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Abstract
In this study, the exergy analysis of an AHU equipped with a heat and exergy recovery unit was investigated. The equations 
obtained from energy and exergy balance were solved based on a program developed in engineering equation solver. Through 
the air-to-air heat exchanger, the energy is transferred from the fresh air to the exhaust one but the exergy is transferred from 
the exhaust air to the fresh one. Therefore, the cooling coil power consumption and irreversibility were reduced. The efficacy 
of installing an air-to-air heat exchanger is dependent on the temperature and relative humidity of the ambient. Based on the 
results, at the lowest ambient temperature and relative humidity, the power consumption is reduced by 10.8%, while in the 
highest ambient temperature and relative humidity, this figure was 33%. Under ambient conditions with low temperatures 
and high relative humidity, installation of heat recovery unit reduced the irreversibility by 5.18%, while in the highest tem-
perature and lowest relative humidity this figure was 12.8%.
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List of symbols
C	� Heat capacity (kJ kg−1 K−1)
Ex	� Exergy (kJ kg−1)
h	� Enthalpy (kJ kg−1)
Qs	� Sensible heat exchange (kW)
Ql	� Latent heat exchange (kW)
Ra	� Air constant (kJ kg−1 K−1)
Rv	� Vapor constant (kJ kg−1 K−1)
s	� Entropy (kJ kg−1 K−1)
T	� Temperature (K)

Superscripts
Air-to-air	� Heat recovery unit
cc	� Cooling coil
hc	� Heating coil
mixing	� Mixing box
room	� Conditioned space

Greek letters
φ	� Relative humidity
ω	� Humidity ratio 

(

kgv

kga

)

ε	� Effectiveness

Subscripts
a	� Point a (outlet of air-to-air heat exchanger)/air
c	� Point c (outlet of cooling coil)
Co	� Water outlet from cooling coil
Ci	� Cooling coil inlet water
cond	� Condensation
des	� Destroyed
e	� Point e (exhaust air)
hi	� Heating coil inlet water
ho	� Heating coil outlet water
f	� Point f (fresh air)
m	� Point m (mixing)
r	� Point r (return air)
s	� Point s (supply air)
0	� Reference condition

Introduction

Almost half of the building energy demand is consumed 
by the HVAC system to maintain the ventilation require-
ments [1–4]. To date, many efforts have been made to reduce 
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energy consumption in the HVAC system [5, 6]. One of the 
ways to reduce energy consumption is to use energy recov-
ery techniques [7]. Air-to-air heat recovery is a device that 
can be used to recover energy [8]. In the enthalpy air-to-
air heat exchanger, sensible energy (heat) and latent energy 
(vapor) are transmitted, while in the sensible air-to-air heat 
exchanger sensible heat is transferred from the hot stream 
to the cold stream [8]. More detail about the air-to-air heat 
exchanger is reported in Ref. [9].

Exergy analysis is a brilliant technique that accentuates 
the inefficiencies through the process [10–12]. The exergy 
analysis tells designers how far the system is away from its 
ideal state. If the exergy loss or irreversibility is zero, the 
process or cycle is ideal. The greater the irreversibility, the 
greater the deviation than the ideal state [13]. For compre-
hensive detail of exergy analysis utilization in the building, 
readers are referred to [14–17]. The first law of thermody-
namics deals with the quantity of energy exchanged at the 
boundary, while the second law refers to the energy quality. 
The second law is concerned with the degradation of the 
work potential of the energy and can help designer to ana-
lyze and optimize the HVAC process. Various numerical 
approaches are applied by researchers to model various sci-
entific processes [18–41]. Many exergy studies for example 
heat pumps [42–44], boilers [45], energy storage systems 
[46–48], HVAC [49–51], cooling system [52–68] and build-
ing envelope [69–71] have been conducted on building to 
decrease the building energy consumption.

In [44], the authors studied the heat pump (a ground 
source type) to utilize it in the building. They presented 
five control strategies to ameliorate the unit performance. 
Results revealed that the best strategies can decrease energy 
consumption and irreversibility which in turn increase the 
exergy efficiency and COP, respectively. The exergy analysis 
based on the connective thinking approach has been studied 
by Dovjak et al. [69]. Results indicated that the exergy con-
sumption through the building envelope decreases due to 
the increase in thermal insulation resistance. Razmara et al. 
[72] performed the exergy analysis on building HVAC. They 
used the model predictive control (MPC) technique instead 
of traditional on–off controller. The results inferred that the 
MPC technique reduced the exergy destruction and energy 
consumption of the building HVAC up to 22% and 356%, 
respectively. Khalid et al. [73] performed the exergy analy-
sis on three developed heating and cooling system in the 
residential building. The results showed that system oper-
ated by natural gas and vapor absorption chiller had priority 
over the other proposed systems. The first efficiency of the 
best system was 27.5%. The photovoltaic (PV) and solar 
thermal operated with vapor-compression chiller had the 
lowest first efficiency (19.9%) and highest second efficiency 
(3.9%). Sayadi et al. [74] applied the exergy analysis on the 
large complex building and affirmed that the efficiency of 

the second law is very low (approximately 4%). Based on 
the exergy analysis, energy conversion systems account for 
the largest share (54%) in exergy losses. Caliskan et al. [75] 
proposed a novel desiccant air cooling. It consists of subsec-
tions such as a desiccant wheel, evaporative type of cooler 
and finally sensible wheel. They showed that the desiccant 
wheel has the highest share of exergy destruction (42.78%).

In this study, the effects of using enthalpy air-to-air 
heat exchanger on the second law were investigated. In the 
enthalpy, air-to-air heat recovery unit was installed at the 
AHU inlet and fresh air is pre-cooled through transferring 
sensible and latent heat to the exhaust air. Through the air-
to-air heat exchanger, energy is transferred from the fresh 
air to the exhaust one but the exergy is transferred from the 
exhaust air to the fresh one. To evaluate the usefulness of 
heat exchanger installation, the exergy balance equations are 
developed. Irreversibility through the various components 
has been measured by solving the exergy balance equations 
based on a program developed in EES. The exergy balance 
results demonstrate the change made in the deviation of the 
system from its ideal state by adding the heat exchanger.

Description of the system

The AHU that has shown in Fig. 1 is utilized to satisfy the 
conditioned space ventilation requirements. In summer, the 
air temperature of the exterior (point f) is higher than the air 
temperature of the interior (point r); hence, cooling coil is 
required to reduce the air temperature of the exterior. But the 
presence of a cooling coil causes many changes in the rela-
tive humidity of the air. The heating coil is used to reduce 
relative humidity changes.

In other words, the heating coil is used to provide ade-
quate humidity content in the conditioned space. As seen, 
a portion of the return air is recirculated and the rest is 
exhausted. In other words, energy and exergy are transferred 
from the AHU to the ambient. Exhaust air energy and exergy 
can be utilized in the heat recovery unit installed at the AHU 
entrance.

Exergy analysis

In this study, the studied AHU is of constant air volume 
(CAV) type. In this type of AHU, the required mass flow 
rates of fresh air and supply air should be determined 
through the following equations:

(1)ṁair
s

=
air changes per hour × space volume

3600 × specific volume
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The exergy destruction through the heat recovery unit is 
obtained using exergy balance. Applying the exergy balance 
method, heat recovery unit exergy destruction is written as 
follow:

The mixing box exergy destruction is obtained by perform-
ing exergy balance:

The cooling coil exergy destruction is obtained using the 
following equation:

where Excond denotes exergy of condensation vapor and ṁcond 
is the vapor condensation mass flow rate.

Applying the exergy balance on the heating coil yields:

where ṁhw denotes the mass flow rate of the hot water. More-
over, the exergy loss in the conditioned space is obtained as 
follows:

(2)ṁair
f

=
people number × required fresh air per person

1000 × specific volume

(3)
ṁair

f
Exf +

(

ṁair
r

− ṁair
re

)

Exr − ṁair
a
Exa − ṁair

e
Exe − Exair to air

des
= 0

(4)ṁair
a
Exa + ṁair

re
Exr − ṁair

m
Exm − Ex

mixing

des
= 0

(5)

ṁair

m
Ex

m
+ ṁwater

ci
Ex

ci
− ṁair

c
Ex

c
− ṁwater

co
Ex

co

− ṁ
cond

Ex
cond

− Ex
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des
= 0

(6)
ṁair

c
Exc + ṁwater

hi
Exhi − ṁair

s
Exs − ṁwater

ho
Exho − Exhc

des
= 0

(7)ṁair
s
Exs − ṁair

r
Exr − Exroom

des
= 0

The exergy of moist air (Eq. 8), distilled water (Eq. 9) and 
hot and cold water (Eq. 10) is required to perform an exergy 
analysis. These parameters are as follows [76]:

where sf0 and hf0 denote the water entropy and enthalpy at 
ambient temperature, �0 and �0 are the ambient relative 
humidity and humidity ratio.

The first and second laws of thermodynamic efficiencies are 
calculated from Eqs. (11) and (12), respectively.

In Eq. (12), the total destroyed exergy is equal to the sum 
of irreversibility in each control volume:

(8)

Exhumid air = (cp,a + �cp,v)

(

T − T0 − To ln

[

T

To

])

+ (1 + 1.608�)RaTo ln
P

Po

+ RaTo

[

(1 + 1.608�) ln
1 + 1.608�

1 + 1.608�o

+ 1.608� ln
�

�o

]

(9)
Excond = hf − hf0 − T0(sf − sf0) − RvT0 ln(�0) + vf(P − Psat)

(10)Exhot and coldwater = hf − hf0 − T0(sf − sf0)

(11)
�I =

Qs + Ql

Qcc

⏟⏟⏟
cooling coil power

+ Qhc

⏟⏟⏟
heating coil power

(12)�II = 1 −
total destroyed exergy
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Fig. 1   Modified AHU
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Results

As mentioned, AHU is used to satisfy the comfort require-
ments. Consider a conference hall with a volume of 
40 × 20 × 8m3 and the capacity of 800 people under the 
ambient thermodynamic properties of 22 °C and 40%. The 
conditioned space is under outdoor conditions with a tem-
perature of 35 °C and a relative humidity of 50%. To meet 
comfort conditions, number of air changes per hour is 6 
and required fresh air per person is selected 8 L s−1 [77]. 
For each person, the latent heat gain of 40 W and sensible 
heat gain of 100 W are considered. Due to the difference of 
thermodynamic properties between the inside (conditioned 
space) and outside (ambient), sensible heat gain of 120 kW 
and latent heat gain of 32 kW are transferred from the out-
side into the inside.

The heating process is accomplished using a heating coil 
equipped with hot water at the flow rate of 1.63 kg s−1 and 
temperature of 60 °C. The cooling process is performed by a 
cooling coil equipped with chilled water at temperature and 
mass flow rate of 6 °C and 15 kg s−1.

According to the ventilation requirements, the fresh air 
mass flow rate should be 7 kg s−1. Depending on the num-
ber of air changes per hour, the mass flow rate of supply 
air is calculated to be 12.46 kg s−1; hence, the recirculated 
air mass flow rate is 5.46 kg s−1. In other words, about 
43% of the returning air is recirculated to AHU and 57% is 
exhausted. To meet the comfort requirements, supply air at 
temperature of 285.1 K and humidity ratio of 66.8% must be 
supplied. To change the ambient air thermodynamic prop-
erties (35 °C, 50%) to the supply thermodynamic proper-
ties of 285.1 K and 66.8%, the power consumption of the 

(13)

Total destroyed exergy

= Exair to air
des

+ Ex
mixing

des
+ Excc

des
+ Exhc

des
+ Exroom

des
.

cooling and heating coils is 524 and 75.34 kW, respectively. 
According to Eq. (11), the first law efficiency is 25.36%. 
From the viewpoint of the second law, the exergy losses in 
mixing box, cooling coil, heating coil and ventilation space 
are 3.176, 10.28, 11.45 and 9.38 kW, respectively. Therefore, 
the total loss is 34.29 kW. The highest exergy losses are 
related to the heating coil and cooling with the respective 
losses of 33.33% and 29.97%. Finally, applying Eq. (12), the 
efficiency of the second law is 65%.

Now, the heat recovery unit is added to the base AHU and 
energy and exergy analysis is applied on the various parts. 
The sensible effectiveness of 0.7 and latent effectiveness of 
0.5 for the enthalpy air-to-air heat exchangers are selected 
[78]. Performing energy calculations on the modified AHU, 
the power consumption of the heating and cooling coils will 
be 75.5 and 375.76 kW, respectively. Therefore, the total 
power consumption of the modified AHU is approximately 
451.26  kW. A comparison of total power consumption 
between the modified AHU (451.26 kW) and the base AHU 
(599.34 kW) affirms that the total power consumption is 
reduced by 24.7%. Finally, owing to the reduction in power 
consumption, the first efficiency is enhanced by 32.8%.

The modified AHU exergy analysis is shown in Fig. 2. 
As shown in Fig. 2, the exergy losses in the air-to-air heat 
exchanger, mixing box, cooling coil, heating coil and ven-
tilation space are 3.422, 1.067, 6.078, 11.47 and 9.38 kW, 
respectively. Therefore, the total loss is 31.418 kW. The 
highest exergy losses are related to the heating coil and ven-
tilation space with the respective losses of 36.5% and 29.9%. 
The heat transfer process at the high-temperature difference 
between the input air and the water inside the heat exchanger 
tubes causes a considerable amount of exergy loss.

Installation of the enthalpy air-to-air heat exchanger 
also affects the second law analysis. Based on the results, 
the exergy losses of the system change from 34.38 to 
31.418  kW (8.6% reduction) due to the installation of 
the heat exchanger. Therefore, the second law efficiency 
increases from 65 to 68%. The reduction in exergy losses 

Fig. 2   Exergy balance for AHU 
with heat recovery
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can be due to the reduction in cooling coil power. Installing 
the enthalpy air-to-air heat exchanger reduced the power of 
the cooling coil, which in turn decreases the exergy losses. 
In general, after installing an air-to-air heat exchanger, the 
required cooling coil power and exergy losses are decreased 
by 148.2 kW and 2.88 kW, respectively.

Figure 3 compares the irreversibility of the base AHU and 
the modified one. Since the energy recovery unit is installed 
before the cooling coil, it affects the mixing box and the 
cooling coil. Installing heat recovery unit causes the inlet 
air to cool down, thus reducing the inlet air temperature at 
point a (Fig. 1). Hence, the temperature at points (a) and (r) 
(Fig. 1) gets closer and somehow the temperature difference 
decreases. The lower the temperature difference, the lower 
the irreversibility. Therefore, the irreversibility through the 
mixing box reduces. It was mentioned that using heat recov-
ery unit reduces the power consumption of the cooling coil. 
Reducing the power of the cold coil will decrease the irre-
versibility as shown in Fig. 3.

The thermodynamic conditions of the cooling coil outlet 
and (point c) the supply air (point r in Fig. 1) are determined 
by equations that do not relate to temperature of point (a) 
(Fig. 1); hence, using of heat recovery unit does not affect the 
irreversibility through the heating coil and conditioned space.

In the following, the effect of various parameters on the 
usefulness of the adding heat recovery unit is examined.

Effects of chilled water temperature and mass flow 
rate

The required power of the cooling coil is a function of the 
chilled water temperature and mass flow rate. The varia-
tions of the cooling coil power consumption are shown in 

Fig. 4. As the cold water temperature decreases, the cooling 
coil load increases. Because as the cold water temperature 
decreases, the temperature difference between the air pass-
ing through the coil and the water inside the cooling coil 
increases; hence, the cooling coil load rises.

On the other hand, the higher the temperature difference, 
the greater the irreversibility. Therefore, as the cold water 
temperature decreases, the cooling coil irreversibility is also 
expected to increase (Fig. 5).
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The chilled water outlet temperature is always warmer 
than the chilled water inlet temperature. In other words, 
there is a temperature difference between inlet and outlet 
cold water. As the chilled water mass flow rate increases, the 
temperature difference decreases. Clearly, the surface tem-
perature of the cooling coil is colder, and therefore more 
vapor will be condensed. Hence, the cooling coil load 
increase as the chilled mass flow rate rises. This trend is 
shown in Fig. 4. As the power of the cooling coil increases, 
the irreversibility also rises. As shown in Fig.  5, with 
increasing chilled water mass flow rate, the irreversibility 
increases. As mentioned earlier, the cooling coil power 
increase as the chilled water flow rate increases. For this 
reason, the irreversibility in cooling coil and consequently 
the total irreversibility increase. On the other hand, inlet 
exergy to the system increases with the chilled water flow 
rate increase. However, the ratio of the input exergy increase 
is larger than the loss exergy increase; therefore, the 
total exergy loss

input exergy
 fraction will reduce. Consequently, according to 

Eq. (12), the second law efficiency increases as shown in 
Fig. 6. It is necessary to mention that the increase in irrevers-
ibility affirms that the behavior of the system from the view-
point of the second law deviates from its ideal state as the 
chilled water flow rate increases.

Effects of chilled water temperature and mass flow 
rate

As can be seen in Fig. 1, the power of the heating coil 
depends on the difference between the enthalpy of the cool-
ing coil outlet air (hc) and the enthalpy of the supply air (hs). 

Parameter (hs) is obtained from the thermodynamic analysis 
of the conditioned space. In other words, the power of the 
heating coil does not affect it. Parameter (hc) is also obtained 
using the � - NTU technique. In other words, the power of 
the heating coil depends only on the values of (hc) and (hs) 
and remains constant. Therefore, mass flow and temperature 
of the hot water have no impact on the first law efficiency. 
Exergy losses increase slightly in the heating coil in accord-
ance with Eq. (6) as the hot water flow rate increases. As a 
result, the total exergy loss increases and the second law 
efficiency reduces slightly.

Effects of ambient conditions

Ambient conditions (temperature and relative humidity) 
affect the cooling and heating loads which in turn affect the 
irreversibility through them. In Fig. 7, the ambient condi-
tions efficacy on the power consumption and the first effi-
ciency are shown.

The inlet air enthalpy is dependent on relative humid-
ity and temperature. The increase in temperature or relative 
humidity leads to an increase in enthalpy content. The more 
the enthalpy content, the higher the difference in energy con-
tent between the exterior and interior which in turn increases 
the power consumption and decreases the first law efficiency. 
This trend is shown in Fig. 7.

Note that the more the power consumption, the more irre-
versibility. Another reason for the increase in exergy losses 
is the increase in the exergy losses in the heat recovery unit. 
Exergy losses in the heat recovery unit are due to the temper-
ature and humidity differences between return and fresh air 
streams. The more difference, the higher the exergy loss. The 
humidity difference between the fresh and return air increases 
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as the relative humidity of the ambient increases. Therefore, 
the exergy loss of the heat recovery unit increases.

In Fig. 8, it is found that at the lowest ambient tempera-
ture power consumption and irreversibility have the lowest 
values. The same is correct for the relative humidity of the 
exterior, and at the lowest relative humidity, irreversibility 
and power consumption have the lowest values. Therefore, 
at the lowest exterior relative humidity and temperature, the 
modified AHU has the lowest power consumption and is 
closer to its ideal behavior.

Recovered power is a function of ambient conditions. 
Through the enthalpy units, the latent energy, as well as 
the sensible energy, is transferred from the fresh air (with 
the ambient thermodynamic properties) to the exhaust air 
(with the conditioned thermodynamic properties). Given 
that indoor (conditioned space) conditions are constant, any 
changes in ambient conditions can affect recovered power. 
As shown in Fig. 9, with the increase in ambient tempera-
ture and relative humidity, the recovered power increases. 
In other words, in hot and humid regions, the efficacy of 
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installing the heat recovery unit on the recovered power 
appears to be greater.

Figure 9 shows the recovered exergy in terms of ambient 
conditions. It demonstrates that the using of enthalpy air-
to-air heat exchanger on exergy recovery has the greatest 
effect at ambient with low relative humidity and high. Also, 
it has the least effect at a low temperature and high relative 
humidity.

Now the question is whether installing a heat recovery 
unit in hot and humid is preferable or in hot and dry one?

In Fig. 10, the effects of adding hear recovery unit on the 
irreversibility reduction and power consumption reduction 
are shown.

As shown in Fig. 10, installing a heat recovery unit, the 
energy consumption is reduced by at least 10.8% (in ambi-
ent with hot and dry climate) and maximum by 33% (hot 
and humid one). Moreover, incorporating heat recovery unit 
decreases the irreversibility at least 5.18% (in ambient with 
hot and dry climate) and maximum up to 12.8% (hot and 
humid one).

Conclusions

In this study, the effects of using the enthalpy heat recovery 
unit on the second law were investigated. In the enthalpy, 
the unit was installed at the AHU inlet and fresh air is pre-
cooled through transferring sensible and latent heat to the 
exhaust air. Through the enthalpy unit, the energy is trans-
ferred from the fresh air to the exhaust one but the exergy 
is transferred from the exhaust air to the fresh one. There-
fore, the power consumption of the cooling coil was reduced 
(owing to the pre-cooling). In addition, due to exergy 

recovery in the air-to-air heat exchanger, the total irrevers-
ibility is decreased. It was found that the exergy losses were 
34.288 kW, which is 8.7% lower than the base AHU irrevers-
ibility (31.417 kW). Owing to the less total exergy losses, 
the efficiency of the second law enhanced from 0.65 to 0.68 
(4.6% improvement).

The ambient conditions have an impact on the recovered 
exergy. At the ambient temperature of 303.2 K, as the ambi-
ent relative humidity changes from 0.3 to 0.7, using enthalpy 
air-to-air heat exchanger changes the recovered exergy from 
2.157 to 1.645 kW. When relative humidity is 0.5, it is found 
that with the increase in temperature from 303.2 to 313.2 K 
(10 K increase), the recovered exergy increases from 1.721 
to 4.058 kW. In other words, the amount of recovered exergy 
is increased by a decrease in ambient relative humidity or an 
increase in ambient temperature.
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