered by a 
porous medium is common in catalytic chemical reactors [7, 

8]. Since temperature and concentration of species have pro-
nounced effects upon the performance of catalytic reactors, 
accurate prediction of these quantities is of primary impor-
tance in reactor design. For heterogenous catalysts covered 
by porous inserts, this requires precise analysis of transport 
phenomena in the porous medium through considering the 
combined modes of heat and mass transfer.

The basic problem of convective heat transfer in a porous 
foam placed on a flat solid surface and subject to an imping-
ing flow has been studied extensively, e.g. [9–11]. For con-
ciseness reasons, here, those studies are not reviewed, and 
the reader is referred to the previous works of the authors 
for comprehensive reviews of the literature [12–14]. It is, 
nonetheless, emphasised that most previous investigations 
of stagnation-point flow through porous media assumed 
local thermal equilibrium in porous media, see, for example, 
[15–17]. This assumption although offering a mathematical 
convenience can jeopardise the accuracy of analysis in porous 
media that include chemical reactions [18, 19]. Therefore, 
the less restrictive assumption of local thermal non-equilib-
rium should be in place, instead. This requires addition of 
two energy equations for the solid and fluid phases of the 
porous medium and thus makes the problem mathematically 
involved. Such analysis was conducted by Jang and Tzeng 
[20], who considered impinging cooling of porous metallic 
foam heat sink under local thermal non-equilibrium. These 
authors found that implementation of a highly porous foam 
can boost the heat transfer from the flat plate by a factor 
of two or three [20]. In a subsequent work, the same group 
of authors repeated the analysis experimentally and con-
firmed their numerical findings [21]. Later, Wong and Saeid 
[22] advanced this heat transfer study through inclusion of 
buoyancy effects and considering mixed convection in their 
numerical investigation. They conducted an extensive para-
metric study and showed that thermal conductivity ratio and 
Biot number in the porous medium are the key parameters for 
maintaining the system under local thermal equilibrium [22]. 
The results of Wong and Saeid further indicated that increas-
ing the porosity of the metal foam can lead to higher values 
of Nusselt number. Later, Wong used a similar numerical 
setting in an experimental and numerical study of impinging 
flow on a porous block and demonstrated an overall similar-
ity between the experimentally recorded and computation-
ally predicted temperature fields [23]. The same problem 
under turbulent flow regime was investigated numerically 
by Hwang and Yang [24], who reported that the qualitative 
trends in heat transfer behaviour of the system are similar to 
that under laminar flow.

Currently, there exist several studies on mixed convection 
in stagnation-point flow in porous media. Marafie et al. [25] 
conducted a numerical work on this problem by applying a 
finite element technique. In keeping with Jang and Tzeng 
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[20], Marafie et al. [25] showed that addition of the imping-
ing flow enhances the rate of heat transfer by more than two 
times. These authors showed that there is a critical height 
of the porous block. Thickening the porous block prior to 
reaching the critical height results in increasing the Nusselt 
number. However, further thickening of the block beyond 
the critical thickness leads to reduction of Nusselt number 
[25]. Harris et al. [26] presented a similarity analysis of the 
boundary layer flows at the stagnation-point upon a porous 
block located vertically. A computational study about mixed 
convection in jet flows over a porous insert showed that 
increases in Reynolds number and jet width render higher 
values of the mean Nusselt number [27]. It was further dem-
onstrated that Nusselt number is enhanced by reducing the 
gap between the impinging flow and the heated part [27].

In the work of Kokubun and Fachini [3], an analytical 
solution was presented for the impinging flows over an 
infinitely long, horizontally positioned porous plate, expe-
riencing different types of thermal boundary conditions. 
This investigation revealed that a dimensionless parameter, 
involving information about the transfer characteristics of 
the fluid and porous solid, governs the process of heat trans-
fer. A numerical and experimental study was conducted by 
Feng et al. [5] on the problem of stagnation-point flow over 
a heated porous plate. They investigated a metal porous 
medium and a finned metal foam and showed that increases 
in the metal foam thickness reduce the heat transfer coef-
ficient. However, such trend was not observed for the metal 
finned foam [5]. In a relatively recent study, Buonomo et al. 
[28] analysed the heat transfer process as a laminar jet ver-
tically interacts with a horizontal, confined porous plate in 
an axisymmetric setting. Buonomo et al. [28] showed that 
Peclet number dominates the assisting and opposing con-
figurations of free and forced convection. Makinde [29] and 
Rosca and Pop [30] examined mixed convection in stagna-
tion-point flows impinging on a vertical porous plate. Mag-
netic effects and radiation of heat were also included in the 
analysis of mixed convection inside vertical, porous inserts 
[31]. An important common point in almost all studies on 
mixed convection in porous media is consideration of flat 
porous plates, and thus, curved porous configurations have 
been rarely investigated.

Nonlinear convection was included in a recent numerical 
work by Qayyum et al. [32], who analysed the nonlinear 
convection of a nanofluid over a heated stretching surface. 
Nonlinearity was included in the problem by considering 
nonlinear temperature and concentration terms in the form of 
(

T − T∞
)2 and 

(

C − C∞

)2 in the buoyancy term of momen-
tum equation. Similar studies were conducted by Qayyum 
et al. [33] and Hayat et al. [34], who further included a heat 
source that was linearly dependent upon the fluid tempera-
ture. It is essential to note that the works of Qayyum et al. 
[32, 33] and Hayat et al. [34] were not concerned with flows 

inside porous media. Other recent investigations of nonlinear 
convection in boundary layer flows include those of Hayat 
et al. [35] and Khan et al. [36]. It appears that currently there 
is no study on nonlinear convection in porous media.

The present study aims to fill the gaps identified in the 
preceding review of the literature. Towards this goal, nonlin-
ear mixed convection of heat and mass in a stagnation-point 
flow developed over a cylinder embedded in porous media 
is investigated numerically. To establish a direct connection 
to catalytic chemical reactors, it is assumed that a simple 
surface reaction takes place at the external surface of the 
cylinder.

Theoretical and numerical methods

Configuration of the problem, governing equations 
and assumptions

A schematic of the problem under investigation is shown 
in Fig. 1. A cylinder with radius a centred at r = 0 has been 
coated by a catalyst and embedded in a porous medium. 
Surface temperature on the external wall of the cylinder is 
maintained constant. The external flow over the cylinder 
includes an axisymmetric radial stagnation-point flow with 
the strain rate of k̄ . The current analysis considers the fol-
lowing assumptions.

• The fluid flow is under steady-state condition. It is also 
laminar and incompressible, while the cylinder is infi-
nitely long and features zero permeability.

porous media
r

g

z

ψ

Fig. 1  Schematics of the investigated problem: a vertical cylinder 
embedded in porous media under radial stagnation flow
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• The catalytic reactions on the surface of the cylinder are 
temperature independent and of zeroth order [37–39].

• Soret and Dufour effects on the transport of heat and 
mass are taken into account.

• The porous medium around the cylinder is under local 
thermal non-equilibrium (LTNE) and is also homogenous 
and isotropic.

• Thermal radiation and frictional dissipation of the flow 
kinetic energy are ignored. However, gravitational effects 
and nonlinear convection of heat and mass are considered.

• Density and heat conductivity as well as porosity and 
specific heat capacities are constant. As a result, the ther-
mal dispersion in the porous medium is negligibly small.

• Pore-scale Reynolds number is moderate, and therefore, 
Forchheimer term in the model of momentum transfer is 
ignored.

It is clarified that zeroth-order surface reactions are often 
used to approximate the kinetics of many catalytic reactions 
[40]. Hence, they are of practical importance.

Assuming a nonlinear, double-diffusive mixed convection 
and by employing a cylindrical coordinate, the governing 
equations and boundary conditions can be written in the 
following forms.

The conservation of mass is as follows:

Momentum transfer in the radial direction is governed by

and that in the axial direction, it is given by [35, 36]

Equation (3) includes the nonlinear terms appearing as 
body forces on the right-hand side. The transfer of heat in 
the fluid phase reduces to

(1)
�u

�r
+

u

r
+

�w

�z
= 0.

(2)

1

�2

(

u
�u

�r
+ w

�u

�z

)

= −
1

�

�p

�r

+
�

�

(

�2u

�r2
+

1

r

�u

�r
−

u

r2
+

1

r2
�2u

��2
+

�2u

�z2

)

−
�

k1
u,

(3)

1

�2

(

u
�w

�r
+ w

�w

�z

)

= −
1

�

�p

�z

+
�

�

(

�2w

�r2
+

1

r

�w

�r
+

1

r2
�2w

��2
+

�2w

�z2

)

∓ g
[

�
1

(

T
f
− T∞

)

+ �
2

(

T
f
− T∞

)2
]

+ g
[

�
3

(

C − C∞

)

+ �
4

(

C − C∞

)2
]

−
�

k
1

w.

The last term on the left-hand side of Eq. (4) denotes 
Dufour effect [37, 38]. The transfer of heat in the solid phase 
of the porous medium is expressed by

The following equation governs the transport of chemical 
species throughout the porous medium in which the thermal 
diffusion of mass (Soret effect) has been considered [38, 39]:

In Eqs. (4–6), the subscripts “f” and “s” denote the fluid 
and solid phase of the porous medium, respectively.

The boundary conditions of momentum equations are 
given as follows.

The no-slip condition over the external wall of the cylin-
der is represented by Eq. (7). Further, Eq. (8) implies that 
the solution of viscous flow behaves similar to that for Hie-
menz flow, the potential flow solution as r → ∞ [41–43]. 
This can be verified by starting from the continuity equation 
in the followings. − 1

r

𝜕(ru)

𝜕r
=

𝜕w

𝜕z
Constant = 2k̄z , and integrat-

ing in r and z directions with boundary conditions, w = 0 
when z = 0 and u = 0 when r = a.

The boundary conditions for the transport of thermal 
energy are given by

(4)

u
�Tf

�r
+ w

�Tf

�z
= �f

(

�2Tf

�r2
+

1

r

�Tf

�r
+

1

r2

�2Tf

��2
+

�2Tf

�z2

)

+
hsf ⋅ asf
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(
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)

+
DkT
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(
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1

r
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+

1
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)

.
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k
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(
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.

(7)r = a ∶ w = 0, u = 0,

(8)r = ∞ ∶ w = 2k̄z, u = −k̄

(

r −
a2

r

)

,

(9)
r = a∶ Tf = Tw = Constant,

Ts = Tw = Constant,

r = ∞∶ Tf = T∞,

Ts = T∞,
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 where Tw is the temperature of the surface of cylinder and 
T∞ is that of the freestream flow.

The boundary condition for mass transfer is given by

where D is the Fickian diffusion coefficient, kR is the kinetic 
constant pertinent to a zeroth-order heterogenous reaction 
[38, 39], and C∞ denotes the concentration of species in the 
freestream.

Self‑similar analysis

The governing Eqs. (1–6) are reduced by applying the fol-
lowing similarity transformations.

where � =

(

r

a

)2

 is the non-dimensional radial variable. 
Relations (11) satisfy the continuity of mass [Eq. (1)], and 
substitution into momentum equations [Eqs. (2), (3)] renders 
the following system of coupled, ordinary differential 
equations.

where Re = k̄⋅a2

2𝜐
 shows the Reynolds number of the 

freestream, � =
a2

4k1
 is the permeability parameter, 

𝜆1 =
Gr

Re2
=

g⋅𝛽1(Tw−T∞)

4ak̄2
 is the dimensionless mixed convection 

parameter, �t =
�2(Tw−T∞)

�1
 is the nonlinear mixed convection 

parameter for temperature, �C =
�4⋅C∞

�3
 denotes the nonlinear 

mixed convection parameter for concentration, 
N∗ =

�3⋅C∞

�1(Tw−T∞)
 represents the ratio of concentration to ther-

mal buoyancy forces, and prime represents the differentia-
tion with respect to the radial variable �.

Considering the transport of momentum, the boundary 
conditions for Eq. (12) reduce to

(10)
r = a∶

�C

�r
= −

kR

D
= Constant,

r = ∞∶ C → C∞

(11)u = −
k̄ ⋅ a
√

𝜂
f (𝜂), w =

�

2k̄f �(𝜂)
�

z, p = 𝜌fk̄
2a2P,

(12)

[
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+
1

�2
Re

[
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(

f �
)2
]
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[

1 − f �
]
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1
�
f

[
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t
⋅ �

f

]
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⋅ �
[
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(13)
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1
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(

f 2

�
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1
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�

Re

](

z

a
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,

(14)� = 1∶ f �(1) = 0, f (1) = 0,

(15)� → ∞∶ f �(∞) = 1.

The following transformation is introduced [43, 44], to 
non-dimensionalise the energy equation,

By substituting Eqs.  (11) and (16) into Eq.  (4) and 
through ignoring the dissipation terms, the following rela-
tion is developed

where Bi = hsfasf⋅a

4kf
 is the Biot number and Df = D⋅kT

Cs⋅Cp

C∞

(Tw−T∞)�
 

is the Dufour number, and the pertinent boundary conditions 
can be written as:

Substitution of Eqs. (11) and (16) into Eq. (5) results in

where � =
kf

ks
 is the modified conductivity ratio, Qh =

Q1a
2

4kf
 

denotes the heat source parameter, and �h =
Q2(Tw−T∞)

Q1

 is the 
nonlinear heat source parameter, while the boundary condi-
tions are expressed by:

Transformation (21) is used, to non-dimensionalise the 
mass transfer Eq. (6),

By substituting Eqs. (14) and (16) into Eq. (6), the fol-
lowing equation is developed

where Sc = �

D
 is the Schmidt number and Sr = D⋅kT

Tm

(Tw−T∞)
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is the Soret number, and the boundary conditions are:
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2D

1
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 is the Damköhler number. Numerical 
solutions for Eqs. (12), (17), (19) and (22) along with the 
boundary conditions (14–15), (18), (20), (23) are developed 
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by employing an implicit, iterative tri-diagonal finite differ-
ence method [45].

Nusselt and Sherwood numbers

The rate of heat transfer for the fluid phase and the local 
convection coefficient are defined as

and

Thus, Nusselt number calculated on the external surface 
of the cylinder is expressed by

In a similar way, the local rate of mass transfer and mass 
transfer coefficient are given by

and

(24)h =
qw

Tw − T∞
=

−kf

(

�Tf

�r

)

r=a

Tw − T∞
= −

2kf

a

��f(1)

��
,

(25)qw = −
2kf

a

��f(1)

��
Tw − T∞.

(26)Nu =
h ⋅ a

2kf
= −��(1).

(27)km =
qm

Cw − C∞

=

−D
(

�C

�r

)

r=a

Cw − C∞

= −
2D

a

��(1)

��
.

(28)qm = −
2D

a

��(1)

��
Cw − C∞.

Therefore, Sherwood number can be written as

Grid independency and validation

To ensure achieving numerical results that are grid independ-
ent, values of the surface-averaged Nusselt and Sherwood 
number were computed for grid sizes of 51 × 18 , 102 × 36 , 
204 × 72 , 408 × 144 and 816 × 288 . As shown in Table 1, 
there are no considerable changes in the average Nusselt and 
Sherwood numbers for the ( �,� ) mesh sizes of ( 204 × 72 ), 
( 408 × 144 ) and ( 816 × 288 ). Hence, a ( 408 × 144 ) grid in 
� − � directions was chosen for the computational domain of 
the current work. To capture the sharp gradients of velocity, 
temperature and concentration around the external surface of 
the cylinder, a non-uniform grid was applied in � direction, 
while a homogeneous mesh was used in the angular direc-
tion. In the current work, the computational domain extends 
to �max = 360◦ and �max = 15 . It is important to note that 
�max essentially corresponds to �→∞. This is because for 
all cases investigated in this work, �max is located outside 
the concentration, momentum and thermal boundary layers. 
It is assumed that when the disparity between the two con-
secutive iterations becomes less than 10−7 , the convergence 
criterion in the numerical simulations has been met, and thus, 
the iterative process is stopped. On the basis of the utilised 
numerical method, the numerical error is deemed to be of 
O(Δ�)2 [45].

Tables 2 and 3 show that for very large permeability and 
porosity of one (a clear region) and when the mass transfer 
and gravitational effects are suppressed, the numerical simu-
lations developed in “Theoretical and numerical methods” 
section reduce to those of Wang [46] and Gorla [47] for 
the impinging flow on a circular cylinder. Also, although 
not shown in this section, it was verified that for large Biot 
numbers, the current LTNE results become identical to those 
developed in an earlier work of the authors under LTE condi-
tion [12]. This rational trend provides another evidence for 
correctness of the current simulations.

(29)Sh =
km ⋅ a

2D
= −��(1).

Table 1  Verification of grid independency at 
Df = 1.0, Bi = 0.1, Sr = 0.5, Re = 5.0, � = 10, Sc = 0.1

Mesh size Nu
m

Sh
m

51 × 18 1.540873 0.588014
102 × 36 1.499256 0.555648
204 × 72 1.479155 0.527381
408 × 144 1.465920 0.467275
816 × 288 1.465773 0.468014

Table 2  Validation of 
the numerical method by 
comparison between the current 
simulations and those of Wang 
[36] for large porosity and 
permeability

� Re = 1.0 Re = 10

Wang [36] Current simulations Wang [36] Current simulations

f f ′ f f ′ f f ′ f f ′

1.2 0.02667 0.25302 0.02693 0.25993 0.06638 0.58982 0.06631 0.06610
1.4 0.09665 0.43724 0.09652 0.43710 0.21400 0.84821 0.21393 0.21379
1.6 0.19836 0.57315 0.19828 0.57329 0.39532 0.94852 0.39541 0.39535
1.8 0.32361 0.67444 0.32365 0.67438 0.58919 0.98380 0.58914 0.58926
2.0 0.46674 0.75054 0.46683 0.75046 0.78731 0.99522 0.78735 0.78729
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Results and discussion

Temperature and concentration fields

Figure 2a depicts the radial distribution of non-dimension-
alised axial velocity ( f ′ ) for different Reynolds numbers. 
As expected, there is a hydrodynamic boundary layer over 
the cylinder in which flow velocity features an overshoot. 

In keeping with the classical behaviours of viscous flows at 
low Reynolds number, the hydrodynamic boundary layer 
grows in thickness as Reynolds number decreases. Figure 2a 
also shows that the amplitude of the overshoot increases for 
lower values of Reynolds number. The observed overshoot 
is because of the influence of buoyancy forces upon the fluid 
velocity, which becomes more noticeable in low-momen-
tum flows. Figure 2b further elaborates on this by show-
ing the radial variation in axial velocity for different mixed 
convection parameters. At low values of mixed convection 
parameter, for which the flow approaches forced convection, 
there is almost no velocity overshoot and a typical profile of 
forced convection boundary layer is recaptured. However, by 
increasing the share of natural convection at higher values of 
mixed convection parameter, the velocity overshoot grows 
in magnitude. Interestingly, as the numerical value of mixed 
convection exceeds 10, the thickness of the hydrodynamic 
boundary layer becomes nearly indifferent to this value. This 
along with the trend observed in Fig. 2a confirms that the 

Table 3  Comparison between the current simulations and those of 
Gorla [37] for very large porosity and permeability

Re f �

Gorla [37] Current simula-
tions

Gorla [37] Current simu-
lations

0.01 0.12075 0.12051 0.84549 0.84557
0.1 0.22652 0.22659 0.73715 0.73701
1.0 0.46647 0.46683 0.46070 0.46045
10 0.78731 0.78725 0.02970 0.02983
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boundary layer thickness in the current problem is domi-
nated by Reynolds number.

Figure 3 shows the effects of nonlinear mixed convec-
tion upon the profiles of dimensionless axial velocity. Both 
parts of this figure indicate that strengthening of nonlinear 
convection results in higher amplitudes of velocity overshoot 
in the hydrodynamic boundary layer. Yet, in agreement with 
that discussed earlier, the boundary layer thickness remains 
independent of nonlinear mixed convection. This is an 
important result as it illustrates the influence of nonlinear 
mixed convection upon the hydrodynamics of the problem. 
Figure 3b implies that such influences can be significant. 
Figure 3 clearly shows that the influences of nonlinear mixed 
convection parameter for concentration ( �c ) are stronger than 
those of nonlinear mixed convection for temperature ( �T ). 
The reason for this difference is not immediately obvious 
and is most probably due to the strongly nonlinear nature of 
momentum transport in mixed convection, as reflected by 
Eq. (12). Unlike conventional mixed convection modelling, 
the current problem models the buoyancy effects of tempera-
ture and concentration difference through strongly nonlinear 

terms [see Eq. (3)]. This can lead to complex interactions 
between transport of momentum and those of heat and mass 
[Eqs. (4), (5), (6)] and imbalance the effects of mixed con-
vection parameters upon momentum transfer.

The effects of Reynolds number and permeability of the 
porous medium on the dimensionless temperature of the 
fluid phase are shown in Fig. 4. According to Fig. 4a, at any 
radial distance from the surface of the cylinder, increases in 
Reynolds number result in reduction in the dimensionless 
temperature of the fluid. It should be noted that according 
to the definition of dimensionless temperature (Eq. 6), lower 
values of this quantity imply a fluid temperature close to 
that of the impinging flow and the values of dimensionless 
temperature close to unity indicate proximity to the wall 
temperature. Figure 4a shows that at any radius, increases in 
Reynolds number result in the reduction in fluid temperature. 
It also shows that the thickness of thermal boundary layer 
decreases at higher values of Reynolds number. It will be 
later shown that this trend is associated with an increase in 
the rate of heat transfer. This is to be expected as, in gen-
eral, increases in Reynolds number and reduction in the 
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thickness of thermal boundary layer intensify the convec-
tive heat transfer [48]. Figure 4b shows that increases in 
mixed convection parameter lead to reduction in the dimen-
sionless temperature of the fluid and formation of thinner 
thermal boundary layer. Hence, convective heat transfer is 
stronger at higher values of mixed convection parameter. 
Once again, this is an anticipated result as Reynolds num-
ber, and therefore, the strength of forced convection is kept 
constant in Fig. 4b. Thus, increases in mixed convection 
strengthen the contribution of natural convection with the 
heat transfer process.

Figure 5 depicts the effects of �c and �T on the dimen-
sionless temperature of the fluid. According to this fig-
ure, increases in either of �c or �T result in the reduction 
in dimensionless temperature and lessen the thickness of 
thermal boundary layer. It follows that the increases in the 
nonlinear convection parameters intensify the rate of heat 
transfer. Comparison of Fig. 5a, b shows that the influ-
ences of �c upon the reduction in boundary layer thickness 
are stronger than those of �T. This can be attributed to the 
behaviour observed in Fig. 3 in which variations in �c affect 

the velocity field more significantly in comparison with �T. 
Larger velocities induced at higher values of �c strengthen 
mixed convection of heat and induce higher rates of heat 
transfer and smaller thicknesses of the thermal boundary 
layer. Figure 5b further shows that increases in �c lead to a 
slight decrease in the thickness of thermal boundary layer. 
This implies that by intensifying nonlinear mixed convec-
tion, the characteristics of thermal boundary layer approach 
those of forced convection.

The effects of Dufour and Biot number on the dimension-
less temperature of the fluid are shown in Fig. 6. Accord-
ing to this figure, variation in Dufour number leaves modest 
effects on the fluid temperature. Magnification of Dufour 
effect slightly increases the dimensionless temperature of 
fluid and hence renders lower rates of heat transfer. Yet, vari-
ation in Biot number appears to feature more pronounced 
impacts on the fluid temperature. Figure 6a clearly shows 
that dimensionless fluid temperatures are smaller at lower 
values of Biot number. This is to be expected, as a low Biot 
number implies high thermal conductivity of the porous 
medium, which is a well-known factor in enhancement of 
heat transfer in porous media [49].
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Figure 7a shows that changes in Reynolds number have 
no considerable effect on the dimensionless temperature of 
the porous solid phase. However, variation in heat source 
parameter can significantly alter the porous solid tempera-
ture (Fig. 7b). As shown in Fig. 8a, Biot number has also a 
significant effect on the temperature of the porous solid phase. 
At lower Biot numbers, the thermal conductivity of the porous 
solid is much larger than the convective cooling of the fluid 
medium. Hence, the solid phase approaches thermal equilib-
rium with the external surface of the cylinder. Increases in the 
Biot number and therefore strengthening the heat exchanges 
between the two phases of solid and fluid in the porous 
medium cause a drop in the temperature of the porous solid.

Figure 8b illustrates the radial distribution of dimension-
less concentration for varying values of Reynolds number. 
This figure shows a similar behaviour to that observed 
in Fig. 4a, wherein dimensionless temperature drops by 
increases in Reynolds number. In both cases, increasing 
Reynolds number leads to reduction in the boundary layer 
thickness (thermal and concentration) and increases in the 
rate of transport (as shown in the following section).

It should be noted that these results are further sup-
ported by the analogy between heat and mass transfer. Fig-
ure 9 shows the effects of mixed convection and nonlinear 
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convection parameters upon the radial profiles of concen-
tration. Higher values of mixed and nonlinear convection 
parameters ( �c ) cause reductions in the thickness of the con-
centration boundary layer. Once again, these findings are in 

qualitative agreement with those of temperature variation. 
Nonetheless, the effects of �c on the thermal boundary layer 
appear to be stronger than those on the concentration bound-
ary layer. Figure 10 shows that depending upon the sign of 
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Soret number, thermal diffusion can either enhance or sup-
press mass transfer process. For the set of parameters shown 
in Fig. 10, positive values of Soret number tend to increase 
the value of dimensionless concentration and reduce the rate 
of mass transfer, while the negative values of Soret number 
have the opposite effect.

Deviation from local thermal equilibrium 
and Nusselt and Sherwood numbers

Deviation from the state of local thermal equilibrium in 
porous media with chemical reactions has been already 
reported [18, 19, 50–54]. However, many numerical works 
still use local thermal equilibrium for reactive flows in 
porous media. Here, a systematic examination of the local 
thermal equilibrium of the system is put forward to iden-
tify the trends in deviation from local thermal equilibrium. 
Figure 11 shows surface plots of the temperature difference 
between the solid and fluid phase in the porous medium 

against Biot number and radial coordinate and for different 
values of a few pertinent parameters. Biot number is known 
to be a key dimensionless parameter in evaluation of local 
thermal equilibrium and is therefore chosen as one of the 
main variables. In Fig. 11, the values of temperature dif-
ference close to one indicate strong tendency towards local 
thermal non-equilibrium. However, as the temperature dif-
ference approaches zero, local thermal equilibrium condi-
tions are retained. As anticipated for all investigated cases, 
lower values of Biot number push the system towards local 
thermal non-equilibrium. This is because of the poor heat 
exchanges between the porous solid and fluid at smaller Biot 
numbers that allow for the development of a sizeable tem-
perature difference between the two.

Figure 11 shows that for all values of Biot number, there 
is a finite temperature difference close to the surface of the 
solid. This region marks the thermal boundary layer, and 
as shown in Fig. 11a, it is thicker at lower values of Reyn-
olds number. Outside this region and for larger radii, the 

Table 4  Impact of Prandtl and Schmidt number on the surface-averaged Sherwood, Nusselt and Bejan number, 
Df = 1.0, Bi = 0.1, Sr = 0.5, Re = 5.0, Sc = 0.1, � = 10, �

1
= 1.0, �

t
= 0.1, N

∗ = 1.0, �
c
= 0.1

Q
H

Nu
m

Sh
m

�
h

Nu
m

Sh
m

�
1

Nu
m

Sh
m

0 1.469322 0.451961 0 1.735314 0.464441 0.01 1.719318 0.4641069
0.3 1.461031 0.452993 0.3 1.729541 0.464954 0.1 1.720283 0.4711376
0.5 1.457821 0.453015 0.5 1.719562 0.465453 1.0 1.729816 0.4774410
0.8 1.451811 0.453882 0.8 1.715213 0.466363 10 1.814899 0.4831836
1.0 1.443716 0.454287 1.0 1.711546 0.467474 50 2.074300 0.4958993

Table 5  Impact of Reynolds number and nonlinear convection parameters on the surface-averaged Sherwood, Nusselt and Bejan number, 
Df = 1.0, Bi = 0.1, Sr = 0.5, Re = 10, Sc = 0.1, � = 10, �

1
= 10, �

t
= 0.1, N

∗ = 50, �
c
= 0.1

Re Nu
m

Sh
m

�
t

Nu
m

Sh
m

�
c

Nu
m

Sh
m

0.1 1.180332 0.4418018 0 1.644079 0.4580463 0 1.648651 0.4580465
1.0 1.667559 0.4563104 5.0 1.653584 0.4582736 5.0 1.844146 0.4645073
10 2.695047 0.5030617 10 1.662801 0.4584938 10 1.986441 0.4695192
50 3.951993 0.5532836 15 1.671753 0.4587073 15 2.100038 0.4736521
100 4.809386 0.5751724 20 1.680457 0.4589147 20 2.195405 0.4771866

Table 6  Impact of Dufour, Soret and Biot number on the surface-averaged Sherwood, Nusselt and Bejan number, 
Df = 1.0, Bi = 0.1, Sr = 0.5, Re = 5.0, Sc = 0.1, � = 10, �

1
= 1.0, �

t
= 10, N

∗ = 50, �
c
= 0.1

Df Nu
m

Sh
m

Sr Nu
m

Sh
m

Bi Nu
m

Sh
m

0 2.016361 0.4696653 1.0 2.042746 0.4545306 0.1 1.986443 0.4695192
0.3 1.925952 0.4692409 0.5 1.986442 0.4695192 1.0 1.914141 0.4703451
0.5 1.864596 0.4689814 0 1.932564 0.4831708 10 1.755759 0.4723857
0.7 1.802364 0.4687411 − 0.5 1.881332 0.4955133 100 1.664307 0.4744152
1.0 1.707362 0.4684174 − 1.0 1.832952 0.5065943 200 1.652145 0.475334
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temperature difference increases slightly which is due to 
small changes in the temperature of porous solid. Figure 11a 
further shows that increasing Reynolds number intensifies 
the deviation from local thermal equilibrium, while Fig. 11b, 
c indicates that increases in mixed convection and perme-
ability parameters have the same effect.

The values of the surface-averaged Nusselt and Sherwood 
number calculated for several different parameters are shown 
in Tables 4–6. Values of surface-averaged Nusselt and Sher-
wood number vary slightly by changes in the nonlinear heat 
generations (see Table 4). However, they are quite sensitive 
to changes in permeability parameter. Also, as discussed 
earlier, increases in Reynolds number and nonlinear convec-
tion parameters ( �c and �T ) magnify the values of Nusselt 
and Sherwood number (see Table 5). The extent of these 
magnifications is quite strong for Reynolds number and �c 
but rather insignificant for �T. Finally, as shown in Table 6, 
increases in Biot and Dufour number reduce Nusselt and 
Sherwood number. Nonetheless, depending upon its sign, 
Soret effect can either increase or reduce Nusselt number 
[55–58].

Conclusions

Combined transport of heat and mass through mixed convec-
tion set by the impingement of a flow over a vertical cylinder 
embedded in a porous medium was considered. The surface 
of cylinder was coated with a catalytic material leading to 
the occurrence of a heterogenous chemical reaction. Nonlin-
ear convection of heat and mass and nonlinear heat genera-
tions were considered, and the formulation of the problem 
included Soret and Dufour effects. The nonlinear governing 
equations were reduced to a system of ordinary differential 
equations by using similarity variables. A finite difference 
method was then used to solve the coupled, nonlinear ordi-
nary differential equations. The findings of this study can be 
summarised as follows.

• Increasing Reynolds number results in the reduction in 
the thicknesses of thermal and concentration boundary 
layers. Consequently, it enhances the value of Nusselt 
and Sherwood number.

• Higher values of nonlinear mixed convection parameters 
make the boundary layers thinner and therefore enhance 
the rate of heat and mass transfer.

• The effects of nonlinear mixed convection parameter for 
concentration appeared to be stronger than those of ther-
mal mixed convection.

• Soret and Dufour numbers were found to be influential 
on the value of Sherwood and Nusselt number. Nonethe-
less, their effects are either comparable or less than the 
influences of nonlinear mixed convection.

• Deviation of the porous system from local thermal equi-
librium was systematically examined. This showed that 
increases in Reynolds and mixed convection parameters 
push the system towards local thermal non-equilibrium.

Th current study clearly demonstrated the potential sig-
nificance of nonlinear mixed convection. Future studies will 
focus on exploring the complex interaction between momen-
tum transfer and nonlinear convection of heat and mass.
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